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SUMMARY

Bayesian statistical inference for an inverse correlation matrix is challenging due to non-linear constraints placed on the
matrix elements. The aim of this paper is to present a new parametrization for the inverse correlation matrix, in terms of the
Cholesky decomposition, that is able to model these constraints explicitly. As a result, the associated computational schemes
for inference based on Markov Chain Monte Carlo sampling are greatly simplified and expedited. The Cholesky decomposition
is also utilized in the development of a class of hierarchical correlation selection priors that allow for varying levels of network
sparsity. An explicit expression is obtained for the normalizing constant of the elicited priors. The Bayesian model selection
methodology is developed using a reversible jump algorithm and is applied to a dataset consisting of gene expressions to infer

network associations.

Keywords: Bayesian, Correlation matrix model, Sparse correction, Reversible Jump MC.

1. INTRODUCTION

A majority of the work related to Bayesian
inference on graphical models have assumed the
multivariate Gaussian as the preferred joint distribution
on nodes. This assumption, though mathematically
tractable, severely limits the applicability of such
models, since the marginal distribution at each node is
forced to be normal. Thus, recent work has focused on
joint distributions elicited in terms of the Gaussian
copula (see, for example, Pitt et al. 2006, Dobra and
Lenkoski 2011) which uses the inverse of a correlation
matrix to model network associations. While gaining
modeling fiexibility, several constraints are placed on
the inference methodology due to the use of a
correlation, instead of a covariance, matrix. The entries
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of an inverse correlation matrix are constrained in a
manner so that the diagonal elements of its inverse (a
correlation matrix necessarily) are equal to unity.
Furthermore, the correlation matrix (and its inverse) are
required to be positive definite. Previous work has
accounted for these restrictions by updating the entries
of a correlation matrix one by one, each time calculating
an interval of admissible values so that the resulting
correlation matrix is positive definite (see, for example,
Talhouk et al. 2012, Pitt et al. 2006, Wong et al. 2003
and Barnard et al. 2000).

Our objective was to perform unconstrained model
selection on the space of sparse graphical networks
models. A typical scenario we encountered is inferring
network associations for a dataset of gene expressions
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consisting of n samples of each of p genes, with
p >> n. Typically, again, in these cases, most network
associations are negligible with only a few significant
ones, thus giving rise to sparsity in the entries of the
inverse correlation matrix. The Bayesian analysis of
graphical models entails sampling from the class of all
inverse correlation matrices, and in high dimensional
problems, this estimation procedure should exploit the
sparsity of the network associations. The term by term
updating scheme of Pitt et al. (2006), Wong et al.
(2003) and Barnard et al. (2000), for example, can be
slow to converge.

This paper provides an alternative parametrization
of the inverse correlation matrix which is able to free
up the constraints placed on its elements. We are able
to do this by exploiting several useful properties of the
Cholesky decomposition of the inverse correlation
matrix, W. Let W = LL” be the Cholesky decomposition
of W where L is a lower triangular matrix. Our approach
explores network characteristics via L. Although 7 and
L have a one-to-one correspondence, zero entries of W
do not in general correspond to zero entries of L. Thus,
the nature of network sparsity and the space of all
models we consider are the ones characterized by the
zero and non-zero elements of L. Nevertheless, this is
a fairly general representation of sparsity. For example,
when the inverse correlation matrix W is banded, it
follows that L is banded as well. Generally speaking, L
may contain a larger number of non-zero terms
compared to the corresponding I, but not significantly
larger.

The Cholesky decomposition additionally allows
us to develop a class of prior distributions on the space
of all inverse correlation matrices that models sparsity
and gives an explicit formula for the volume. Note that
Wong et al. (2003) had to assume a block diagonal
structure on the inverse correlation matrices to obtain
an explicit volume formula. Here, we recommend some
ordering among the variables as Cholesky
decomposition is sensitive to order, but use of reversible
jump Markov chain does not require any assumption
on the location of structural zeros in the inverse
correlation matrix.

