Available online at www.isas.org.in/jisas
JOURNAL OF THE INDIAN SOCIETY OF
AGRICULTURAL STATISTICS 65(2) 2011 195-203

ISAS

Optimal Transect Sampling Designs: Are Straight Transects Always Best?

Roger L. Bilisolyl* and Sean A. McKenna®
IDepartment of Mathematical Sciences, Central Connecticut State University,
1615 Stanley Street, New Britain CT 06050, USA
’Geoscience Research and Applications Group, Sandia National Laboratories,
PO Box 5800 MS 0751 Albuquerque, New Mexico 87185-0751, USA

Received 15 September 2010; Revised 14 December 2010; Accepted 15 December 2010

SUMMARY

Relatively little attention has been paid to optimal sampling design when the support of the sample is a linear transect.
The D-optimality criterion allows the quantitative comparison of spatial sampling designs for samples with either point or
transect support. D-optimality is applied to transects that are equally spaced point samples taken along a straight or curved
path. For short transects containing three points, the optimal angle between adjacent transect segments can be determined
analytically by setting the derivative of the D-optimality criterion with respect to the spatial covariance to zero. Results show
that straight transects are suboptimal when the random variable being sampled has a Gaussian or spherical covariance function.
By combining D-optimality with simulated annealing or Powell’s algorithm, optimal spatial designs for longer transects can be
determined. For a Gaussian variogram, a zigzag pattern is nearly optimal and is better than a straight transect. For a spherical
variogram, a transect that bends twice to the right then twice to the left maintaining a constant interior angle is nearly optimal
and is better than a straight transect. Finally, for an exponential variogram, straight transects are optimal. Implementation of

these results for use in practical design of field surveys is discussed.
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1. INTRODUCTION

The question of how to best locate samples across
a spatial domain to meet some objective of the
sampling program arises in a number of disciplines
including mineral and petroleum exploration,
environmental remediation, epidemiology, meteorology,
forestry, ecology, hydrology, agriculture, and
oceanography (for some examples see Wikle and
Cressie 2011; McKenna 2009; Kumar 2009; and Saito
et al. 2005). The largest body of work in spatial
sampling design answers the question of where to
locate samples from the perspective of point sampling
(e.g., US EPA 2002). That is, the support of the sample
is defined by a single set of coordinates and the sample
volume is much less than the size of the site domain.

“Corresponding author : Roger L. Bilisoly
E-mail address : bilisolyr@ccsu.edu

Considerably less attention has been given to
determining the optimal sampling design when the
support of the sample is not a point but a linear transect.

With the availability of off-road vehicles,
airplanes, helicopters, and spacecraft, along with better
remote sensing sensor technology and accurate global
positioning systems, it has become progressively easier
to collect information while the sensors are moving.
With the concurrent development of cheaper, larger data
storage capabilities, collecting large amounts of data is
now routine. Together these trends have led to
increasing amounts of data collected as the sampling
instrument moves, which produces one-dimensional
samples called transects. In practice, data are collected
at some temporal or spatial frequency, which makes any
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transect a sequential collection of point samples.
However, spatial autocorrelation makes the
measurements at these locations correlated to one
another, which violates the assumptions underlying
theories developed for design of independent point
sampling arrangements. Therefore an extension of
sampling theory specific to transects is required.

In practical applications, transects are often
deployed in one of several possible ways, the most basic
being a linear transect with a randomly selected
orientation (Burnham et al. 1980). If several transects
can be deployed, then parallel transects with a randomly
selected orientation and individual transects each with
a random orientation are two common design options.
Field implementation of transect sampling is facilitated
by defining each individual transect to be along a
straight line. If the selected straight transect meets an
obstacle in the field, e.g., a cliff along the proposed
transect path, the transect would end prematurely or be
diverted. Similarly, a long sampling transect of a body
of water taken in a boat would be adapted so as to keep
the sampling device in the water (e.g., Jassby et al. 1997).

The practical approach of selecting straight
transects and then empirically adapting them to meet
field conditions has proven useful in a number of fields,
but the question remains as to whether or not these
straight transect designs are optimal with respect to
predicting property values at unsampled locations. For
example, Palka and Pollard (1999) propose using a
zigzag transect instead of the typical straight transect
pattern when searching for harbor porpoises by ship.
They examine the performance of using a straight
transect design while the porpoise sighting rate is below
a predetermined threshold, and then using a zigzag
transect pattern when the sighting rate exceeds the
threshold. They use an angle of approximately 60°
between segments along a transect to create the zigzag
pattern, and report that their design is 8% more efficient
than using only a straight transect when tested in the
field.

