
1.	 INTRODUCTION
Missing values are, generally, inevitable in census 

and large scale survey data. Incomplete data from 
sampled units in large scale survey is due to many 
unavoidable factors, mainly unit and item non-response. 
Estimation of population parameters based on missing 
data may lead to loss of accuracy and in extreme 
situations, these estimates may lead to misleading 
inferences. Therefore, imputation techniques are 
of great use for drawing a valid inference in case of 
missing observations. Several imputation techniques 
are available in the literature to tackle partial missing 
information (Little & Rubin, 1987; Rubin, 1987). 
Lokupitiya et al. (2006) compared four commonly used 
imputation techniques based on regression, universal 
kriging, kernel smoothing and multiple imputation for 
US crop yield datasets, which were spatially correlated 
and contain large numbers of missing observations. It 
was shown that regressing Census of Agriculture data 
on National Agricultural Statistical Survey (NASS) 
and multiple imputation performed equally well in 
estimating these missing values.

The most common practice for imputing missing 
sample observations is to substitute it with mean of 

non-missing observations of the sample. But, this may 
lead to underestimation of second order statistics as 
there is no variation present in the imputed sampled 
values. Besides, in case of spatially correlated data, this 
mean substitution ignores spatial correlations. For the 
same reason, in case of spatially correlated data, other 
traditional imputation techniques like zero substitution, 
random substitution etc. may also not be very efficient. 
Further, it is expected that when data is spatially 
distributed, location of the observations for sampling 
units can play an important role in the prediction of 
missing information. This becomes more relevant 
when estimators of population parameter incorporate 
the spatial relationship of the sampled observations. A 
Spatial Estimator (SE) based on SRSWOR sampling 
design for estimation of finite population mean based 
on a prediction approach was proposed by Biswas et al. 
(2017). In this approach, unsampled population points 
are predicted using Inverse Distance Weighting (IDW) 
method (Donald, 1968) in the context of spatially 
correlated data. The rescaled spatial bootstrap method 
was also proposed in the study for unbiased variance 
estimation of the SE.
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Bootstrap is a widely used resampling technique 
introduced by Efron (1979), also known as Naïve 
Bootstrap. It is based on the non-parametric approach 
for finding estimates of the standard error of a statistic 
of the parameter of interest. Identifying the limitations 
of the naïve bootstrap method in case of large number 
of missing values in the sampled data, Bello (1994) 
modified this technique and proposed Proportional 
Bootstrap With Replacement (PBWR) method which 
effectively uses different traditional imputation 
techniques. In this approach, proportions of complete 
and incomplete sampled observations remain same in 
all resamples as in the original sample. Ahmad (1997) 
and Ahmad et  al. (2003, 2005) considered the case 
of variance estimation under without replacement 
sampling design for the data with missing values, and 
proposed Proportional Bootstrap Without Replacement 
(PBWO) method using imputation techniques. 

Before proceeding, it seems appropriate to describe 
the Spatial Estimation approach for estimation of finite 
population mean as suggested by Biswas et al. (2017).

1.1	 Spatial Estimator and Rescaled Spatial 
Bootstrap method of variance estimation 
procedure
Let, n sampling units are selected by SRSWOR 

design from a spatial finite population, {Ui}, 
i‌ ∈  Ω = {1, 2, …, N}. Let Dij denotes distance between 
the population units Ui and Uj, i, j ∈  Ω. Then, all the 
unobserved spatial population units can be predicted 
using these sampled observations through the IDW 
technique. Let, dij denotes the distance between ith 
sampled unit and jth non-sampled unit, where, i s∈ , 
s is the set of subscript of all sampled units and j s∈  , 
s  is the set of subscript of all non-sampled units 
respectively. Biswas et al. (2017) suggested a Spatial 
Estimator (SE) for estimation of finite population mean 
as
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The approximate variance expression for the SE 
was obtained as
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of the population mean i.e. ˆ
SEY  is more efficient than 

the usual mean estimator of the population mean under 
SRSWOR.