The rest of the paper is organized as follows.
Section 2 discusses the multivariate Gaussian
distribution with the inverse correlation matrix as the
parameter of interest. The new parametrization of the

inverse correlation matrix in terms of its Cholesky
decomposition is presented here. Section 3 develops a
class of prior distributions on the space of all inverse
correlation matrices with an explicit formula for the
volume derived. Section 4 develops the RIMCMC
algorithm for Bayesian inference. Experiments with
simulated and real data are presented in Section 5
together with results on the sensitivity of the analysis
on model specifications.

2. THE DISTRIBUTIONAL MODEL

Let X = (X, X, ., Xp)T denote a p-variate random
vector taking values in R? and distributed as
multivariate Gaussian with £(X)) = 0 and V(X)) = 1 for
alli=1, 2, , p. The joint density of X is

(pp(xla Xy 7Ty xp|R)

_ 1 o {_ 1 XTR_IX}
= 2o @et®)” P2 (1

where x = (x;, x,, .., xp)T € RP; in (1), R denotes a
symmetric positive definite matrix and det(R) denotes
the determinant of R. The matrix, R, is the correlation
matrix; the (i, j)-th entry of R, r,> represents the
correlation between X, and X for i # j. We denote by
Cp the space of all p x p correlation matrices.

Entries of the inverse correlation matrix, W = R"!
= ((Wy'))> reflect the extent of conditional dependence
between a pair of components of X, that is,

w,; =0 X and X, are conditionally independent
given the rest of the X,’s, k #{i, j}. 2)

Although W has altogether p(p + 1)/2 distinct
elements, not all of these entries are free to vary. The
p diagonal elements w,, i =1, 2, , p, and the
p(p — 1)/2 off-diagonal elements W 1> satisfy p
non-linear constraints: If W = ((wl,j)) is inverted to get
W1, then, the diagonal entries of this inverse should
be unity. Until now, inference on W has been difficult
due to the presence of these non-linear constraints; see,
for example, Pitt et al. (2006) and Wong ef al. (2003)
which report the difficulties involved and possible
solutions when dealing with these constraints. The goal
of this paper is to provide a new solution to the problem
of inference on inverse correlation matrices. Our first
step is to model the relationship between the diagonal
and off diagonal elements of /¥ in an explicit manner.
The partitions of W and L are represented as
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W=l* w, w,land L=|* [, 0 |, 3) ) . '
fw W, £ 1L, Using the Cholesky decomposition of ¥ in (3), the

where the *s are some arbitrary elements of the
corresponding matrices. The following proposition
explicitly models the constraints imposed on the
diagonal elements of W in terms of the vector
lj = (.lj v 1p lj o lpj.)T for j = 1,2, .p—1, v.vhic'h
consists of the free (unconstrained) elements l[f Jj<i.

Theorem?2. Let W = LL” be the Cholesky decomposition
of W as given by (3). Then,

2 7 N1

I =1+10(L, L), “4)

/il

We refer the reader to a proof in the Appendix. For
j=1,wehave w, =1/,/, and so,w, =0« [, =0.For
the remaining columns j > 2, lg = 0 corresponds to W
being equal to some pre-specified value (but not
necessarily zero). There are several attractive properties
of the above parametrization of W that we shall use
later: (1) For each j = 1, 2, ., p, we have an explicit
expression for the diagonal element ljj in terms of 11/»
i>j and L, thus removing the implicit constraint
imposed on W; (2) The above proposition allows us to
treat the ll.js for i > j as the free (i.e., unconstrained)
parameters with each /. € R, allowing proposal
distributions for 1. be elicited conveniently, and (3) the
elements of L involve /,, s for indices k > k"> j only,
and not any of the /s for k, k" <j. In particular, in the
expression (4) for lj.j., L, does not depend on 1 | or any
of the other 1, for k£ <.

We also partition R = W' as

£ % %
R=l* 1 r’ |
. / )
r, R,

and note that (L, L))" =R, forj=2,3, .,p— .