In most sampling designs, selection of straight
transects has arisen from practical considerations rather
than quantitative assessment of alternative transect
shapes. The results of Palka and Pollard (1999) suggest
that straight transects may not be optimal for all
sampling situations. In this paper, we examine optimal
transect sample design with respect to reducing the

prediction error at unsampled locations within a spatial
domain where the sampled property exhibits spatial
correlation. We accomplish this examination by
applying the theory of statistical design for optimal
locations of point samples in a spatial domain (Fedorov
and Hackl 1994) to the case of transect samples. This
theory is applied to find transects containing evenly
spaced samples that minimize predicted error variance
for a spatial domain with a known autocorrelation
structure but without prior samples. Results prove that
a straight transect need not be optimal over all spatial
patterns.

2. OPTIMALITY CRITERION FOR SAMPLING
DESIGN

Let R, (c for continuous) be the region where the
sample is to be taken. To reduce the problem to one
with finite dimensionality, the continuous region R, is
replaced with a discrete subset of # points, R, which is
split into two disjoint sets denoted by R, (p for
proposed) and R, (r for remainder). The quantity being
measured on R is denoted by the variable y, and y,, and
, are defined as the restriction of y to regions R, and
R,, respectively. Fedorov and Hackl (1994) optimizes
spatial sampling designs by choosing y, such that the
error of predicting y, from y,, is minimized. If prediction
is limited to linear functions of y,, then kriging gives
the best linear, unbiased estimate

- -1

Vr = CCpyp (H
where C,,, is the correlation matrix of y, with itself, C,,,
is the correlation matrix of y, with y,, and §, is the
predicted value of y,. These correlation matrices are
determined if a positive definite correlation function
between spatial locations is known or can be assumed.
The variance matrix of the predicted error is

Var(3, - y,) = Var(C,,Cpp ¥, —¥r)

= C,,—C,,C,,C @
The goal is to find a sampling design that reduces
this error matrix to be as small as possible. The simplest
way to do this is to minimize a scalar function of this
matrix. In practice, the product of the eigenvalues is
most often used (Myers and Montgomery 1995,
p- 364), which corresponds to the D-optimality criteria

(Mitchell 1974), and is given by

minD |Crr - rpcl_ylrcprl 3)
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where D is the set of spatial locations, one for each
spatial design, and |-| stands for the determinant.
Equation (3) does not depend on the values of the
measurements y,, only on the positions of the
measurements, so it can be evaluated prior to collecting
the data. This aspect of the D-optimality criteria is
crucial in a design setting since it is necessary to
compare different proposed y,’s prior to data collection.

Fedorov and Hackl (1994) also give a
computational simplification. Let C be the correlation
matrix of y with y, recalling that y is the vector of the
sites y, combined with y,, and note that y does not
change for different choices of y,,. C can be represented
by the block matrix

c, C,
C= C”” C” : (4)
rp rr

and from a well-known result of linear algebra

[Cl=IC

pp ”Crr_c C_lcprl' Q)

= pp

Since C is fixed, the two determinants on the right
hand side are inversely proportional, so the
D-optimality condition is equivalent to

maxp|C,pl, (6)

which is considerably more computationally efficient
than Equation (3) assuming that the proportion of sites
in R, sampled is less than 50% of n. The criterion given
in Equation (6) is used below to determine the optimal
interior angle between two adjacent segments of a
sampling transect for a given spatial correlation
functions defining the sampled property field.

3. OPTIMAL TRANSECTS FOR THREE
LOCATIONS

The interior angle is the minimum of the two
possible ways to measure the angle between two
adjacent segments of a transect (Fig. 1). The maximum
possible interior angle is 180 degrees and corresponds
to a straight transect, and with the D-optimality
criterion, the optimal value of the interior angle can be
calculated. For simplicity we restrict transects so that
the spacing between samples is fixed at one unit of
distance.

For the simplest possible case, three samples as
shown in Fig. 1, the optimal transect shape can be
calculated analytically. Assume that the spatial

Fig. 1. Shortest transect of interest with three samples spaced one
unit apart and interior angle of 6.

autocorrelation is isotropic and given by c¢(s), where s
is the distance between two locations. Since the
distance between two successive samples is fixed at one
unit, the distance between the two endpoints of the three

point transect is s = /2 —2cos(f) , where s ranges
between zero and two. Note that s = 2 corresponds to
a straight transect. Solving for the interior angle gives:
0 = arccos (1 — s%/2). So the D-optimality criterion for
a correlation function with a normalized variance is
given by
1 c) c(s)
e 1 )| =—c(s)* +2c(1)c(s) + 1 = 2¢(1)?
c(s) c 1
= flc(s)), (7

where fis a quadratic polynomial in c(s) with a negative
quadratic term. For s between zero and two if it can be
assumed that: 1) ¢(s) strictly decreases with increasing
s; 2) is positive; and 3) is differentiable, then the
maximum of f occurs either at an interior point where

the first derivative of f with respect to c(s) is zero, or
if no such point exists, it must occur at ¢(0) or c¢(2).

