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SUMMARY
The vector autoregressive (VAR) models are being widely used for modeling and forecasting multiple time series. But the problem of over 

parameterization has restricted their use only for small number of time series. The Constrained VAR, Bayesian VAR and Least Absolute Shrinkage 
and Selection Operator (LASSO) applied for VAR to shrink the parameter estimates have gain importance in this regard. The present study is directed 
at empirically comparing the performance of Constrained VAR, Bayesian VAR and LASSO VAR using the data on annual estimated landings of 
six different marine fish species in India. The results from the forecast evaluation techniques indicated that all three techniques are equally good in 
forecasting the estimated fish landings whereas LASSO VAR outperformed Bayesian VAR in shrinking the parameters of the model to zero.
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1.	 INTRODUCTION

Time series analysis techniques are being 
used since decades for modelling and forecasting 
of production, yield, prices of crop produce and 
forewarning of incidence of pests and diseases. In 
recent times, univariate (generally Autoregressive 
Integrated Moving Average (ARIMA)) models have 
been used to model and forecast several agricultural 
commodity variables (Padhan, 2012; Paul et al., 2013; 
Prabhakaran et al. 2013; Kim et al. 2013). When more 
than one time series variables have to be modeled 
together simultaneously utilizing the interrelations 
between time series variables, vector autoregressive 
(VAR) model is generally preferred because of its 
simple model building procedure (Gujarathi et  al., 
2009). Use of VAR models for multivariate analysis 
is prominent in literature. VAR models have been used 
extensively for modelling agricultural and economic 
indicators (Primicer, 2005; Gutierrez et  al., 2014) 
globally. One of the major setback that researchers 
often encounter while using the VAR models is the 
problem of over parameterization i.e., as the number 

of study variables increases along with the number 
of lags used in the model, the number of parameters 
that are to be estimated increases geometrically. As it 
is known that, if there are ktime series to be modelled 
with p lags, then the number of parameters to be 
estimated in the model will be k2p+k, which may go 
very large.

One solution to address this problem is to go for 
Constrained VAR (CVAR) (Lutkepohl, 1993) where 
the non-significant parameters obtained in VAR model 
are forced to take the value zero. Another solution is 
the Bayesian VAR model denoted by BVAR (Koop 
and Korobollis, 2009; Banbura et  al., 2010) where 
the model parameters are treated as random variables 
and prior probabilities are assigned to them. The 
general idea is to use informative priors to shrink 
the unrestricted model towards a parsimonious 
benchmark. Many prior distributions are available in 
the literature and the performance of a VAR model 
depends on the choice of prior distribution (Sevinc 
and Ergun, 2009) and hyper parameters (Carrierro 
et  al., 2009) making BVAR a subjective procedure. 
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Researchers have used Least Absolute Selection and 
Shrinkage Algorithm (Tibshirani, 1996), denoted by 
LASSO, where the parameters are penalized with an 
L1 constraint along with its several variants to address 
the over parameterized VAR models (Hsu et  al., 
2008; Gefand, 2014; Nicholson, 2014). The scope 
of this article is directed to study BVAR and LASSO 
VAR (LVAR) models and empirically evaluate their 
performance with VAR and CVAR using a real data on 
annual landings of six different fish species in India.

2.	 MATERIALS AND METHODS

2.1	 Vector Autoregression

In a univariate autoregression of order p, the study 
variable is regressed upon on p lags of itself, whereas 
in a k variable VAR of order p, k different equations 
are built. In each equation, a variable is regressed on 
p lags of itself, and p lags of every other variable. 
The key point is that, in contrast to the univariate 
case, vector autoregressions allow for cross-variable 
dynamics. Each variable is related not only to its own 
past, but also to the past of all the other variables under 
consideration.