Suppose our dataset consists of # iid observations
of X with pdfin (1) given by D = (X, X,, _, X)) where
R € C_is the unknown correlation matrix with
R'=W. Denote S to be the sample covariance matrix
defined as S = ZLX .X!. The likelihood for W based

on the n observations is

likelihood can be written as a product of component
likelihoods

(o wy=111,a;1L;) (7)

where

24205714175 1))
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forj=1,2, ,p.Also, we give S the representation

* % *
—| * T
S= Sy S| )

The Bayesian inference methodology requires the
development of a suitable class of priors on C’p for
model selection. We develop the prior on Cp in a
hierarchical way, similar in spirit to the prior in Wong
et al. (2003) and Pitt ez al. (2006), which gives positive
probabilities to combinations of off-diagonal elements
of L being identically zero. The details are presented
in the subsequent section.

3. INVERSE CORRELATION SELECTION
PRIORS

We closely follow the exposition in Pitt et al.
(2006) and Wong et al. (2003) to develop the
framework of inverse correlation selection priors for 7.
To elicit the prior on a constrained version of W =
((wl.j. )), we first develop some additional notation. The
prior is developed in terms of the number of zero and
non-zero entries of L. Let the binary random variable
JU.=1ifll.j;thndJU:Oifll.j=0f0rj<iand
i=2,3,..,p LetJ = {Jl.j,j <ii=2,3, .., p} denote
the collection of all the JU The random variable N(J)
will denote the total number of elements in J
that are 1 out of the maximum possible number
H=pp - 1)2. Let J; denote the collection of all
{Jl.j, i=j+1,j+2,.,p}foreachj=1,2, ,p-1.
For the j-th column, let 7. denote the collection of
indices (7, j) in J. y such that Jg =1 and Ij .. denote the
collection of all indices {(i, k) : (i, k) € J., i > k> j}
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such that J, = 1. The collection of elements of 1. for
the j-th column that are non-zero is denoted by 11],-
Also, let T; and T;denote, respectively, the collection
of all ry with (i, j) € I] and (7, ) € I] .- The sets T; and
I, respectively, denote all free (unconstrained)
parameters corresponding to J in column j and in
columnsj+1,j+2, ,p,foreachj=1,2, ,p—1.

We denote the prior distribution on R for a
configuration J by g(R|J ) given by

p-1
gRII) e []@et(®R, , )™ (10)
j=1
in (10), R, 1,.1,) 1 the submatrix of R.j. consisting of the
(IJ. —j)-th rows and columns of Rj.j..

Our hierarchical prior specification for W is as
follows:

RI) = V) dryy Iy o 2RI). (1)

H -1
T JINW) = h} = (hj > and (12)
H h H-h
ﬂo{N(J)=h|W}=[ h]l// A=¥)"" and (13)
7ty (w) = Uniform (0, 1) (14)
where
(J) = J.RECP8(R|J)I{’"(J:m}d’"{1=n (15)

is the normalizing constant for g, and 0 < y <1 is the
probability that Jl,j = 1. There are some major
differences between the prior elicitation in (11-14)
above with that of Wong ef al. (2003) and Pitt ef al.
(2006). First, the prior for R in (11) is defined in terms
of the entries /. that are non-zero. Given the position
of the non-zero ll.js, N(J), the ry entries at those positions
can be taken to be the free parameters for R. The
Lebesgue measure dR;_, in equations (11) and (15) is
induced on these r;; elements. The remaining ry entries
are a function of J = 1, but not necessarily zero. Wong
et al. (2003), and subsequently Pitt et al. (2006),
defined the prior directly in terms of the indices of
rys that are exactly zero and non-zero, and therefore,
is a different approach from the case here. Second, the
prior distribution on J given N(J) = h is taken to be
uniform on the space of all configurations .J satisfying
N(J) = h. This is different from the prior specification
in Wong ef al. (2003) who take this prior to depend on

the average volume V (k) over all such combinations
of J. Wong’s approach avoids the need to compute V(J)
during each update of the Gibbs sampler but requires
the computation of an average volumes V (k) based on
non-linear regression and Monte Carlo sampling. In the
present case, we take the prior on J to be uniform,
which means that we will be required to compute the
volume V(J) at each iteration of the Gibbs sampler.
However, the expression for the normalizing constant
V(J) can be obtained analytically. We present

Theorem 3.1 Let J correspond to a configuration in C’p.
Then, the volume

p-1 p-1
v =T]vu)=2""TI(B@,.B,V,(5") (16)

J=1 Jj=1
with o = nj/2, ﬁ] =1+ nj/2 and n, is cardinality of I
(i.e., the number of non-zero entries in 1); in (16),
B(a, P) is the Beta function given by B(a, B) =
[[x 1=/ dx for > 0, B> 0, and V,(S") =

0

27z.m/2

ml'(m/2)
sphere in R™.

