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SUMMARY

For a long time satellite and survey data have been used to estimate crop and livestock production at county level. Typically
prediction is required for counties (small areas), and parametric models have been discussed extensively. The main goal in
small area estimation is to use models to ‘borrow strength’ from the ensemble because the direct estimates of small area
parameters are generally unreliable. But such models are not completely satisfactory. We address two issues concerning these
models. First, the combined estimates from all small areas do not usually match the value of the single estimate of the large
area, and benchmarking is desirable. Benchmarking is done by applying a constraint that will ensure that the ‘total’ of the
small areas matches the ‘grand total’. We use a Bayesian nested error regression model to develop a method to benchmark the
finite population means of small areas. Second, it is the practice to assume that the sampling variances are homogeneous, but
this may not be the case. Thus, in addition to benchmarking, we also show how to study heterogeneous sampling variances.
We apply our method to estimate the number of acres of corn and soybean under cultivation for twelve counties in lowa.

Keywords: Heterogeneous variances, Monte Carlo methods, Nested-error regression model, Posterior propriety, Small area
estimation.

1. INTRODUCTION

The United States Department of Agriculture has
been using satellite and survey data to estimate crop
and livestock production at the county level. Iwig
(1993) gave a detailed description of the National
Agricultural Statistics Service county estimation
program. Small area estimation has been used
extensively. Corn and soybeans are important crops
grown in the U.S., and they are of enormous support
to the U.S. economy.

The mission of the National Agricultural Statistics
Service (NASS), which is an agency under the U.S.
Department of Agriculture (USDA), is to provide
timely, accurate, and useful statistics in service to U.S.
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agriculture. To accomplish this objective, NASS
conducts hundreds of surveys and prepares over five
hundred reports every year covering virtually every
aspect of U.S. agriculture. NASS has initiated a
collaborative research program with the National
Institute of Statistical Sciences (NISS), which is an
independent research institute dedicated to
strengthening and serving the national statistics
community, to investigate whether improvements can
be made to their board’s analysis process. One of the
most important reports produced by NASS is the
monthly Crop Production Report. As an example, the
Crop Production Report contains forecasted corn yield
from August through November and the end-of-season
corn yield is published in January.
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Most of the corn grown in the United States comes
from the Corn Belt, which consists of ten major states;
Iowa is the largest corn-producing state in the U.S. lowa
is also among the major states for soybean production.
Producers in the U.S. feed most of the corn crop to
cattle, hogs, sheep and poultry. The rest is used for
processed food, industrial products such as cornstarch
and plastic, renewable energy and ethanol. Corn is the
U.S. largest crop, both in volume and value. lowa has
produced the largest corn crop over the current decade.
In an average year lowa produces more corn than most
countries (e.g., three times as much corn as Argentina).
Soybean and corn are grown in rotation in lowa.
Soybean is a healthy and rich source of protein for both
animals and humans (e.g., tofu). Nearly all soybeans are
processed into oils, many industrial products such as
lubricants, solvents, cleaners and paints. Soybeans are
also used for animal feed, biodiesel, cleaning product
and candles. Thus, it is important to study the
production of corn and soybean in lowa; in fact, corn
and soybeans are the bread basket of the U.S. NASS
has an enormous amount of data, but these data are
highly confidential and are kept under strict
surveillance. Thus, we are using the much-used data set
reported in Battese et al. (1988) as surrogates to study
the production of corn and soybeans.

This application concerns the estimation of areas
under corn and soybeans for each of twelve counties
in north-central lowa using farm-interview data in
conjunction with LANDSAT satellite data. Each county
was divided into area segments, and the areas under
corn and soybeans were ascertained for a sample of
segments by interviewing farm operators. While the
data are presented in Table 1 of BHF, we note that the
sample sizes and county sizes are Cerro Gordo (1, 545),
Hamilton (1, 566), Worth (1, 394), Humbolt (2, 424),
Franklin (3, 564), Pocahontas (3, 570), Winnebago (3,
402), Wright (3, 567), Webster (4, 687), Hancock (5,
569), Kossuth (5, 965) and Hardin (6, 556). Auxiliary
data in the form of number of pixels (a term used for
“picture elements” of about 0.45 hectares) classified as
corn and soybeans were also obtained for all the area
segments, including the sample segments, in each
county using the LANDSAT satellite readings. These
data were first analyzed by Battese et al. (1988), and
there are many other discussions of these data (e.g.,
Rashid and Nandram 1998). For each county we present