Suppose there are k time series components 
{Y1t},{Y2t},…,{Ykt} for t=1,2,3,…,n at equally spaced 
time intervals. We can represent these components by 
a vector Yt= (Y1t , Y2t , …, Ykt )

T which is called as a 
vector of time series which can be modeled by a vector 
autoregressive model. The time series Yt follows a 
Vector Autoregressive model of order p, VAR (p), if 
it satisfies

1 1t t p t p t− −= + + + +Y Y ... Y e ,µ Φ Φ   p>0,� (1)

where µ  is a k-dimensional parameter vector, jΦ
for j=1,…,p are k × k parameter matrices and te  is a 
sequence of serially uncorrelated random vectors with 
mean zero and covariance matrix Σ. Using the back-
shift operator B, the VAR (p) model can be written as

( )1
p

p t tB B− − − = +I ... Y e ,Φ Φ µ � (2)

where I is the k × k identity matrix. This 
representation can be written in a compact form as

( ) t tB = +Y e ,Φ µ 	

where ( ) 1
p

pB B B= − − −I ...Φ Φ Φ  is a matrix 
polynomial. A VAR (p) model assumes that Cov 

(Yt ,et )  = Σ, the covariance matrix of et; and Cov 
(Yt – l , et ) = 0 for l >0;

2.2	 Bayesian Vector Autoregression

A simple BVAR model is similar to a simple 
unrestricted VAR model. In both the cases, each 
variable is expressed as a function of the past values of 
all the other variables of interest. But the difference is 
that in BVAR, the parameters of the model are treated as 
random variables. For the VAR(p) model in equation 1, 
a prior distribution, π(θ) which is not conditioned upon 
any realized observation is given to all the parameters, 

= ( , , )θ Φ Σ µ  that are to be estimated. This is used 
to form the posterior distribution p(θ|YT) which is 
the distribution of the parameters conditional on the 
observed data. Another important element in BVAR 
is the distribution of the observed data conditional on 
parameters, i.e., the likelihood function given as:

( )1
1

L( ) YY
T

t t
t

T f y
−

=

= ∏ | ,| θθ � (3)

According to Baye’s rule, the posterior distribution 
is proportional to the product of the likelihood function 
and the prior distribution as below

T
T T

T

L
p L

L d
π

= ∝ π
π∫

(Y | ) ( )
( | Y ) (Y | ) ( )

(Y | ) ( )
θ θ

θ θ θ
θ θ θ

� (4)

where ( | ) ( ) ( )T TL d pπ =∫ Y Yθ θ θ  is the marginal 
likelihood.

The point estimates and their measures of precision 
can be found on integrating the marginal distributions 
of the parameters. The posterior distribution depends 
upon the prior beliefs as well as the data which makes 
selection of prior distribution very crucial for BVAR 
modeling. Many prior distributions are available in the 
literature: the Minnesota prior, the diffuse and Normal-
Wishart prior, the Normal-Diffuse prior, the extended 
natural conjugate prior to name few. However, in this 
study, the widely considered Minnesota prior is used.

The Minnesota priors are proposed by Litterman 
(1986). These priors restrict the lag structure of the 
over parameterized VAR model by imposing tightness 
on the parameters that are to be estimated. The first 
mean-lag 1

( ( ))diag πθ  is chosen to be 0.9 for variables 
modelled in levels, and 0 for variables modelled in first 
difference. The rest of the lag-coefficients in θπ are 
presumed to be 0. The shrinkage hyperparameters are 
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used to specify the variance-covariance matrix, ΠΩ , 
of the coefficients. These form the tightness structure 
which is specified as below:

3

3

21

2
21 2

2

( )        for own lags                                 
( )

( )  for lags of variable q in equation rq

r

m
diag

p

Π

 
  Ω =  
 
  

λ

λ

λ

σλ λ
σ

�(5)

where p is the number of lags and λi are the hyper 
parameters. 2

qσ  is the variance of residuals from a 
univariate AR(p) parameter estimations for variable q. 
The differences in scales and units of measurement are 
controlled by 2 2

q rσ σ . The hyperparameters impose 
tightness according to the table 1.

