
1.	 INTRODUCTION
Fish is the cheapest source of animal protein as 

well as an alternate source of income generation. 
Moreover, fish culture in hilly regions encourages 
conserving the water and indigenous biodiversity. 
In the uplands, aquatic animals are generally 
stocked in ponds, fertilizer and feed are used 
to promote rapid growth. Though the carp fish 
species in polyculture system is well developed 
in the plain area also, the same fish species are 
not preferred as candidate species for culture in 
ponds of upland region due to its low thermal 
regime. This is considered as a serious problem 
for the polyculture of carps in uplands. Timely 
and accurate forecast of fish yield from ponds of 
upland in particular will be of immense useful for 
the farmers to plan for marketing their produce 
profitably.

Growth of fish is not uniform through the 
year especially in seasonal and fluctuating or 

seasonal environment. The need to use a seasonal 
version of growth models has been discussed by 
many (Kathuria et al. 1992, 1993, Bathla et al. 
1995, Sarada and Prajneshu 2005, El-Shehawy 
2010, Ross et al. 2010, Ueda et al. 2010, Singh 
et al. 2015). Sigmoid curves are frequently used 
in biology, agriculture and economy to describe 
growth. Such curves begin at certain point and 
increase their rate of growth in monotonic form 
until reaching an inflexion point, after which the 
growth rate decreases and the function approaches 
an asymptotic value (Ratkowsky 1983). The 
mathematical functions proposed to model these 
curves are: Logistic, Gompertz, von-Bertalanffy.

Following nonlinear models will provide a 
reasonable representation of average fish size 
(say, weight or length) Wt at time t whose model 
function is of the form

 ( ),t tW f t b ε= +
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Logistic model:
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Gompertz model:

( )1 2 3exp exptW tb b b= − −   	  (2)

Von-Bertalanffy model:
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where 1b , 2b  and 3b  are the parameters to be 
estimated. The parameter 1b  represents the limiting 

growth value or asymptotic size, 2b  the scaling 
parameter and 3b , the rate of maturity. For the 
above growth models, expected-value parameters 
cannot be obtained for the Gompertz model as 

parameters 2b  and 3b  cannot be eliminated while 
3b  cannot be eliminated from logistic model. 

If ‘ 2b ’ is likely to be an offensive parameter 
say, in equation (1), then it can be partially 
reparameterized by expected-value parameter. 
The parameter which shows nonlinear behavior 
or likely responsible for high correlation among 
the estimated parameters is known as ‘offensive 
parameter’. To obtain an expected-value parameter 
from above equation (1), we need to choose value  
t2 of the regressor variable t, within the observed 
range of t. Then, we get the expected value from 
equation (1) as follows:
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Solving this equation for the parameter ‘ 2b ’ 

only, we get
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Substituting back into the original equation 

(1), we get
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The above model is expected to eliminate 
both the nonlinear behaviour of parameters and 
high correlation among the estimated parameters. 

Here, the likely offensive parameter ‘ 2b ’ is 
reparameterized by expected-value parameter 
while the other parameters are not changed. The 
form of the partial reparameterization of the 
logistic model given by equation (4) is referred to 
as ‘logistic-I’ in the subsequent discussions.

Similarly, if ‘ 1b ’ is likely to be an offensive 
parameter say, in equation (2), then it can be 
partially reparameterized by expected-value 
parameter. As 1b  represents the asymptotic size, 
which is more important parameter as compared 

to the scale parameter, 2b  which is not a naturally 
stable parameter. To obtain an expected-value 
parameter from above equation (2), we need to 
choose value 1t  of the regressor variable t, within 
the observed range of t. Then, we get the expected 
value from equation (2) as follows:

( )1 1 2 3exp expW tb b b= − −  

Solving this equation for the parameter ‘ 1b ’ 
only, we get
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Substituting back into the original equation 

(2), we get
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The above model (5) is proposed to mitigate 
both the nonlinear behaviour of parameters and 
high correlation among the estimated parameters. 
The form of the partial reparameterization of the 
Gompertz model given by equation (5) is referred 
to as ‘Gompertz-I’ in the subsequent discussions.