the sample (average, standard deviation) below. For
corn these summaries are

(106.8, -), (96.3, -), (76.1, -), (150.9, 40.5),
(158.6, 16.4), (102.5, 50.3),

(112.8, 10.5), (144.3, 52.0), (117.6, 23.5),
(109.4, 17.2), (110.3, 21.0), (114.8, 38.0)

and for soybeans these summaries are

(8.09, ), (106.0, -), (103.6, -), (35.2, 48.7),
(52.5,5.7), (118.7, 43.4),

(88.6, 30.5), (97.8, 54.0), (113.0, 21.3), (117.5, 15.7),
(117.8, 12.1), (89.8, 35.3)

Thus, for both corn and soybeans the sample
averages and sample standard deviations vary
considerably with similar patterns for corn and
soybeans. Without further evidence it may be
unreasonable to assume that the sampling variances are
equal (i.e., the assumption of homogeneity of sampling
variances seems questionable).

The problem of small area estimation is to provide
precise estimates or predictions of means or other
quantities of interest from areas whose sample sizes are
too small to yield reliable direct estimates. To overcome
this issue, models that would define ways to “borrow
strength” from the ensemble are used in estimation. But
when models are used, the combined estimates from all
the small areas do not often match the direct estimate
on the large area obtained when the small areas are
collapsed into a single area. To ensure that the
combined estimate matches the direct estimate, we
apply a constraint which forces the ‘total’ of the small
areas to match the ‘grand total’. This technique is called
benchmarking which shifts the small area estimators to
accommodate the benchmark constraint. It is true that
benchmarking offers some protection against possible
model failure, and it is likely to improve on the design-
based bias properties of small area estimators. This
makes the benchmarking technique desirable to
practitioners of model-assisted small area estimation.

However, it is not clear how benchmarking affects
precision of the small area estimators. In one small area
model the precision can increase, and in a different
model the precision can decrease; even in the same
model the precision can decrease for some areas and
increase for others. Nandram et al. (2010) have seen
an increase in precision for all areas under external
benchmarking. The reason for this is that under external
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benchmarking new information is incorporated in the
model due to the benchmarking constraint. Toto and
Nandram (2010) have found that under internal
benchmarking there is an increase in precision of the
small area estimators when survey weights are not used,
but there are increases for some areas and decreases for
others when survey weights are used. There are also
some theoretical results in both Nandram et al. (2010)
and Toto and Nandram (2010) that show increases in
precision when some of the model parameters are
known. In any case, the change in precision is
essentially small.

It is worth mentioning that benchmarking has been
a long standing problem in the time series context.
Hillmer and Trabelsi (1987) defined and developed a
sound statistical theory to provide a generalized
benchmarking procedure; for the historical development
of this benchmarking problem, see the references cited
in Hillmer and Trabelsi (1987); see also Trabelsi and
Hillmer (1990). Recently, Pfeffermann and Tiller (2006)
looked at this problem in small area estimation with
state-space models subject to benchmark constraints.
Specifically, they showed how to benchmark small-area
estimators, produced by fitting separate state-space
models, to aggregates of survey direct estimators within
a group of areas. See also Park et al. (2006) for an
interesting example on a mortality time series model in
which the estimated numbers of deaths for different
causes are constrained to add up to the overall number
of deaths for all causes. However, we consider a single
characteristic of several areas at a particular point in
time.

Benchmarking in small-area estimation at a single
time point is interesting in its own right. Within the
hierarchical Bayes approach, You et al. (2004) studied
benchmarked estimators for small area estimation based
on unmatched sampling and linking models proposed
by You and Rao (2002). They applied this approach to
under coverage estimation for the ten provinces across
Canada for the 1991 Canadian Census. Finally, we also
note that Dick (2001) used an empirical Bayes, as
opposed to a hierarchical Bayes, procedure to calibrate
the direct estimates for small areas to larger areas in
the 2001 Canadian Census. However, the mean squared
error approximation that Dick (2001) used did not
account for the calibration. Sampling variances can be
studied quite easily within the hierarchical Bayes
approach as is now well known.