Further, to obtain unbiased variance estimator of 
the SE, the Rescaled Spatial Bootstrap (RSB) method 
was proposed by Biswas et al. (2017). In this method, 
bootstrap resamples were selected from an observed 
sample by SRSWOR and then values of remaining 
units of the population were predicted using observed 
resampled units. Let, *s  denotes set of sample units 
selected in bootstrap resample, whereas *

ps  is the set of 
sampling units belonging to the population but does not 
belong to *s . The steps involved in the RSB Method 
are as follows:

a)	 Draw a SRS sample { }*

1

m

i i
y

=
 of size m < n without 

replacement from the observed values y1, y2,…, yn. 
Then compute

	 ( )1 2 *
2 , 1,2,...,i iy y f y y i m= + − ∀ =  and 

	 *
1

1 m

s i
i

y y
m =

= ∑ ,

	 where,

	
1

1 n

i
i

y y
n =

= ∑  and 

2

2 2

( )( )
( ) ( )

n N n Dm N nf
N n m m N m D

 + −−  =
−  + − 

.

b)	 Using these iy , predict all the sampling units 
belonging to *

ps  as
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	 where *
ijd  denotes distance between ith bootstrap 

sample unit and jth non-bootstrap sampling unit 
belonging to *

ps .



229Ankur Biswas et al. / Journal of the Indian Society of Agricultural Statistics 74(3) 2020  227–236

c)	 Then, compute 
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d)	 Finally, obtain 
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e)	 Replace the units of the bootstrap sample in the 
sample and independently replicate step (a) to (d). 
Repeat this process for a large number, say B, times 
and calculate corresponding 1 2, , . . . , BT T T .

f)	 The bootstrap variance estimator of T  is given by
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Biswas et  al. (2017) showed that RSB method 
leads to approximately unbiased variance estimation of 
the SE under SRSWOR design.

1.2	 Spatial Imputation Techniques 
Imputation is a technique of substituting the value 

of a missing observation by a value, which is considered 
to be close to the true value. Then usual data analysis 
can be done as if the data set is complete. There are 
several imputation techniques available in the literature 
for the missing data. Little and Rubin (1987) presented 
numerous references, as well as the theory underlying 
the major approaches of the imputation of missing 
observations. Some of them are weighting method or 
mean substitution, random substitution or duplication, 
zero substitution, direct substitution of the nearest 
available observations, an average of preceding and 
succeeding observations etc. In the context of spatially 
correlated data, the traditional imputation techniques 
are not quite efficient. In the present study, following 
spatial imputation techniques were employed for 
estimation of missing spatial observations in the 
proposed variance estimation procedure of the SE as 
presented in Section 3.

a)	 Direct substitution by nearest neighbouring unit
	 In this method, a missing observation is 

directly substituted by the nearest neighbouring 
geographical unit available in the spatial population 
on the basis of Cartesian distance from the missing 
observation. In case of a tie, simple average of the 
same distant units shall be taken.

b)	 Substitution by mean value of the neighbouring 
units

	 Mean substitution is a well-known imputation 
technique, where the missing value of each 
non-respondent is imputed by the mean of all 
available responding units. Here, in context of 
spatial population, mean substitution for the 
missing observations can be carried out in two 
ways: (1) simple average of the available nearest 
neighbouring units and (2) inverse distance 
weighted (IDW) mean of the neighbouring units. 
Under the present study, in these above mentioned 
mean substitution methods, three choices of the 
number of nearest neighbours are considered viz. 
4, 8 and 16 units. Apart from these, in case of mean 
substitution by IDW method, all available units in 
the sample were also utilized.

c)	 Substitution through simple regression model
	 Imputation through regression model is a promising 

technique in the presence of non-response. This 
can be applied when some auxiliary information on 
all sampling units is available, but the information 
of the study variable from some of the units is 
missing. In such situations, regression model can 
be used to estimate the missing values using values 
of the respondents in the sample. Variables from 
the auxiliary character (x) can be regressed on the 
study variable (y) for non-missing observations to 
obtain this model

	 0 1 ;i i i iy x e e=β +β + ~ 2( , ),N µ σ

	 where β0 and β1 are intercept and slope parameters 
respectively and ei is the random error term follows 
Normal distribution with mean µ and variance σ2. 
Then, this model is used to impute the missing y 
values when x data is available. This technique was 
performed using the ‘REG’ procedure in SAS.