The fact that c(s) decreases as s increases means
c(0) = 1> ¢(1) > ¢(1)* > 0, which implies that ¢(1)* —
1 <0, so the following derivative is negative

G| = 2601 = 2e(5)]g = 201> = D < 0. (8)
de(s) | _g
Since df/dc and dc/ds are both negative,
.~ ) ©)
ds|,_g dcds|,_

which implies that f{c(0)) is a local minimum. Since
Ac(s)) is a quadratic in c(s) with leading term negative,
there can be only two ways that the transect can be
optimal: f{c(2)) is the maximum, which corresponds to
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a straight transect, or the maximum occurs at flc(s)),
where 0 < s < 2, which corresponds to a bent transect.

To determine which of these two cases occurs, we
set the derivate of f(c(s)) with respect to c¢(s) in
Equation (7) to zero and obtain

df (c(s))
dc(s)

Because ¢ is continuous and strictly decreases to
0 as s goes from 0 to infinity and because ¢(0) > c(1)?
> 0, Equation (10) must have a unique solution. If this
solution satisfies s € (0, 2), then the straight transect is
suboptimal. Otherwise f{(c(s)) is strictly increasing for
s € (0, 2), and the straight transect is optimal.

=2¢(s) + 2¢(1)* = 0 = c(s) = c(1)* (10)

In general, if the range of the autocorrelation
function, a, is less than one, then ¢(1) = 0 and the
optimality criterion reduces to 1 — ¢(s)>. This criterion
is maximized if ¢(s) = 0, which happens for all s larger
than a. Hence, straight transects are equally good as any
transect with s larger than a. Since c(a) = 0 holds for
the range, a, if 1 < a <2, then Equation (10) has a
unique solution, and a meandering transect that is more
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optimal than a straight transect exists. If a > 2, then
more knowledge of c¢(s) is required to determine the
optimality criterion. We examine the D-optimality
criterion as a function of the distance between the
endpoints of a short sampling transect where the spatial
correlation of the field is described by each of three
commonly used autocorrelation models: Gaussian,
spherical and exponential.

(i) Gaussian autocorrelation model

The Gaussian model given by

2

,520,

c(s) = exp (1D
where the practical range is a. Once a is specified, it is
possible to solve for ¢(s) = ¢(1)* for s, which can be
done numerically. A plot of the D-optimality criterion,
flc(s)), as a function of the distance between the ends
of the transect, is given in the upper left of Fig. 2. Here
the variogram range is 3. Table 1 lists the optimal s,

which equals V2. a value that corresponds to an
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Fig. 2. Plots of D-optimality fitness defined by Equation (7) vs. the distance between the endpoints of the transect, which is given by

yJ2—2cos(0) . The top left plot shows Gaussian autocorrelation with range equals 3, and the top right plot shows exponential
autocorrelation with range equals 3. The bottom two plots show spherical correlation: the left has range equals 2, while the right

range equals 10.
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Table 1. Values of s that maximize f, with corresponding
angle € for Gaussian autocorrelation. The last
column compares a straight transect to the optimal
transect using the D-optimality criterion.

Table 3. Values of s that maximize f, with corresponding
angle @, for exponential autocorrelation. Unlike the
results for Gaussian and spherical autocorrelations,

straight transects are optimal.

Range d O (degrees) |  f(s) JS)f(s) Range d O (degrees) | f(s) S2)fs)
2 1.41 90 0.60 0.95 2 2 180 0.90 1.00
3 1.41 90 0.24 0.74 3 2 180 0.75 1.00
5 1.41 90 0.045 0.38 5 2 180 0.49 1.00
10 1.41 90 0.0034 0.11 10 2 180 0.20 1.00
interior angle of 90°. For the larger ranges, a straight 3
transect is significantly inferior to the optimal L-shaped c(s) = exp (7} 520 (13)

transect. As the value of the range increases, the
superiority of the bent transect relative to the straight
transect increases.

(ii) Spherical autocorrelation model

Next, the spherical model given by

3(s (s
c(s) - 1‘5(5)*5(2j’ 0=s=a

0, s>a

is examined. The bottom two plots of Fig. 2 show the
D-optimality function, f{c(s)), vs. s for variogram ranges
of 2 and 10. Table 2 shows that the value of s
corresponding to the maximum of f along with the
interior angle of the transect. Notice that once freaches
its maximum at s,,,, f(s) is nearly constant for s > s, ..
so while a straight transect is not optimal, it is close
to optimal since f{2)/f(s) is close to 1.0 for all s in
Table 2.