1.1	Measures of Model Accuracy 

1.1.1	The White Test (White 1980)
When the form of the heteroscedasticity is of 

unknown, we can apply the white test. Most test 
for heteroscedasticity specify some functional 
form relating the error term to a set of explanatory 
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variables in a particular way e.g. multiplicative. 
The first step is to estimate the regression model 
using ordinary least square (OLS) method. 
Secondly, we obtain the residuals from the OLS 
regression model. We then obtain the statistic  
n × R2 from an auxiliary regression of the residuals 
on the Z-variables (i.e. the subset of the X-variables 
we believe are involved), the squares, and the 
cross-products. The White test is implicitly based 
on a comparison of the sample variance of the least 
squares estimators under homoscedasticity and 
heteroscedasticity. If the null hypothesis cannot 
be rejected, then the following:

1.1.2	Durbin-Watson Test (Durbin and Watson 
1950)

The Durbin-Watson test is based on the 
assumption that the errors follow AR(1) and the 
test statistic ‘d’ is defined as
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A statistic ‘d’ value ranges between 0 and 4. A 

value of ‘d’ near 2 indicates little autocorrelation; 
a value toward 0 indicates positive autocorrelation 
while a value toward 4 indicates negative auto-
correlation.

To examine model performance, a measure 
of how the predicted and observed variables 
cover in time is needed. Thus, the coefficient of 
determination, R2 is generally used.
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Further, it is desirable to use some other 
summary statistics like root mean square error 
(RMSE) and mean absolute error (MAE):
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where ˆ
tW  = Predicted fish weight of tth 

observation; Ŵ  = Average fish weight; n = 
number of observations, t = 1, 2, ..., n.. The better 
model will have the least values of RMSE and 
MAE while larger value of R2 is expected for the 
same. It is, further, recommended for residual 
analysis to check the model assumptions such as 
independence or the randomness assumption of 
the residuals and the normality assumption. To 
test the independence assumption of residuals run 
test procedure is used. However, the normality 
assumption is not so stringent for selecting 
nonlinear models because their residuals may not 
follow normal distribution.

1.2	Intrinsic and Parameter Effects 
Nonlinearity
Bates and Watts (1980) proposed measures 

to assess the adequacy of the linear Taylor 
approximation of the regression function using two 
measures of nonlinearity, the maximum intrinsic 
curvature (IN) and the maximum parameter-
effects curvature (PE).

1.2.1	Hougaard’s Measure of Skewness and 
Box % Bias (Hougaard 1985)

We can use Hougaard’s measure of skewness, 
gt, to assess whether a parameter is close to linear 
or whether it contains considerable nonlinearity. 
Hougaard’s measure is computed as follows:

( ) ( )
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Moreover, the bias of Box reveals which 
parameters are responsible for the nonlinear 
behavior. The bias of Box is calculated in 
multivariate form as given by Cook et al. (1986):

( ) ( )1
Bias 2 2 2 2T TD D D H

−
=

where D2 is the n × p first derivative matrix;
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the expected difference between the quadratic and 
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linear components of the Taylor approximation 
and F2t, t = 1, 2, ..., n are p × p faces of the second 
derivative matrix. 

Bias
%Bias 100

b̂
= ×

Here, b̂  is the estimated parameter. Ratkowsky 
(1983) suggested using an absolute value of greater 
than 1% as an indicator of nonlinear behavior.

1.3	Forecast/ Validation of Models 

For validation of the forecast models, developed 
through above approaches was done on the basis of 
RMSE and MAE.