d)	 Substitution using Ordinary Kriging method
	 Kriging is a geo-statistical technique to interpolate 

the value of a spatial random field. Ordinary 
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kriging is the most popular Kriging for prediction 
at unsampled spatial locations and widely used 
tool for interpolation of spatial data. It assumes 
a constant but unknown mean and provides Best 
Linear Unbiased Estimator (BLUE). Further 
details related to this can be seen in Cressie 
(1993). Ordinary kriging was performed using the 
‘KRIG2D’ procedure in SAS.
In this article, an attempt has been made to 

estimate the variance of the SE in presence of missing 
observations from spatially correlated finite population. 
Several suitable imputation techniques are suggested for 
spatially correlated incomplete sampled observations. 
An optimum bootstrap sample size under the RSB 
method of variance estimation (Biswas et  al., 2017) 
has been developed and presented in Section 2. Section 
3 presents the proposed spatial bootstrap technique for 
variance estimation of the SE in presence of missing 
observations using the suggested spatial imputation 
techniques. Further, proposed variance estimation 
techniques were empirically evaluated through a 
spatial simulation study with respect to existing 
approaches and presented in Section 4. Simulation 
results are discussed in Section 5. Concluding remarks 
are presented in Section 6.

2.	 OPTIMUM CHOICE OF BOOTSTRAP 
SAMPLE SIZE IN THE RSB METHOD 
In the bootstrap method of variance estimation 

from finite populations, we often rescale the observed 
bootstrap sample values to obtain pseudo values in order 
to get approximately unbiased estimates of variance 
of the estimator of interest. By using the optimum 
choice of bootstrap sample size, there is no necessity 
to rescale at the rescaling steps in the proposed RSB 
method. It is defined as the resultant bootstrap sample 
size which satisfies the criterion that the pseudo 
values obtained using the proposed rescaling factor 
in the RSB method is equal to the original bootstrap 
sample estimates. Thus, in order to propose the spatial 
bootstrap technique in case of missing data (as given in 
Section 3), it is necessary to find the optimum bootstrap 
sample size in case of the RSB method of variance 
estimation (Biswas et  al., 2017). In this article, first, 
we suggest the optimum bootstrap sample size under 
the RSB method of variance estimation following the 
above given procedure. The optimum bootstrap sample 
size, m, is given by

2 2 2 2( ) ( ) 8 (1 )
4 (1 )

opt
Dm N P D N P D n N P D D

P D
 ≅ + − + − −  −

� (2.1)

where, 
2

(1 ) (1 ) nP f D D f and f N
 = − + − =  .

Sample of optimum bootstrap sample sizes can be 
taken in order to unbiasedly estimate the variance of 
the SE without rescaling the sampled observations.

3.	 PROPOSED PROPORTIONAL SPATIAL 
BOOTSTRAP (PSB) METHOD FOR 
MISSING DATA
In case of missing observations in the sample data, 

unbiased variance estimation of statistics of interest 
becomes difficult. Due to missing observations, the 
underlying distribution of the population based on 
incomplete data is difficult to ascertain. In order to deal 
with the situation, distribution-free approaches, like 
resampling procedures, are needed. It is always desirable 
to select a resample which is as close as possible to the 
original sample observation. Therefore, in the case of 
unbiased variance estimation of SE of the population 
mean based on a spatially correlated observation, 
a representative bootstrap sample containing both 
complete and incomplete sampled observation should 
be selected. Also, different imputation techniques can 
be employed on this resample with missing observation 
to obtain a complete dataset for variance estimation 
of the statistic. Steps involved in proposed the PSB 
method for variance estimation of SE in presence of 
missing observation are as follows:
i.	 Partition the original incomplete sample y = {y1, 

y2}, such that y1 represents n1 observations from 
respondents and y2 represents n2 observations with 
missing values, such that, n1 + n2 = n.

ii.	 Draw a subsample { *
1,ay }, a=1, 2, …, m1, from y1 

by SRSWOR, where

	

2 2 2 2
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iii.	 Draw a subsample { *
1,by }, b=1, 2, …, m2, from y2 

by SRSWOR, where
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2

2 2 2 2(1 ) (1 ) and .nP f D D f f
N

 = − + − = 

iv.	 Now, combine these two subsamples obtained 
from step 2 and 3 to form a bootstrap sample y* 
= { *

1,ay , *
1,by } of size m=m1 + m2 with m2 missing 

observations.
v.	 Apply appropriate spatial imputation procedures 

as discussed in Section 1.2 on y*, to obtain the 
imputed values of { *

1,by } with the help of observed 
{ *

1,ay } values.
vi.	 Using these complete dataset y* with imputed 

values, predict all the remaining non-bootstrap 
sampled units contained in the population as,

	 * * * * *
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ijd  denotes distance between the units i and 

j.
vii.	Then compute 
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viii.	Finally, obtain
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N
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ix.	 Replace this combined incomplete bootstrap 
sample y* with missing observation in the original 
sample and independently replicate steps 1 to 8 for 
a large number, say B, of times and calculate the 
corresponding *1 *2 *, , . . . , BT T T .