Table 1. Range of values for the hyper parameters of Bayesian 
VAR

Hyperparameter Description Allowed range

λ1 Overall shrinkage λ1 > 0

λ2 Cross-variable shrinkage 0 < λ2 ≤ 1

λ3 Lag decay λ3 > 0

2.3	 LASSO - Vector Autoregression

LASSO, a least square method where the 
parameters are penalized with an L1 constraint is 
originally proposed for linear regression set up. This 
has been extended to the VAR model in equation (1), 
by applying L1 penalty to the convex least squares 
objective function

2

1

1
2 F +′Y - 1 - Zµ Φ Φλ � (6)

In which 
22

1 1

m n

ijF
i j

x
= =

= ∑∑X  is the square of the 

Frobenius norm of X, 1 = ∑ jk
jk

XX  is the L1 norm 

and λ ≥0 is a penalty parameter. An L1 penalty will 
induce sparsity in the coefficient matrix Φ by zeroing 
individual entries. The rolling cross-validation 
technique proposed by Nicholson et al. (2014) can be 
used for estimating the optimum value for the tuning 
parameter λ. This is done by dividing the data into 
three periods of length T/3; one each for initialization, 
training and forecast evaluation. The procedure is 
illustrated in the Fig. 1.

Fig. 1. Illustration of rolling cross-validation

The time indices are given by T1 and T2. The 
period T1+1 through T2 is used for training and T2+1 
through T is used for evaluation of forecast accuracy 
in a rolling manner. Then the one-step ahead mean-
square forecast error (MSFE) is minimized. If 1ˆtyλ

+  is 
the one-step ahead forecast based on all observations 
from 1,…,t, then the MSFE to be minimized is given 
as

2

1

1
2

1 1
2 1

1 ˆ( )
( 1)

−

+ +
=

= −
− − ∑

T

t t F
t T

MSFE y y
T T

λλ � (7)

2.4	 Forecast evaluation technique

The forecasting ability of different models is 
assessed with respect to two common performance 
measures, viz. the root mean squared error (RMSE) 
and the mean absolute percentage error (MAPE) of 
each series in the VAR model. 

The RMSE measures the overall performance of a 
model and for a series it is given by 

2

1

1 ˆRMSE= ( )
n =

−∑
n

t t
t

y y

where, yt is the actual value for time t, ˆty  is the 
predicted value for time t, and n is the number of 
predictions. The second criterion, the MAPE is a 
measure of average error for each point forecast which 
is given as below for a series

1

ˆ1MAPE= 100
=

−
×∑

n
t t

t t

y y
n y

where the symbols have the same meaning as 
above. The model with least RMSE and MAPE values 
is considered as the best model suitable for the data.

2.5	 Data

The above discussed methodology is applied to a 
real time series data of estimated annual landings of six 
different commercially important marine fish species 
(Oil Sardines, Mackerel, Other Sardines, Ribbon fish, 
Tuna and Seerfish) in India. The data consists of 64 
observations for each variable (1950-2013). The first 
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58 observations are used for model fitting and last 6 
observations are used for model evaluation. The data is 
available at www.cmfri.org.in. The analysis is carried 
out using SAS 9.3 and ‘BigVAR’ package in R.

3.	 RESULTS AND DISCUSSION

The BVAR and LVAR are applied to the real data 
on annual landings of six different fish species. For 
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computational advantage, the natural logarithms of the 
values are considered for the analysis. The transformed 
data are plotted against time in Fig. 2. A perusal of the 
figure indicates that the series have an upward trend 
hinting at possible nonstationarity of the series.

To check the stationarity of the data, the Phillips-
Perron unit root test is performed at 5% level of 
significance, the results of which are given in table 2. 
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The results indicated that the series are stationary with 
respect to the trend.
Table 2. Results of the Phillips-Perron unit root test for the data 