, is the volume of the unit m-dimensional

The reader is referred to a proof in the Appendix.
There is a strong motivation for choosing g as in (11).
The prior, g, after an appropriate transformation, has
the tail behavior of multivariate # with one degree of
freedom. Thus, in the univariate case (with n. = 1), this
tail behavior is like the Cauchy distribution. It is well
known that densities with Cauchy tail-like behavior has
been proposed by many researchers as the appropriate
default prior for the univariate variable; see, for
example Gelman et al. (2013). To demonstrate
this tail behavior, we transform the variables
(r,.r; )=, .1, ) using the Jacobian from equation
(25) in the appendix, and derive the density for 11],
(conditional on 1; ) as

2
B(a;, B;)xV,(S")
(det(R{,i’,J}))”z

A+1 R, )"

h(, .1, )=

amn

for j =1, 2, ., p. Another transformation y = R(l ;/,2,,,,}1,,,

gives the multivariate ¢ density with one degree of
freedom for y. In terms of L, the prior on the non-zero
entries of L, {1, .j=L2,... p}is
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mLID=]]ha, 11, ) (18)

where hj is as (17).
4. BAYESIAN INFERENCE

Inference is obtained based on the posterior
distribution of L. The unknown parameters are (1) the
values and (2) positions of non-zero entries of L, and
(3) y. The posterior of (L, J, w), up to a proportionality
constant, is given by

m(J, L, yD) < (D|L) m,(L|T) 7, {IN(T)}
T ANy} (W)

from equations (6), (11-14) and (18). The update of
(J, L, w) to a new state (J*, L”, w*) may change the
number of unconstrained entries of L, and therefore, can
be viewed as an updating scheme that moves between
parameter spaces of varying dimensions. We develop
a posterior sampling procedure based on the Reversible
Jump Markov Chain Monte Carlo (RIMCMC)
algorithm of Green (1995) and Green and Richardson
(1997). Fix y and a column j. We consider three
updating steps. The first two moves are reversible
moves types for (J, L) for fixed y. These updating
moves are

* Remove Zero: In this step, (J, L) — (J*, L") by
increasing the number of non-zero entries in J; by
one (hence n =n;+1). One of the zero entrles in
11 is selected at random and converted to
non-zero. All other entries of L remain the same.

* Add Zero: In this step, (J, L) — (J*, L") by
decreasing the number of non-zero entries in J g
by one (hencen; =n,—1). One of the non-zero
entries in 1, L is selected at random and converted
to zero. All other entries of L remain the same.

¢ Update y: In this step, no reversible moves are

needed. The update of y can be carried out using
a standard Gibbs step. Given J and L, the posterior
density of v,

m(y\d, L, D) ~ Beta(aw, ﬁw)
with ¢z, = N(J) + 1 and B, = H~N(J) + 1.

The proposal densities corresponding to the
Remove Zero and Add Zero steps are given as follows:

If J — J* for a Remove Zero move, the proposal
density is

g, I = r(d, I) xq(l. ), (19)

_
(p - ] - I’lj)
where 7, is the probability of selecting this move type,
p—j—n is the number of available zeros for conversion
to non-zero and g(/,. j.) is the density of the proposal
distribution for the selected non-zero position i* in l,f.
If the transition J — J* represents an Add Zero move,
the associated proposal density is

1
g, 3, I)=r,J,J) x n_ (20)

where 7, is the probability of selectmg this move type;
the new number of non-zero elements is n =n;—1
where n, is the number of available non- zeros in J for
conversion to zero. The acceptance probabilities
corresponding to the Remove Zero move is given by

o (3, L). (3, L))