Recently, there has been increased activity in
benchmarking small area estimates. Wang et al. (2008)
gave a characterization of the best linear unbiased
predictor (BLUP) for small area means under an area
level model that satisfies a benchmarking constraint and
minimizes the loss function criterion that all linear
unbiased predictors satisfy. They also presented an
alternative way to incorporate the benchmarking
constraint such that the BLUP estimator would have a
self-calibrated property (discussed in You and Rao
2002). Wang et al. (2008) used an approach in which
the weights are included in an augmented model. Their
proposed self-calibrated augmented model reduces bias
both at the overall and small area level. However, this
work does not predict finite population means, and so
their benchmarking constraint is different from ours.
Datta et al. (2009) developed a class of constrained
empirical Bayes estimators for area-level models. This
is a decision-theoretic approach and uses an empirical
Bayes analysis to benchmark small areas with only
area-level data. It is interesting that they also showed
that the standard raking procedure arises as a special
case from their procedure. Again, this work does not
use Bayesian predictive inference.

Motivated by the work of You and Rao (2002), we
have done some research in Bayesian predictive
inference for benchmarking finite population means.
Nandram ez al. (2010) benchmarked finite population
means to a specified value, and Toto and Nandram
(2010) benchmarked the finite population means to a
Horvitz-Thompson estimator of the entire finite
population mean. For the data on corn and soybeans,
the design is self-weighting, and so that it is not
appropriate to discuss survey weights.

The goal of this paper is to make inference about
the finite population mean of the it county in lowa,
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values Y, under a nested-error regression model. To
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simple random sampling, a design-consistent estimator

| ny.
_ i7's ... .
of Y is Y. = 2 . So, a practitioner might want
i=1

to use Y, to predict Y . It would be reasonable to

expect that Y = Y, - Hence, this is a possible
benchmarking constraint. We will denote our

benchmark constraint as Y = Y, or equivalently,

18 1h &

NZ2Y ~ XY (1)
i=1j=1 i=1j=1

where it should be understood that in the left-hand side

(LHS) of (1), Yip i=1,..,Lj=1,.., n, are observed,

and Yip i=1,..,5Lj= n,+ 1, ..., Nl., are to be predicted.

Statisticians have been working on the one-way
random effects model with different sampling variances
for a long time; see Rao (1970) for the general fixed
effects linear model with unequal sampling variances,
Rao (1980) for a method to estimate the common mean
of normal populations with unequal sampling variances,
and Rao ef al. (1981) for a study of many methods to
estimate all parameters with unequal sampling
variances. Nandram and Sedransk (1993) used a
sequence of surveys to estimate the finite population
mean of the final occasion. The work of Nandram and
Sedransk (1993) was motivated by a similar work of
Ghosh and Meeden (1986) who used equal sampling
variances. Nandram and Sedransk (1993) model the
unequal sampling variances using an inverse gamma
distribution within the empirical Bayes framework.
Other empirical Bayes methods were discussed by
Kleffe and Rao (1992), Arora et al. (1997) and Arora
and Lahiri (1997). While these authors studied the point
estimators (best linear unbiased predictors) and their
standard errors, Nandram (1999) discussed how to
obtain empirical Bayes confidence intervals for small
area means. More recently there has been a very
interesting approach to this problem (Hedeker et al.
2008). These authors actually model mean response and
the sampling variances using two correlated mixed
effects models. They consider a longitudinal model with
a relatively large number of time points (corresponding
to the number of individuals sampled within an area).
However, their model will be dificult to realize in small
areas.

The rest of the paper is organized as follows. In
Section 2, we describe the benchmarking Bayesian
model under homogeneous sampling variances. We
present key results on the joint density of the
benchmarking Bayesian model. We compare the
inference from the nonbenchmarking and the
benchmarking models. In Section 3, we describe the
benchmarking Bayesian model under heterogeneous
sampling variances. We discuss the griddy Gibbs
sampler to fit the nonbenchmarking model, and use the
sampling importance resampling algorithm to
subsample iterates from the nonbenchmarking model to
fit the benchmarking model. We compare inference
from the nonbenchmarking and the benchmarking
models. In Section 4, we apply our methods to the
LANDSAT satellite data, and we compare posterior
inference for the nonbenchmarking model and
benchmarking model under homogeneity and
heterogeneity. Section 5 has concluding remarks.