on fish landings

Variable Type Rho Pr < Rho Tau Pr < Tau

Oil Sardines Single mean -14.682 0.032 -2.938 0.047

Trend -22.81 0.022 -3.746 0.026

Mackerel Single mean -18.754 0.009 -3.241 0.022

Trend -28.051 0.005 -4.292 0.006

Other 
Sardines

Single mean -10.024 0.117 -2.278 0.181

Trend -28.259 0.005 -4.581 0.002

Ribbon Fish Single mean -6.524 0.290 -1.950 0.307

Trend -33.167 0.001 -4.646 0.002

Tuna Single mean -2.241 0.743 -0.901 0.781

Trend -30.464 0.002 -4.609 0.002

Seerfish Single mean -1.527 0.828 -0.882 0.787

Trend -25.141 0.012 -3.941 0.016

Once the stationarity of the data series are 
established, the VAR, BVAR and LVAR of orders 
up to 6 are fitted to the data. The Akaike Information 
Criterion, AIC,(table 3) is used for choosing the 
appropriate order of the models. According to this 
criterion, the model which provides the least value for 
AIC among all the candidate models for the given data 
is selected as the preferred model.

Table 3. Akaike Information Coefficients of VAR, BVAR & 
LVAR models of different order

Order
Akaike Information Coefficients

VAR Bayesian VAR Lasso VAR

1 -10.98 -10.98 0.764

2 -9.259 -9.178 0.764

3 -8.255 -7.799 0.764

4 -6.895 -6.2 0.764

5 -6.192 -4.441 2.768

6 -6.968 -2.938 3.945

Based on the AIC, the VAR(1) and BVAR(1) 
were selected as the best models suitable for the 
data. For the LVAR model, all the four models from 
VAR(1) to VAR(4) provided the same AIC resulting 
in choosing the LVAR(1) model parsimoniously. Also, 
for the LVAR(1) model, different values are tried 
for the tuning parameter λ and the optimum value is 
chosen by minimizing the Mean Squared Forecasting 
Error (MSFE). The Least value of MSFE (=1.086) 
was obtained for λ=0.828. The values of MSFE for 
different values of λ are plotted in Fig. 3. Once the 
VAR(1) model is fitted, the parameter estimates were 
tested for their significance using the regular t-test. 
The parameters that are found to be non-significant 
at α=0.10 are constrained to zero and hence the 
parameters of the CVAR(1) are estimated.
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Fig. 2. Time plot of annual landings of different fish species in logarithmic scale
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Fig 3. Mean Squared Forecasting Errors for different values of λ

The parameter estimates obtained from VAR, 
CVAR, BVAR and LVAR are given in table 4, table 5, 
table 6 and table 7, respectively. Table 4 also gives the 
p-values of the t-test for the signifi cance of parameters. 
If we look at the estimates obtained from VAR and 
BVAR models, there is no much difference with 
respect to the number of parameters shrunk. Whereas, 
the LVAR is successful in shrinking 12 parameter 
estimates exactly to zero corroborating its better 
performance over VAR and BVAR. 

Table 4. Parameter estimates of the VAR (1) model

μ Φ1

1.187
(0.269)

0.599
(<0.001)

-0.010
(0.945)

-0.125
 (0.659)

-0.025 
(0.911)

-0.197
(0.325)

0.649
(0.076)

0.740
(0.416)

-0.122
(0.198)

0.508
(<0.001)

0.233
(0.336)

-0.076
(0.689)

-0.163
(0.339)

0.580
(0.063)

1.391
(0.003)

-0.040
(0.397)

-0.028
(0.644)

0.440
(<0.001)

0.044
(0.646)

-0.043
(0.616)

0.385
(0.015)

0.205
(0.690)

-0.061
(0.257)

0.073
(0.279)

0.050
(0.716)

0.567
(<0.001)

-0.143
(0.139)

0.563
(0.002)

-1.304
(0.057)

0.022
(0.754)

0.050
(0.568)

-0.244
(0.178)

0.363
(0.013)

0.521
(<0.001)

0.568
(0.015)

0.103
(0.750)

0.051
(0.134)

0.009
(0.830)

0.023
(0.785)

0.070
(0.302)

0.132
(0.032)

0.652
(<0.001)