_ min{l,ﬂ(('] .L.y)|D)g,J ,;I)}. e
2((J, L,y) | D)gr(J, J)

while the acceptance probabilities for the Add Zero
step is

a,(J,L). I, L)

~ min {1, 7. L.y)[D)g,J . g)} )

The expression of the acceptance probabilities of
general RIMCMC schemes involves a Jacobian that
corresponds to the transformation relating the random
variables generated using the proposal distribution
(either using ¢, or g,) with the new proposed state.
However, in our case, the Jacobian is 1 since we
directly sample Z, an element of L. We also consider
another step Unchanged Zero where J remains fixed
and only the entries of L are updated based on a
proposal distribution g,. The acceptance probability for
the Unchanged Zero move for the j column of L is

o, (3, L, ), (3, L7, w))
(3, L.y) D), )

— min- 1, :
"rranwmeg) |

where | and lz_ represent the current and proposed

values for the j-th column of L. Note that since J
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remains unchanged, both L, and l*j are of the same
dimension n. The probability of selecting the
Unchanged Zero move type is denoted by 7, (J, J) but
does not appear in the expression for the acceptance
probability due to cancelation from the numerator and
denominator.

To run the RIMCMC, we obtain an initial estimate
of W based on the inverse of the sample covariance
matrix S. The Cholesky decomposition of W = LL” is
then obtained. In order to update the entries of L, the
RIMCMC performs a cycle starting from column
j=p—1,thenj=p—2, and so on, until j = 1 of L.
At step j, one of the Add, Remove and Unchanged
Zero moves are selected with their corresponding 7,
probabilities. If either Add Zero or Remove Zero are
selected, the chain is updated from state (J, W) — (J*,
W*) according to the acceptance probabilities (22) and
(21). If Unchanged Zero is selected, the chain is
updated based on the acceptance probability (23) based
on the proposal ¢,. Running through the indices j =
p—1,p—2, .., 1 and finally updating y based on its
conditional posterior density completes one iteration of
the RIMCMC. The RIMCMC is then run through a
large number of iterations and checked for convergence
before posterior samples are obtained for inference.

Suitable choices for the proposal densities ¢ and
g, are challenging to obtain for the following reason:
Note that for each fixed j, the posterior is a complicated
function of L for example, 1. is present in the
conditional posterior density 7z(l, | L,,, D) for all
k <j in a very complicated way, and cannot be factored
out or approximated easily. To develop efficient
sampling procedures, the proposal densities should be
as close as possible to n(J, W, w|D) (viewed as a
function of 1. only) to avoid low acceptance
probabilities and slow mixing.

We develop proposal densities for the Remove
Zero and Unchanged Zero steps based on the initial
estimates of L, [, fori>jand i,j= 1,2, ..., p obtained
from the empirical correlation matrix R. The candidate
non-zero entry ll.*j is sampled from a normal density
with mean /., and standard deviation ;. We choose a
small value of 6, in our experiments in Section 5. For
the Unchanged Zero move, g, is chosen to be the
multivariate normal distribution with mean l “and
covariance matrix O, I,l

5. EXPERIMENTAL RESULTS

5.1 Simulation

A commonly used covariance structure is the band
structure where going down each column, only a few
entries closest to the diagonal are non-zero and rest are
zero. For our simulation, we generated observations
from a multivariate normal distribution on R°> with zero
mean and a banded correlation matrix R. The matrices
R, W and L are given as follows:

1 0 0 0 0
0 1 -0.287 0.056 0
R = |10 -0.287 1 -0.196 0
0 0.056 -0.196 1 0
0 0 0 0 1
1 0 0 0 0
0 109 0313 0 0
W=RrR! = |0 0313 1.13 0204 0
0 0 0204 104 O
0 0 0 0 1
1 0 0 00
0 1.044 0 0 O
andL = [0 03 102 0 0
0 0 02 10
0 0 0 01

A total of n = 2,000 realizations are generated which
constitute the observed data. The RIMCMC is started
from several different initial values of R, W and L. The
variance of the proposal density o is taken to be the
sample variance calculated based on the off-diagonal
entries of L= ((l ).