2. HOMOGENEOUS SAMPLING VARIANCE

In this section, we describe our proposed method
to estimate finite population means under the nested-
error regression model using the Bayesian
benchmarking approach. We present three key results.
We describe the joint density of all values conditional
on all parameters. As we will see, this joint density turns
out to be multivariate normal, which makes it possible
to compare the nonbenchmarking and benchmarking
models. We also show that the joint posterior density
is proper. Lastly, we describe the distribution of the
finite population means under the model conditional on
all parameters. Also, the proof of propriety of the joint
posterior density gives a simple procedure for obtaining
samples of the parameters to be used in obtaining
samples of the finite population mean.

Let us begin with some basic notations used
throughout the section. We will denote by 1, a column
vector of size k with each of its elements being unity.
Also, we denote the identity matrix of size £ by I, and
the » X s matrix with each of its elements being unity

by Jrs. If r =, we write J .

Assume that there are / counties (small areas). For
the i small area, i = 1, 2, ..., [, let N. and n; be the
fixed known population and the sample sizes,

n

respectively. So, f; = N i=1,2, .., [ are known
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|
sampling fractions. Letting n = Zni be the total
i=1
|
sample size and N = ZNI. be the total population size,
i=1

. . . n
the overall sampling fraction is given by f= N Let

y,; denote the value for the jth unit within the i area,
=1, .., Lj=1,.., N. We assume thatyl.j, i=l,..0LjJ

= 1, .., n, are observed, and write Yo =

(ysl,...,ys1 )with Vs = 0o B ori=1.2. ..
l. Since n, values are observed, the values of the
remaining N, — n, units are unknown, and we write the

vector of unobserved values as y = (y’nsl, vy y’n . ),

with Y o = (yl.’ 17 yi,N,-)’ fori=1,2, .1

= (y;,yns(,\,)/) . where Ypgny is Ypg
Ith

Let y(N)

excluding yj N, from the /™ area. That is, Ynsny =

= (qu +1 0 YN, )/ for i

(M,q+l“”M,NI—1y'

Also, let My = X B +z v where X, is the p X 1 vector

(y,nsl' ""y,nq(N)),With ynSI

=1, 2, cees /- l, and ynﬁ(N) =

of covariates for the j " unit in the " area for i = 1, 2,
L Lj= . N, and z; is the / x 1 vector with
umty on the it entry for i —1 2,.

p= ("(N)’, HiN ) where Bony = (ps,an(N) )/ and

., [. Moreover, write

B, = (u'slu% )/ with l‘s = (l“il""’luinl) for

P=1,2, . Land Py = (Mog e Mog ) With Bog

= (ﬂi,nl+11---:ﬂi . ) fori=1,2, .. [ -1, and

’

Mg = (‘“I,nI +1""”uI,NI —l)'

Let X be the n X p design matrix of covariates

for the sampled observations y, and Z_ be the n x /

block diagonal matrix with 1, on the i
i=1,2, ..., l. Moreover, let X be the (N — n) X p matrix
of covariates for the nonsampled observations y, , and

Z, be the (N — n) x [ block diagonal matrix with

diagonal,

1, _,, on the ith

denote the (N — 1 — n) X p matrix of covariates for the

diagonal, i =1, 2, ..., /. Similarly,

nonsampled observations without y; y, by an(N) ’ and

the (N — 1 — n) x [ corresponding block diagonal matrix

with 1 on the /! diagonal entry, i =1, 2, ..., /— 1, and

N, —-n,

We write

on the /" diagonal entry by Zns(N) .

In-n-

the sample mean for the i area as Ye = Yij» and
| .

14 1 !
— Zx”, X and X =
3 n j=1 Ni -
14
N 2 Xjj as the p x 1 vectors of averages of the it
i j=1
sample, nonsample, and small area population
covariates, respectively.
2.1 Models

Our nonbenchmarking (NBM) model is a Bayesian
version of the small area estimation model of Battese
et al. (1988) for finite population mean that
accommodates covariates at the unit level. The
Bayesian nonbenchmarking (NBM) model is given by

Y ‘li,v,cr2 ind Normal (Xi'jﬂ-i-vi,az)
i=lLbj=1,.N, Q)

ylpo? i@ Normal{O{lijo-Z} 3)

D(B,O'Z,p)x—z,az>0,and0<p<1 4)

where p is the intra-class correlation within areas and
is the same for each area. Using Bayes’ theorem in
(2)-(4), the joint posterior density of the
nonbenchmarking model is