Table 2. Values of s that maximize f, with corresponding
angle 6, for spherical autocorrelation. The last
column compares a straight transect to the optimal
transect using the D-optimality criterion.

Range d O (degrees) |  f(s) J)If(s)
2 1.47 94 0.81 0.988
3 1.62 108 0.53 0.973
5 1.75 122 0.25 0.984
10 1.87 138 0.077 0.995

(iii) Exponential autocorrelation model

The third example shows that straight transects can
be optimal with the exponential autocorrelation given
by

The results in the upper right of Fig. 2 and
Table 3 show that straight transects are the optimal
transect shape for sampling a property described by an
exponential covariance function. Similar to the results
for the Gaussian model, the exponential model produces
the same shape of the transect independent of the range
of the autocorrelation function.

Fig. 2 demonstrates that straight transects may or
may not be optimal depending on the correlation
function. Fig. 3 shows the plots of Gaussian, spherical
and exponential autocorrelations, and by comparing the
slopes of these curves at the point (0, 1) to how close
straight transects come to being optimal, a pattern
emerges. First, the less negative the slope at (0, 1), the
less the data satisfying such an autocorrelation vary at
short distances. Hence, data satisfying the Gaussian
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Fig. 3. Comparison of Gaussian, spherical and exponential
correlation functions. All have an effective range equal to
three units.
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autocorrelation vary the least, and by Table 1, straight
transects perform the worst. Data satisfying a spherical
autocorrelation vary intermediately, and by Table 2,
straight transects are close to optimal. Data satisfying
exponential autocorrelation vary the most, and by Table
3, straight transects are optimal. That is, the more
variable the data at small scales, the better straight
transects perform.

This result is surprising because when
autocorrelation is present, the clustering of sample
locations would seem to be redundant, and so one
would guess that the best transect is a straight line.
Nonetheless, the superiority of meandering transects
over straight transects can occur with short or long
transects for both Gaussian and spherical
autocorrelations.

4. NEAR-OPTIMAL LONG TRANSECTS

For longer transects with more samples that cannot
be computed analytically, we use Equation (6) as a
fitness function for optimization algorithms, which is
used for the rest of this article. Long transects can be
defined by specifying all the interior angles, so finding
the D-optimal transect requires optimization over all
these angles. Since there are likely to be many local
optima, one can use either a global optimization
algorithm or a local optimization algorithm using a
number of initial starting values. Both approaches are
tested here. For global optimization, simulated
annealing is used, which is an algorithm that searches
the space of transects by repeatedly applying random
perturbations to the interior angles of a transect and
initially allowing a chance for inferior perturbations to
be kept. As the number of iterations increases, the
probability of keeping an inferior perturbation goes to
zero. Since random perturbations are used, results vary
from one solution to the next, which produces a
distribution of solutions about the true optimal solution.
Since finding an explicit function returning the
derivative of the D-optimality criterion is impractical
for long transects, and since evaluating the D-optimal
criterion is computationally inexpensive, local
optimization is performed by Powell’s algorithm, which
uses multiple function evaluations to determine a set
of linearly independent directions within the parameter
space to search for a minimum (see details in Gumley
2002).

Although one cannot prove a given transect design
optimal by these two algorithms, similar designs via
different methods provide confidence that a given
design is superior. Moreover, it is possible to prove that
straight transects are sub-optimal for the spherical and
Gaussian autocorrelations because these optimization
routines found designs with better fitness than the
straight transect (see Figs. 4 through 7.)

(i) Gaussian autocorrelation model

We examine the Gaussian autocorrelation closely
because in the short transect calculations done above,
straight transects performed the worst. For a transect
consisting of ten samples and a range equaling three, a
straight transect has fitness of 2.3 1e-5. The best design
found by simulated annealing has fitness 6.95e-4, as
shown on the left in Fig. 4, about 30 times better than
the straight transect. The best design found by Powell’s
algorithm also has a fitness 6.95e-4, as shown on the
right in Fig. 4, nearly identical to the simulated
annealing result. For both optimizations, transects are
considered to be on an infinite plane, so there are no
boundary effects.

Fig. 4 show transects with nearly equal interior
angles. Since such a pattern would be tedious to execute
precisely in the field, one might rather use the best
transect that has constant interior angles in a zigzag
pattern. Since this is now a single parameter
optimization, it is easy to solve, and the best angle is
109° with a fitness of 6.77e-4, only 2.6% worse than
the design found by the two optimization algorithms
mentioned above.