The RIMCMC chain was run upto 20,000
iterations and convergence of the simulation was
checked and established using “Potential Scale
Reduction Factor” as described in Brooks and Gelman
(1998). The marginal distribution of each ll.j is a two
component mixture with one component giving point
mass at zero and the other forming a smooth density
based on the non-zero realizations. Fig. 1 gives the
density plots using a Gaussian kernel for the non-zero
entries as well as the true value of each /. The number
on top right corner of each panel is the proportion of
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times that ll.j was chosen to be zero. A large number
indicates that the posterior puts high probability on the
value 0 which is indicated by the grey background of
the corresponding panel. Clearly from Fig. 1 the
sparsity of L and W matrix has been estimated correctly
by the sampling scheme. The recovered sparsity
structure of R matrix is also similar to the true structure
(not shown in figure).

LR

(12 I

(L2 [} ] LLL i

s I

0 (¥ 1y L1}

111 (L1 ] L] LI}

_—

Fig. 1. Location-wise distribution of nonzero values of MCMC
sample of lower triangular part of L and ¥/ matrix. Grey
background indicates posterior mode at 0, and the point

probability at 0 is displayed at the top right corner.

5.2 Real Data

Our method proposes a way to estimate covariance
or correlation matrix through sampling. This is
applicable in a bigger context to answer biological
questions about pathway association. As a biological
hypothesis, pathway association refers to association of
a group of genetic markers that are functionally related

with some phenotype (disease). However, statistical
attempts to make joint inference on a set of genes are
often inadequate in capturing the possible complexity
in the associ-ation pattern. In most cases, a combined
analysis of all the genes in a study, or a subset of them
that are biologically connected, may not be feasible due
to small sample sizes and a large number of genes.
Biological nature of gene interaction or dependence
may be difficult to capture in the statistical
parametrization. Also, quite often the genes in a study
is only a subset of all the different types of markers that
construct the genetic pathways and the overall
dependence pattern of them may not translate in a
simplistic way to the network of the subnet.

One recent example of pathway analysis is
provided in Hendriksen et al. (2006) where the
Androgen pathway has been linked with progression of
prostate cancer. The data used in Hendriksen et al.
(2006) is available in Gene Expression Omnibus
(GSE4084). A similar study, Singh et al. (2008), on
Androgen receptor related genes concluded similar
association from a different cohort. The significant
genes reported in Singh et al. (2008) are classified as
over- and under-expressed in cancer specimens. We
took the data from Hendriksen et al. (2006) with the
over-expressed genes from Singh et al. (2008). Data
missingness reduced this set by two more genes.
Eventually, p = 10 genes in n = 12 specimens were
available with genes denoted by AKAP9, GAGEBI,
MET, MYLK, MYO3A, NR2F1, NRXN3, PRLR,
TCF4 and TNS. We applied our covariance estimation
algorithm on this dataset to find possible sparsity
structures.

Reported structural data from KEGG database
(Kanehisa and Goto 2000, Kanehisa et al. 2012) has
not been useful as many of the above genes are not part
of the Androgen receptor pathway shown there. Current
understanding of metabolic networks suggests that the
topology of natural networks depart from earlier
random network models in their degree distribution in
a significant way. Observed degree distribution of
metabolic networks studied in Jeong et al. (2000) shows
a polynomial tail decay with P (degree = n) o<1/n%,
where o =3 (Jeong et al. 2000). For our purpose, we
assume @ = 3.5 to make the prior degree distribution
have finite mean and variance. Hence the probability

1

mass function is given by P(degree = k) :W’
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where ( is the Riemann zeta function. For p = 3.5, mean

. o 1 _{@5) .
degree is 21 Cak = £G5) =1.19 and variance
c(L3) _(6@25) 2—0901 In our setup, total
(33 |\ ¢35 P

degree N(J ) = %Znode degrees,hence E(N (J)) =15

x E(degree), assuming degree distribution of each node
is iid and there are 10 nodes. And V(N (J)) =25 xV
(degree). We incorporate these information into the
prior y ~ Beta(o, ) by choosing o = 0.9596 and
B=3.0724.