1+(n+l)/2 /2
1 1-
,,(v,,;,az,mys)«(;j [_p)

0

(44 (5 %))
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1-p) - _ \2
+A| == ( - B) _ o 1
I( P J L yI'N| _(N_n)ys_lN—n Yns
n ) Lemma 2.1 is a simple result that incorporates the
+ [(y” A )— (Xij - X )’B} benchmark constraint into the distribution of the data
j=1 ' ' given the parameters. A proof is given in the Appendix.
Note that from the resulting density in Lemma 2.1, with
P .
where A. = Mmoo for i =1, 2, ..., [. It can be

" opn+(1-p)
shown that this joint posterior density is proper.
To obtain more reliable estimators, it is desirable

to benchmark the estimators of the 7| ,i=1,2, .., 1 So,

we now discuss the benchmarking model. It is obtained
by incorporating the benchmarking constraint

1 LN 140
N 2 2 yij = EZ 2 yij to the nonbenchmarking
i=1j=1 i=1j=1

model. The resulting adjusted model, which we describe
as the Bayesian benchmarking (BM) model, is given by:

yij |B,V,O'2 ind Normal (Xijﬁ +V, ,0'2),

1 LN 1 LA
EDDUEE AR ®
i=1j=1 i=1j=1
vl o, oiid Normal[O,(Ljaz} 0<p<1l (6)
1-p
o(p, 02, p) = %,0'2>0 (7)

To incorporate the benchmarking constraint,
throughout we condition on ¢ = 0.

Lemma 2.1 Under the benchmarking model,
y 1L 14
conditional on ¢ = WZ 2 Yi _EZ 2 Yij = 0,

i=1j=1 i=1j=1

2 4= 1
YN In,o%, ¢ =0 ~N0rmal(u(N)+ f(m]

('L‘I,Nl + a'u(N))a, o? (IN_1 —D)]

1 1.,
H(l_ f)J, _NJ(N—l—n)
D =
_iJ(N—l—n) f 1 J
NN N -n (N-1-n)

the benchmark constraint caused the y.’s to be
correlated. Henceforth, it is convenient to drop the
conditioning on ¢ = 0 although it must be understood
that this conditioning exists.

Applying the marginal distribution property of the
multivariate normal density on Lemma 2.1, we find that

yS|V,|3,0'2 follows a normal distribution with

E|ylv..0%] = Cp+C,v and
Var| y |v.p.0° | = o’z[ln—%(l— f)Jn} (8)

_ 1 1.
where C_= [In_ﬁ(l_ f)Jn}xs+[ﬁ‘]N—n}xns

_ 1 1
and C_= [In—ﬁ(l— f)Jn}ZS+[NJN_n}ZHS

From (8) the likelihood function is given by

p(voIv.B.0% p)

(] ool el e remrey

o

-1
1
(I nm - f)Jnj (Y~ [CyB+ czv])}}
Now, applying Bayes’ theorem on p (ys|v,|3,0'2, ,0)

with the distribution of V|0'2, p in (6), and prior
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distribution given in (7), we get the joint posterior
density

1+(n+l)/2 1/2
2 1 1-p
z\V,B,0%, ply. )<| —= _—

X exp {—2%2(1_7'0] [(v -BIC/A (y,-C,B))

[1,+C,AC, |(v-BCLA(y,- Cxl‘)ﬂ}
X exp {—%{1_7/))[(3’3_ Cxﬁ),

20
(A B ACZB_lcle) (ys B CXB):|}

where

1-p 1 -
B=I/+ C;CAZ,Az[(TJ(In—E(l—f)Jn):| .

and C_and C_ are as defined in (8).

Lemma 2.2 Under the benchmarking model,
7Z'(V, B, o2, p|ys) is proper.

Lemma 2.2 shows that the addition of the
benchmarking constraint to the model does not affect
the propriety of the joint posterior distribution. To prove
Lemma 2.2, we use the multiplication rule

#(v.B,0%, ply) = 7, (vIB, 0%, p.y,)
7, (Blo? p.¥5) (0210, ¥s) 7,(P1Ys)
and show that 7, (vl[i,az,p, ys), 7, (ﬁlo'z.,O, ys),

T, (0'2 | o, ys) and T (,0 | ys), are all proper densities.
A proof is given in the Appendix.