x.	 The bootstrap variance estimator of *T  is given by

	 ( ) ( )2* * *
* * *bV V T E T E T= = − ,� (4.4)

	 where, E* and V* denotes the expectation and 
variance respectively with respect to the bootstrap 
sampling from a given sample.

xi.	 The bootstrap variance estimator of ˆ
SEY  by Monte 

Carlo approximation to bV  is given by
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4.	 SIMULATION STUDY
A spatial simulation was carried out to study the 

statistical properties of the proposed PSB method of 
variance estimation of the SE of the population mean 
in the presence of missing observations. Relative 
efficiency of different imputation techniques was 
compared through the simulation study. A univariate 
population of size 400 spatial sampling units was 
generated following exponential spatial variogram 
model in the form of regular grid with size as 1x1 square 
unit using ‘SIM2D’ procedure in SAS. In order to keep 
the Moran’s Spatial correlation coefficient (Moran, 
1950) as β ~ 0.7 and the value of percentage Coefficient 
of Variation (CV) of spatial data i.e. % CV ~ 20%, the 
parameters of the generated population were taken as

Parameter Mean Scale/Sill Range Nugget 
effect Angle

Value 30 46.29 30.62 0.88 135°

Further, in order to apply the Regression based 
imputation method to the missing observation, an 
auxiliary variate (X), highly correlated with the earlier 
generated Y-variate, was generated with mean of X 
(µX), standard deviation of X (σX) and correlation 
coefficient between X and Y (ρXY) as given below:

µX σX ρXY

45 8 0.7

Initially, 500 independent samples of size n = 120 
were drawn using SRSWOR scheme from the generated 
population. For each of these selected samples, estimate 
of the population mean were obtained using the SE 
using Equation 1.1. Also, empirical variance of each 
of these spatial estimates was obtained on the basis of 
estimates from these 500 different samples. In order to 
investigate the optimum size of bootstrap samples for 
the original sample size n = 120, 200 different bootstrap 
samples were generated for different sizes viz. m = 40, 
50, 60, 65, 70 and 75 from each of the original samples 
following RSB method as shown in Section  1.1 
(Biswas  et  al., 2017). For each of these cases, 
percentage Relative Bias (%RB) were calculated for 
the variance estimators following RSB method using 
suggested rescaling factor. Also, %RB were worked 
out for each case without using any rescaling factor. 
%RB was worked out using the following formula
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a)	 Absolute Mean Departure (MD)
	 Absolute Mean Departure (MD) depicts the 

difference between mean of bootstrap estimates 
with true values for the missing units and imputed 
values through some imputation techniques. This 
can be obtained using the formula as given by

	
( )* * * *

1

1 B
b b

i i
b

MD T T T T
B =

= − = −∑

	 where, *T  is the average of B independent bootstrap 
sample estimates obtained by the RSB method in 
case of complete response and *

iT  is the average of 
B independent bootstrap sample estimates obtained 
in step 8 of the proposed the PSB method for 
missing values imputed by ith imputation technique 
for bth bootstrap sample.

b)	 Absolute Standard Deviation Departure (SDD)
	 The formula for absolute Standard Deviation 

Departure (SDD) is given by

	
( )* * * *

1

1 B
b b

i i
b

SDD
B =

= σ − σ = σ − σ∑

	 where, *σ  and *
iσ  are the average of the standard 

deviations of B independent bootstrap sample 
estimates obtained by the RSB method in case 
of complete response and by the PSB method for 
missing values imputed by ith imputation technique 
respectively.

c)	 Absolute Percentage Relative Bias (RB)
	 The bias resulting from use of different imputation 

techniques in the proposed PSB method for 
variance estimation of the SE in presence of 
missing observations was evaluated by absolute 
percentage Relative Bias which is given by
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	 where, ( )ˆ
ŝ SEV Y  is the estimates of variance of SE in 

presence of missing observations through the PSB 
method at sth bootstrap sample, whereas, ( )ˆ

SEV Y  

is the approximated variance for the SE obtained 
based on 500 samples.
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where, ( )ˆ
ŝ SEV Y  is the estimates of variance of SE 

obtained through the RSB method as well as without 

using any rescaling factor at sth sample. While ( )ˆ
SEV Y  

is the approximated variance for the SE obtained based 
on 500 samples. As discussed in Section 2, it is expected 
that at the optimum size of bootstrap samples, both for 
the variance estimators using the rescaling factor of the 
RSB method and without using any rescaling factor 
will coincide.