Fig. 2 show the estimated structure of the inverse
correlation matrix of the 10 genes along with the L

{
L} .
o

e

I
1
1
}L
1

AL _hJ,.“_.,n],l e
VEIRIETEICIRTRIR

Fig. 2. Location-wise distribution of nonzero values of MCMC
sample of lower triangular part of L and W matrix of Androgen
pathway genes. Grey background indicates posterior mode at 0,
and the point probability at 0 is displayed at the top left corner.

matrix for three chains combined. Convergence of the
simulation has been checked using “Potential Scale
Reduction Factor” as before; Fig. 3 shows the mixture
of sequence and within sequence variance estimates
against the simulation index. Final PSRF is 1.0125
which suggests satisfactory convergence of the
algorithm.

45 l| -
,_LJ\& _

T e — —

o EIIZ Elld- EI.IE DIB 1I IIZ 'I.Id- I.IE 1B 2

%107

Fig. 3. Mixture of sequence variance (in red) and within
sequence variance estimates (in blue) for the covariance matrix

estimation of the Androgen genes. The ratio converges close to 1,

and the end value is 1.0125, suggesting satisfactory convergence
by Gelman-Brooks-Rubin criteria.

The locations in Fig. 2 with light grey background
show the location having 0.5 or higher point probability
at zero. Although the sparsity estimated seems to be
somewhat lower than observed sparsity of natural
networks, the threshold for sparsity can be made more
stringent or the prior can be made more skewed to
enforce more sparsity provided we have some prior
knowledge about the network dependence pattern.

6. DISCUSSION

Bayesian estimation and model selection with a
correlation matrix is challenging due to the presence of
non-linear constraints. We present an approach in this
paper that explicitly models the non-linear constraints
in terms of the lower triangular matrix of the Cholesky
decomposition. Our algorithm reduced the domain
restric-tion on the Cholesky factor to only the diagonal
elements being non-stochastic, and all the off-diagonals
being free parameters. Thus almost any default prior on
them would work. Also, the updating scheme updates
one column at a time, and hence the computation time
is O(p) where p is the dimension of the correlation
matrix. This a signilicant improvement over the earlier
attempts to default bayesian analysis of correlation
matrix.
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A Bayesian analysis to infer pathway association
will go through a model selection exercise with an
association parameter and the covariance matrix
allowed to have stochastic zeros. Posterior simulation
will include steps to sample from the posterior of the
association parameter and then another step to sample
from the posterior of the covariance matrix conditional
on the current value of the association parameter. We
intend to demonstrate in the stated applications that our
method provides an algorithm to simulate from the
covariance matrix posterior that allows for structural
Zeros.
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APPENDIX

Proof of Theorem 2.1

Partition W and L as

B, b, B,
W o= bl w, W
By, w, W,
M, 0 O0\M; M; M
= Mj lJJ 0 0 lJJ 1?
M, 1, L;)| 0 0 L

Comparing the blocks we have Bll = MﬂMjTl,
_ T _ T T T 2
By = MM . Wy=MpMp+ 11+ LLy,w=1; +
MM, w,=M,M]+0,1; and b, = M,M]. The
diagonal entries of the inverse of W are 1. These
restrictions translate to

B. B, \'(b.
w.o—biwh)| T =1. 24
i J Bsz W/j wj ( )

Using the linear algebra result on deriving a matrix
inverse, we have

B, B,\ (Bl'+FE'F" —FE"
By, W, ~E"F' E"

— T T
where £ = W, — BB B, = 11,+L,L; and F =

BB, = (MM )" After some algebra, the second

term on LHS of (24) can be simplified in the following
way:

T p-1 T -1 T T -1 T -1
w, —(bTB;'b,+bTFE"F'b,~2b" FE™'w , + W E"'w )

1™

= 1,-1:1"E™'1,. Equating the last expression above

to unity, we get 1=03-L1E'l, or [}=

1/(1-1; A1+ L,L’)™'1,). Now use the result
(L, L)1 (L,L)"

i i

1+15(L,0)™,

/il

A1 +L,0)" =(L,L)"

/) /)

. 2
last expression for [ to

to simplify the

i}

2 _ T T \-1
ljj —1+1j(LA.LA) lj.