To make posterior inferences about Y_i(i =1, ..,

[), given the sample observations Y, we take samples
from the distribution \7i|ys. Theorem 2.1 below gives

us the distribution of the Y_I 1y, -

Theorem 2.1 Under the benchmarking model,

p(vilys) - J.D(Vily, V'B'O-z)” (V'B'O-z |ys)
dvdpdo?, i=1,...1  (9)

where

Vi|y1V1Ba 62

~ Normal {f|7§ +(1_ fi)inﬁ,l}-l—(l_ fi)zi’v+ A,

0_2
o-a- fi)vi}

4

Ai = _fi) {ys_ynsl3 _ﬁ(l’l\l—nzns) V}

N, —n,

,i=1,..,1
N —-n

and Vl.=1—

Proof of Theorem 2.1
First, note that
p(%lysv.b.02 0) =p(¥lygv.p.0%)
and Y_I can be written as
1, _ _
Y = Wi(”iys, F(N=1) V)

1., , .
W(lni ySI +1Ni—f} ynSI ) i=1,2,..1
|

Using the conditional distribution property of the
multivariate normal density in Lemma 2.1,

V.[‘.O'z.yS has a multivariate normal

y

ns(N)‘

distribution with

E|:yns(N) |V7I370-27ys:|

o 1 N-1-n
N slN—l—n+[xns(N)_(N_n)‘]N—n xnsjﬂ
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and

2
Var[yns(N) ‘V,B, o°, ys}

_ [uN_l_n—(ﬁ}lN_l—n]

It follows that for i =1, ...,/ — 1,

7i‘yS.V,B, o> ~ Normal { fiVSI +(1-f) Y+ B)ﬁ[;

o? Ni—n
+B%v, Wi(l_ fi)[l— N_n J}

where

1, 1(N-n) |
N R0 e R LA
|

and

_ 1. 1N-n)
BZI N Wi(:l'Ni—r}ZnsI )_WI[ |\;_n J(]'N—nzns)

It is now easy to show that, using the benchmark

constraint together with the distributions of VI ‘y oViB.

0'2, i=1,i=1,..,1-1, \7| ‘ys,v,ﬁ, o has the same
distributional form.

After some simplification, we get

Vi‘ys,v,ﬂ, o> ~ Normal { fiVSI +(1- fi)insllﬁ

2
+(1-f)Z'v+A, %(1— fi)\/i}

— 1 ,
where 4. = (1 - f) [ys—xnsﬂ— N _n(lN—nZns)VJ

Finally, note that this proof also shows that
p(vilys) is proper because p(\?l |ys,v,|3,0'2) is a

probability density, and by Lemma 2.2 ﬂ(v, B, o? ly s)
is proper.

We now discuss the effects of the benchmarking.
Note as compared to Theorem 2.1 that under the
nonbenchmarking model

%y v.B. & ~ Normal { 3, + 0 )% B

’ 0-2
+@1-f)zv, Wi(l— fi)}

First, there is an overall adjustment Ai’ i=1,2, ...
to the expected value in the distribution of VI ‘y oV.B.

o’ under the benchmarking model, with respect to the
nonbenchmarking model. This adjustment 4. is different
for each small area, since f; depends on the sample and
population sizes in each area, unlike Nandram et al.
(2010), where the overall adjustment is constant
throughout all areas. Moreover, observe that in the
benchmarking model, the variance in each small area
gets reduced by different amounts Vei=12, .., l.
However, these small gains in precision might disappear
for some areas when the variabilities of B, v and

are incorporated.
2.2 Computations

To make inference about \7| |y, our approach is to
obtain samples from the posterior distribution
v, B, o2, Plys. and the distribution of 7i|ys, v, B, o2
and combine these samples to make inferences about
the finite population means. The proof of propriety of
the joint posterior density provided a prescription of

how to draw samples from the posterior density. Note
that by the multiplication rule,

ﬂ(V,B,O'Z,myS) - ”1(V|B'O-2'p' ys)

”Z(Blaz’p’ys) ”S(O-ZIp’ys) ”4(p|ys)
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and since the conditional densities 7, (V|B, o2, 0, ys),