This zigzag pattern holds true for longer transects
of 20 samples. Fig. 5 shows designs found by simulated
annealing and Powell’s algorithm. Note that simulated
annealing has the zigzag pattern locally and has fitness
equaling 1.31 e-7, but has trouble maintaining the
zigzag pattern along the entire transect. Powell’s
algorithm produces a design that has nearly equal
interior angles, but by adjusting the angles towards the
endpoints, achieves the higher fitness of 1.60 e-7. A
separate one-dimensional optimization shows that a
design with constant interior angles of 110° has fitness
1.55e-7, only 3.1% lower than the design found by
Powell’s algorithm. A straight transect has fitness
4.37e-11, which is three orders of magnitude lower than
any of the other designs specified above.



Roger L. Bilisoly ef al. / Journal of the Indian Society of Agricultural Statistics 65(2) 2011 195-203 201

Fitness : 0.0006953 Range : 3
15 T T

Northing

10 15

o
(¢)]

Easting

Fitness : 0.0006953 Range : 3
15 T T

Northing

O 1 1
0 5 10 15

Easting

Fig. 4. Two transects derived with a Gaussian autocorrelation
function having a range of three. The transect in the left
graph is found by simulated annealing, and the transect in
the right graph is found by Powell’s algorithm. Both
transects consist of 10 samples.

(ii) Spherical autocorrelation model

Now we consider the spherical autocorrelation
function, again with a range of three. For ten samples,
simulated annealing and Powell’s algorithm find
essentially the same solution (Fig. 6). Again there is an
obvious pattern, and again the interior angle is nearly
constant, though instead of a zigzag, the transect bends
left twice then right twice. Since collecting data along
this transect design in the field would be tedious, it may
be of practical interest to find the optimal transect with
the restriction that interior angles are constant, and the
transect bends left twice then right twice. The best
transect obtained under this restriction has an interior
angle of 125° and a fitness of 5.53e-2, only 0.18% less
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Fig. 5. Two transects derived with Gaussian autocorrelation with
range of three. The transect in the left graph is found by
simulated annealing, and the transect in the right graph is
found by Powell’s algorithm. Both transects consist of 20
samples.

than the best case. A straight transect has a fitness of
4.73e-2, which is 15% less than optimal.

Finally, with a spherical autocorrelation function
and a transect length of 20 samples, simulated annealing
again has trouble finding the global pattern. Fig. 7
shows the transect found by Powell’s algorithm that
clearly has the same design as Fig. 6. The best design
for the 20 sample transect restricted so that the interior
angles are constant and satisfy the two left then two
right pattern, has an interior angle of 126° and fitness
2.16e-3, which is only 0.5% less than optimal. The
straight transect has fitness of 1.54e-3, which is 29%
less than optimal.
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Fig. 6. Two transects derived with spherical autocorrelation with
range of three. The transect in the left graph is found by
simulated annealing, and the transect in the right graph is
found by Powell’s algorithm. Both transects consist of 10
samples.
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Fig. 7. A sampling transect with 20 points designed using Powell’s
algorithm. This transect is calculated for samples defined
with a spherical autocorrelation with range of three.

5. CONCLUSION

Using both D-optimality and spatial sampling
design for point samples, it is possible to define a
fitness function for transects, one that minimizes the
prediction error at unsampled locations within a spatial
domain.

With this objective function to compare two
transects, simulated annealing and Powell’s algorithm
can find nearly optimal transects.

The optimal transect design depends on the
autocorrelation function of the region being sampled.
For exponential autocorrelation, straight transects are
optimal for three samples, and appear to be optimal for
ten and twenty samples. However, for spherical
autocorrelation, although straight transects are close to
optimal, they are inferior to a transect design that turns
left twice, then turns right twice by as much as 29%.
For Gaussian autocorrelations, straight transects are far
from optimal. The best design is a zigzag with an
alternating interior angle close to 109° and can provide
as much as a 99.97% improvement in the optimality
criterion over straight transects. These results for
spherical and Gaussian autocorrelations are surprising
since straight transects are the least clustered, and
intuition suggests that lack of clustering should produce
optimal transects.

For spherical and Gaussian autocorrelations, the
optimal transect design has roughly constant interior
angles. Although transects with precisely constant
interior angles are not optimal, they are close, and they
have the advantage of being easier to implement in the
field, especially if samples are collected on a moving
vehicle that can turn easily. A zigzag pattern has already
been field tested with favorable results in the literature,
so further field applications of non-straight sampling
transects should be contemplated.
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