Proof of Theorem 3.1

Let J denote a configuration in C’p. We state the
following lemma which will be required for the proof
of Theorem 3.1.

Lemma 1: The Jacobian of the transformation from
(r, 1, )=, .1, ) is given by

~ det(R{,i’,i})
A= (25)

i
where Ry, ,, is the submatrix of R consisting of the

i
(Z,— j)-th rows and columns of R, and #, is the number
of elements in L.

The proof of Theorem 3.1 now proceeds as

2 _ - —
follows. We have [} =1+[7(L,L;)"'l, =1+ R, , [,

/]
where R, ;, are the I, — j rows and columns of R .
Now fix j = 1. To evaluate the integral in (15), note that

p-1
L [Tetr, , )21, dr
j=1

P

p-1
= J.c H(det(R(Iij)))_UzI{rzf=0)}drlmdrlu
Jj=1

P

N J.c I(II,_ det(R{l,.J,.;))_lleldllm J
p-1
l-_!(det(R“i*’J}))_l/zI{”,ﬁ ~ Oy, .
e

using Lemma 1. The inner integral with respect to /;

1S

(det(R,, , )" (det(R,, , )"
I 2+n, ll = J. T 1+(n, /2)dll
Iy T Cln A+ R, 1)

_ J'y a1+ yTy)—(1+(n1/2))dy

where y = R(lllfll)l , 1s an n;-dimensional vector. Using
polar transformation, the integral with respect to y can
be simplified to

> —(4n/2)

[ a+s) s"2dsxV, (S™)

= 27'B(a,, B)IXV,(S™)
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using the substitution u = s*/(1 + %), where «,, f, and
Vo (8™ ) are as defined in Theorem 3.1. Now, we repeat
the above procedure for j =2, 3, ..., p — 1 for the outer
integral with respect to 7;, .

Proof of Lemma 1

Check by matrix multiplication that

* 0 0 * 0 0
L=|* ljj 0 |,andL'=]* l/ljj 0
* 1 L 1 _1 _1
! Y ¥ _I_ijlj L]]
Jj
(26)
Hence,
£ *k %k
R=|* 1 r |=(L)'L'
R
%k %k %k

T 7-INT -1 T 7—-INT 7-1
i+1j (ij) ijlj _11' (ij) ij

2 2
ljj ljj !

Jj

—INT 7-1
(ij) ij

| _
¥ __(LJ;)T Lj;lj
ljj

Equating the diagonal entries provide a second
proof of Theorem 2.1. From the off-diagonal entries,

SINT - 1
we have R, = (L;)"L; and r = —erjlj. Using the

J

notation from section 3, we have r, =——R,, , ,1,.
I ] {1,037

Choose the indices i and & such that (i, ]]'J) S Ij and
(k, )) e Ij Then,

I Ly 9

T

r,, 1 1
e I

Ji i (m. el Ji

Note that the Jacobian of the transformation

(r,.r, )—> (1, .1, ) is given by

[or,  or,
a, a1,
J =det ’ ’
or,  or,
é’rl,j+ é‘rl,j+
[or, or,
J i+ arl.
=det| 01, 01, |=det|—-|,
j j all
0 I /

the 0 in the off-diagonal position being due to the fact
that the vector I; is not constrained by the variables
in Y, ~ Thus, the Jacobian of the transformation

1

or
I, = 11,_ depends on de{allf ] which can be obtained

from equation (27). This can be simplified as

or, | 1 1 LT
det a1, =det _ER“"’I"}-FZT.R“"‘I"’ i szuj,lj}

§ Jj

= Z%der[R{,i,,i,]der[l —uu’] (28)

J7

[T

where u :l_R(1 1,. The last expression can be

Ij,Ij) I;
J7
simplified as

def[R,, ;] d—uTw)— det[R,, , ] ( 1_ LR, I,
n; - n; 2
ljj ljj L lji
delR, , ) I-1| detR, ]
= lnj Ll - 12 = lnj+2 *
J J I
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