2.	 ILLUSTRATION
2.1	Dataset

The growth data of a sample of size 30 per each 
pond type comprises of 10 specimens from fish 
group was randomly selected and data in terms of 
length and weight of fish was regularly observed 
for every month during March 2009 to February 
2010 (Polyponds were created for conducting 
experiments on integrated fish culture by selecting 
three clusters of villages in Champawat district 
of Kumaun region by Directorate of Coldwater 
Fisheries Research, Bhimtal, Uttarakhand). The 
average weight of each fish species obtained 
from 30 (10 individuals per each type of pond) 
observations for each month was utilized for 
present study and thus there are 12 average data 
points. The first ten data points were used for 
developing the model and the rest two points were 
kept for model validation purposes. The SAS 
9.3 version was extensively used for statistical 
analyses.

3.	 RESULTS AND DISCUSSION

Table 1. Basic information of the datasets  
obtained from polyponds

S. 
No.

Variable No. Min. Max. Mean
Std. 

Deviation

1.
Common Carp
Weight of Fish 
(in gm)

12 3.36 196.42 109.56 65.78

Table 2. Summary statistics of fitted models for common 
carp from polyponds

Logistic Gompertz Gompertz-I

A) Parameter Estimation

1b  (or, W
1
) 176.60 (6.20) 198.00 (5.35) 161.40 1.33)

2b 12.43 (1.96) 3.25 (0.13) 3.25 (0.13)

3b 0.61 (0.05) 0.35 (0.02) 0.35 (0.02)

B) Hougaard’s Skewness & Box’s % Bias

1b  (or, W
1
) 0.39 & 0.26 0.30 & 0.13 0.022 & 0.00

2b 0.76 & 2.45 0.30 & 0.24 0.30 & 0.24

3b 0.21 & 0.44 0.09 & 0.12 0.09 & 0.12

C) Curvature Effects

RMS IN 
Curvature 0.05 0.03 0.03

RMS PE 
Curvature 0.43 0.32 0.14

Critical 
Value 0.48 0.48 0.48

D) Goodness of Fit 

RMSE 5.14 2.42 2.42

MAE 3.27 1.44 1.44

E) Residual Analysis

Run test Z  
Value

0.91 0.00 0.00

Shapiro-
Wilk’s Test 
p-value

0.32 0.03 0.03

1D-W Test 
Statistic - 2.24 2.24

2B-G Test 
p-value - 0.25 0.25

White’s Test 
p-value - 0.33 0.33

1Durbin-Watson test statistic value and 2Breusch-Godfrey’s 

serial correlation test p-value for order one.
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Table 3. Mutual correlations among the estimated 
parameters for common carp from poplyponds

Correlation 
Coefficient

Logistic Gompertz Gompertz-I

rb (or rw1b2) -0.41 -0.55 0.05

rb (or rw1b3) -0.78 -0.91 -0.27

rb 0.85 0.81 0.81

Table 4a. Actual and forecasting of common carp yield 
(weight in Kg.) from polyponds (if there is no any fish 

mortality upto the end of the 10th month)

Month Observed Logistic Gompertz Gompertz-I

11th 21.57
20.63 

(0.94)

21.45 

(0.12)

21.45 

(0.12)

12th 23.57
20.89 

(2.68)

22.10 

(1.47)

22.10 

(1.47)

Table 4b. Actual and forecasting of common carp yield 
(weight in Kg.) from polyponds (if there is 20% fish 

mortality per pond upto the end of 10th month)

Month Observed Logistic Gompertz Gompertz-I

11th 17.26
16.51 

(0.75)

17.16 

(0.10)

17.16 

(0.10)

12th 18.86
16.71 

(2.15)

17.68 

(1.18)

17.68 

(1.18)

Table 4c. Actual and forecasting of common carp yield 
(weight in Kg.) from polyponds (if there is 30% fish 

mortality per pond upto the end of 10th month)

Month Observed Logistic Gompertz Gompertz-I

11th 15.10
14.44 

(0.66)

15.01 

(0.09)

15.01 

(0.09)