Further, once again from this simulated spatial 
population, 200 samples of size n = 120 were drawn. 
From each of these selected samples, 200 bootstrap 
samples of size m = 68 were generated following the 
RSB method to obtain the estimate of the variance of 
the SE from the complete dataset, since for original 
sample of size n = 120, the optimum bootstrap sample 
size was found to be 68 using the formula given 
in Equation (2.1). In order to apply the proposed 
PSB method in presence of missing observations on 
an incomplete sample at hand and to compare the 
performance of different imputation procedures at 
different non-response rates viz. 5%, 10% and 15% 
selected sampling units were randomly removed 
according to different non-response rates to make 
sample units with missing observations. Then, from 
each of these samples with missing observations, 200 
bootstrap samples were taken following the proposed 
PSB. In Step 5 of the proposed method, the imputations 
of missing observations were performed by employing 
the different imputation procedures as discussed in 
Section  1.2. Finally, the bootstrap estimator of the 
variance of SE, ˆ

pY , for estimation of the population 
mean was obtained in presence of missing observations.

4.1	 Comparison of the proposed PSB method using 
different imputation techniques
In order to compare statistical performance of 

different imputation techniques in case of missing 
data using proposed the PSB method for variance 
estimation, following measures were applied.
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5.	 RESULTS AND DISCUSSION
The sample estimate of the SE for SRSWOR 

design from 500 independent samples along with its 
approximated empirical variance for n = 120 were 
obtained in the simulation study and the results are 
given by

n SE Variance of SE

120 29.749 0.163

Results of %RB of the estimates of variance of 
SE obtained following the RSB method from 200 
independent bootstrap samples of different sizes are 
compared with that of simple bootstrap estimates 
without rescaling factors in Fig. 1. 

For the simulated spatial population of size N = 400 
and sample size n = 120, optimum bootstrap sample 
size mopt was found to be approximately 68 using 
Equation (2.1). Fig. 1 also shows same result. It is clear 
that within bootstrap sample of size 65 and 70 both the 
results of %RB become the same and the value of %RB 
of the RSB method using proposed rescaling factor 
approaches to zero.

Monte Carlo estimate of SE, estimate of variance of 
SE from 200 independent bootstrap samples employing 
the RSB method and resulting %RB were obtained from 
complete dataset for sample size n = 120 and bootstrap 
sample size m = 68. The results are given below

Non-response 
Rate

MC Estimate 
of SE

Estimate of 
Variance of SE

%RB

0% 29.725 0.163 0.045

The results of the proposed PSB method for 
variance estimation of the SE in presence of missing 
observations using different imputation techniques 

for 200 independent bootstrap samples at different 
non‑response rates are obtained and presented in 
Table 1. Further, all the imputation techniques used in 
PSB method were compared in detail with the help of 
absolute percentage Relative Bias (RB), absolute Mean 
Departure (MD) and absolute Standard Deviation 
Departure (SDD) and presented in Fig. 2 respectively.

The following points can be noted from the results 
given in Table 1 and Fig. 2:
•	 Proposed PSB method using different imputation 

techniques in presence of missing observations 
performs closely with the RSB method for true 
observations. As the non-response rate increases, 
the performance of PSB method deteriorates.

•	 The performance with respect to RB of direct 
substitution by the nearest neighbour method is 
poor for all non-response rates as compared to other 
imputation techniques. Although, it is comparable 
with respect to MD and SDD.

•	 The Mean Substitution methods for imputation 
employing Inverse Distance Weighting (IDW) 
method always shows more advantageous over 
the mean substitution of nearest neighbours (NN) 
through the simple mean method with respect to 
all the measures considered here. Also, while 
considering RB and SDD measure, it is advisable 
that instead of using all the available observed 
sample units only some of those, may be eight 
or sixteen, nearest neighbours might be used for 
imputation through IDW technique in proposed 
PSB method. 

•	� The proposed PSB method employing Regression 
based imputation and Ordinary Kriging imputation 

show best results than any other imputation 
techniques with respect to all the statistical 
measures considered here. Regression based 
imputation technique provides less RB in 
all the non-response rates. Therefore, if 
possible i.e. in case of availability of auxiliary 
information, we should use regression 
technique for imputation. In case, the auxiliary 
information is not available for imputation then 
we should apply Ordinary Kriging technique 
for imputation of a missing observation in case 
of spatially correlated data.