Table 5. Parameter estimates of the Constrained VAR (1) model

μ Φ1

1.120 0.645 0 0 0 0 0.220

1.134 0 0.537 0 0 0 0.294

1.461 0 0 0.399 0 0 0.336

0.679 0 0 0 0.582 0 0.344

-1.435 0 0 0 0.264 0.569 0.480

0.466 0 0 0 0 0.131 0.753

Table 6. Parameter estimates of the Bayesian VAR (1) model

μ Φ1

1.225 0.601 -0.012 -0.107 -0.025 -0.167 0.588

0.792 -0.114 0.507 0.227 -0.070 -0.138 0.531

1.399 -0.036 -0.026 0.446 0.042 -0.030 0.358

0.25 -0.056 0.067 0.058 0.569 -0.119 0.514

-1.29 0.024 0.046 -0.212 0.344 0.541 0.533

0.094 0.048 0.010 0.021 0.070 0.123 0.670

Table 7 . Parameter estimates of the LVAR (1) model

μ Φ1

1.383 0.590 0 0 0 0 0.224

1.289 -0.089 0.472 0.158 0 0 0.267

1.649 -0.002 0 0.367 0.006 0.011 0.303

0.763 -0.022 0.057 0.003 0.519 0 0.352

-1.44 -0.024 0 0 0.300 0.589 0.380

0.501 0.038 0 0 0.044 0.190 0.575

Fig 4. Sparsity pattern of the LVAR(1) model

The Fig. 4 gives the sparsity pattern of the parameter 
estimates obtained by the LVAR(1) model. The grey 
scale of the grid indicates the value of the weight of 
the parameter estimates; blank grids indicating that the 
estimates are exactly shrunk to zero. 
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Table 8. Forecasting performances of VAR, BVAR and LVAR 
models for training data

Variable
MAPE (%) RMSE

VAR CVAR BVAR LVAR VAR CVAR BVAR LVAR

Oil 
Sardines

9.770 9.595 9.747 9.806 0.570 0.581 0.570 0.579

Mackerel 8.955 9.680 8.958 9.233 0.483 0.507 0.484 0.493

Other 
Sardines

4.859 4.862 4.852 4.862 0.244 0.248 0.244 0.250

Ribbon 
Fish

5.616 6.089 5.674 6.040 0.274 0.287 0.274 0.283

Tuna 3.545 3.932 3.574 3.925 0.362 0.371 0.362 0.371

Seerfish 5.222 5.448 5.220 5.407 0.173 0.179 0.173 0.176

The measures of the forecast accuracy, given in 
table 8 and table 9 for training and testing data sets, 
respectively, indicate that both BVAR and LVAR have 
performed almost equally in forecasting the annual 
fish landings for different species. But when we look 
at the number of non-zero parameters in the model, the 
LVAR has performed better.

Table 9. Forecasting performances of VAR, BVAR and LVAR 
models for testing data

Variable
MAPE (%) RMSE

VAR CVAR BVAR LVAR VAR CVAR BVAR LVAR

Oil 
Sardines

7.277 6.556 7.351 8.198 0.528 0.490 0.533 0.589

Mackerel 6.360 4.611 6.309 6.858 0.405 0.312 0.402 0.427

Other 
Sardines

3.003 3.142 3.022 3.523 0.176 0.185 0.178 0.217

Ribbon 
Fish

4.980 5.258 5.061 5.924 0.323 0.337 0.328 0.390

Tuna 3.143 2.927 3.020 3.830 0.179 0.149 0.173 0.174

Seerfish 7.045 5.869 6.925 4.847 0.312 0.259 0.306 0.219

4.	 CONCLUSIONS

In the present study, the Bayesian VAR and 
LASSO VAR methods which are useful inaddressing 
the over parameterized VAR models are briefly 
studied.These methodologies are also empirically 
evaluated with VAR and Constrained VAR using the 
data on estimated annual landings of six different fish 
species. The models obtained are compared with each 
other using forecast evaluation techniques. Both the 
methods are found to perform evenly in forecasting as 
evident by RMSE and MAPE whereas LASSO VAR 
is found to be successful in shrinking more number of 
parameters to zero. 
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