12th 16.50
14.62 

(1.88)

15.47 

(1.03)

15.47 

(1.03)

The bracketed values are the corresponding forecasting 

errors.
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Fig. 1. Actual and predicted common carp weights  
(in gm) from polyponds provided by different models

3.1	Polyponds
The average growth data in terms of weight 

(in kg) of common carp obtained from polyponds 
were considered for illustrations and the basic 
statistics of the datasets are presented in Table 1. 
Three different nonlinear models were fitted to 
the above growth datasets. Von-Bertalanffy model 
failed to give optimum solution irrespective of the 
fish species. The summary statistics for fitting of 
other models are presented in Table 2 for common 
carp respectively. Gompertz model is found to be 
the best fitted model based on the criteria of having 
least values of RMSE and MAE for common carp. 
The best models identified above are retained for 
detail analysis as discussed below. The residual 
analyses showed that the randomness assumption 
and normality assumption are fulfilled. Durbin-
Watson test statistic is ranging between 2.24-2.64 
which is approximately closed to 2 and we can say 
that presence of autocorrelation is not significant. 
This was also supported by the results of Breusch-
Godfrey’s serial correlation test p-value lies 
between 0.18-0.25 for order one. Further, White’s 
test p-value lies between 0.33-0.36 showed that 
the assumption of homoscedastic error structure 
is not violated. 

As Hougaard’s skewness values are less than 
unity and Box’s % bias are also less than 1% 
except for silver carp, we can say that parameters 
do not show any extreme nonlinear behavior for 
common carp. However, RMS PE curvature of 
Bates and Watts is greater than the corresponding 

12

13

23
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critical value in case of grass carp and it may not 
be acceptable. Moreover, the correlations among 
the estimated parameters are also extremely 
high in some cases which indicate that the 
parameters are not independently estimated and 
they may not be reliable estimates. To rectify 
the above problems of high correlation among 
the estimated parameters and nonlinear behavior 
of them, partially reparameterized versions were 
developed. The Gompertz model was considered 
for common carp in which the parameter 1b̂  was 
taken as an offensive parameter, given in equation 
(5) and it is referred as ‘Gompertz-I’. 

A value of t
1 

= 8 was chosen and the 
corresponding value of W

1
=163.26 for common 

carp was taken as an initial values for computation 
of the final estimate of the parameter W

1
,
 

which
 
provided the best result in terms of least 

correlation coefficient. The reparameterized 
model was refitted to the datasets and the results 
are again presented. Further improvements in 
Hougaard’s skewness and Box’s % bias are also 
seen in these refitted models. Moreover, the high 
correlations among the estimated parameters 
are almost eliminated except with 2b  in some 
cases. As a scale parameter, 2b  is not a naturally 
stable parameter, we do not expect to eliminate 
this correlation (Ross et al. 2010). The graphs 
of fitted model along with observed fish weight 
were also depicted in Fig. 1 which shows the 
appropriateness of the proposed models. If there 
is no any fish mortality during the rearing period, 
the common carp yield in the 11th and 12th months 
are best forecasted by the proposed Gompertz-I 
model as 21.45 Kg and 22.10 Kg respectively 
(shown in Table 4a). Assuming 20% and 30% 
fish mortality in each pond upto the end of the 
10th month. Although logistic model was found to 
be the best fitted model for silver carp, Gompertz 
model gives the better results in terms of fish yield 
forecasting for two months ahead.

3.2	Conclusion
The present study discusses the concept of 

partial reparameterization by expected-value 
parameter to tackle the issue of high correlation 

among the estimated parameters as well as 
nonlinear behavior of estimated parameters. 
Consequently, explicit form of the partially 
reparameterized versions of Gompertz model was 
developed which were illustrated with average 
growth datasets of fish species viz. common carp 
obtained from polyponds pond environments. 
Suitability of the models for two months ahead 
forecasting of fish yield from various ponds were 
also demonstrated.
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