Fig. 1. Choice of Optimum Bootstrap Sample Size (m) in the  
RSB method for n=120 and N=400
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were employed under the framework of proposed PSB 
method for imputation of missing values. Performance 
of these techniques was evaluated empirically through 
a spatial simulation study and it was found that the 
proposed PSB method is quite efficient for variance 
estimation in case of missing observations. Under 
the imputation technique, PSB method using direct 
substitution by the nearest neighbouring unit performed 
poor in all the situations considered for this study. Mean 
substitution through IDW technique performed better 
over simple mean substitution of nearest neighbours 
due to the spatial nature of the data. Proposed PSB 

6.	 CONCLUSIONS
In this present study, to estimate the variance 

of SE for SRSWOR design in presence of missing 
observations, the RSB method (Biswas et  al., 2017) 
was modified and a new method of variance estimation 
in this situation, namely Proportional Spatial Bootstrap 
(PSB) method was proposed. In this context, different 
spatial imputation techniques for spatial data viz. 
direct substitution by nearest neighbouring unit, 
mean substitution by neighbouring units, substitution 
by fitting regression model on the respondents in the 
sample and substitution by Ordinary Kriging method 

Table 1. Monte Carlo bootstrap estimates of variance of SE for missing sampled observation following the proposed PSB method using 
different imputation techniques at different response rates for sample size n=120 and bootstrap sample size m=68

Non-response 
Rate

Imputation Techniques Estimate from SE Estimate of Variance 
of SE

RB MD SDD

5%
m2 = 3

Direct Subst. NN 29.719 0.177 8.258 0.006 0.016

Mean Subst. by 4 NN 29.717 0.172 5.511 0.008 0.011

Mean Subst. by 8 NN 29.716 0.172 5.293 0.009 0.011

Mean Subst. by 16 NN 29.715 0.171 4.965 0.010 0.010

IDW Subst. by 4 NN 29.718 0.172 5.296 0.007 0.011

IDW Subst. by 8 NN 29.717 0.172 5.182 0.008 0.010

IDW Subst. by 16 NN 29.716 0.171 4.742 0.009 0.009

IDW Subst. by all units 29.722 0.171 5.020 0.003 0.010

Subst. by Reg. 29.725 0.168 2.909 0.000 0.006

Subst. by Ord. Kriging 29.724 0.168 3.085 0.001 0.006

10%
m2 = 7

Direct Subst. NN 29.715 0.197 20.928 0.010 0.040

Mean Subst. by 4 NN 29.712 0.186 13.748 0.013 0.027

Mean Subst. by 8 NN 29.708 0.185 13.148 0.017 0.026

Mean Subst. by 16 NN 29.703 0.184 12.765 0.021 0.025

IDW Subst. by 4 NN 29.713 0.185 13.399 0.012 0.026

IDW Subst. by 8 NN 29.710 0.184 12.615 0.015 0.025

IDW Subst. by 16 NN 29.707 0.183 12.282 0.018 0.024

IDW Subst. by all units 29.714 0.184 12.945 0.011 0.025

Subst. by Reg. 29.727 0.175 6.985 0.002 0.014

Subst. by Ord. Kriging 29.724 0.175 7.364 0.001 0.015

15%
m2 = 10

Direct Subst. NN 29.709 0.215 31.703 0.016 0.060

Mean Subst. by 4 NN 29.706 0.196 20.140 0.019 0.039

Mean Subst. by 8 NN 29.702 0.194 18.867 0.023 0.036

Mean Subst. by 16 NN 29.697 0.193 18.121 0.027 0.035

IDW Subst. by 4 NN 29.707 0.195 19.542 0.018 0.038

IDW Subst. by 8 NN 29.704 0.193 18.149 0.021 0.035

IDW Subst. by 16 NN 29.701 0.192 17.542 0.024 0.034

IDW Subst. by all units 29.708 0.193 18.367 0.017 0.035

Subst. by Reg. 29.721 0.180 10.046 0.004 0.020

Subst. by Ord. Kriging 29.718 0.183 11.969 0.007 0.023

Note: m2 denotes the sample size from the observations with missing values at different non-response rates and NN denotes nearest neighbours.
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method performs best for the imputation by fitting 
regression model on the respondents followed by 
imputation through the Ordinary Kriging method. The 
performance of both these procedure i.e. regression 
technique and ordinary Kriging is comparable with 
respect to all these measures considered in the study.
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