ﬂ2<ﬁ|0'2,,0,y5) and 753(0'2|p,y5)are known

distributions, we can draw samples from

7[( v, B, 0'2, ,Olys) using the composition method. The
respective densities are shown in the proof of Lemma
2.2 in the Appendix. We would first draw samples from
Plyy. There is no need for a Markov Chain Monte

Carlo (MCMC) procedure to do this computation. One
can simply use a grid method to draw a sample from

the distribution of p|Y,. It is convenient to use the grid

method because p is bounded in the interval (0,1), and
the function 71'4( plys) is easy to compute for each

£, 0 < p<1. With each of these samples of p, we draw

a sample from 0'2| P,Y, - Then, with the resulting pair

of values of p and 02, we draw a sample from

|3|0'2, P, Y, - Also, with the sampled values of p, o’ and

B. draw values of v from v||3,0'2,p,ys. We apply

this algorithm to draw samples in both the NBM and
BM models. Once the parameters are obtained, we use
these values to draw values of the finite population
means for each of the areas from the distribution of

i 2 . _ .
Ylys v.p,0% i=1,..7-1 and the benchmarking

constraint to get \7| To facilitate inference, we have

generated M =10,000 iterates using our sampling
method.

3. HETEROGENEOUS SAMPLINGVARIANCES

We describe how to benchmark the finite
population means when the sample variances are
unequal (heterogeneity). We compare the
nonbenchmarking and the benchmarking models under
heterogeneity with the corresponding ones under
homogeneity. The problem with heterogeneous
variances is much more complex than the one with
homogeneity. Thus, we fit the benchmarking model
with heterogeneity using the sampling importance
resampling (SIR) algorithm to subsample samples
drawn from the nonbenchmarking model with
homogeneity. Even the nonbenchmarking model with

heterogeneity is difficult to fit; we use the griddy Gibbs
sampler (Ritter and Tanner 1992).

3.1 Models

For i =1, ...,y j =1, ..., N, the Bayesian
nonbenchmarking (NBM) model is

;i IB.v. o ind Normal(xi’jﬂ+vi,cri2) (10)
v & i Normal (0, 52) (11)
o-i‘2|a,62 iid Gamma (a, (0(+1)/52) (12)
1 2
7|lo, ’52 oc—,OC,5 >0 (13)
(o3, %) 521+ a)?

In (12) we have centered the gamma density on
its mode which is taken to be 52, the variance of the v,
(11). This parsimony is useful in small area estimation
because we have essentially reduced the number of
parameters by one; see Nandram and Choi (2002) for
a similar centering procedure for the nonignorable
nonresponse problem.

The prior distribution in (13) is obtained as
follows. We take independent prior distributions for
o, p and & with p(e) = 1/(1 + @)%, &> 0, a proper
density, p(p) =1 for B, and p(§2) = 1/52, 5> 0; the
two latter densities being improper. We choose the prior
density for « to be proper (see Daniels 1999 and
Gelman 2006) because it is the most difficult parameter

to estimate. Note that B in (10) is closely associated
with the data, and & isin (11) and (12). These features
can help to make the joint posterior density of all the
parameters proper. However, a practitioner can use

independent proper diffuse priors for g and & to
ensure proper posterior density. This can be

accomplished as follows. Letting f} denote the least
squares estimator of § in (10) withv,=0,7=1, ...,/
and ¥ its estimated covariance matrix. Then, we can

take B ~ Normal (ﬁ,Koﬁ)) with &, = 100. Also,
. 32 [N . ~ n

letting 62 = Zizlvi/(l—l) with ¢ = ¥

(yij —X’ijf})/ni ,i=1, .., [, one can take &% ~ Inverse-

Gamma (1 /2,1 §2/2) with I = 1. This is just a minor
change to our algorithm.



200 |

Balgobin Nandram et al. / Journal of the Indian Society of Agricultural Statistics 64(2) 2010 191-207

Fori =1, ...,.;j =1, ..,
benchmarking (BM) model is

N,, the Bayesian
Yij |l3,v,0'i2 ind Normal(x’i.ﬂ+vi,o-i2),

—ZZV = Zzyu (14)

| =1j=1 | =1j=1
v,| 6°id Normal (0, 5%) (15)
0?|e, 82 1 Gamma (a, (0(+1)/52) (16)
1 2
(e, p,6%) o ————=., 0, 6 >0 (17)
(e.5%) 521+ a)?

Note again that the difference between the two
models is the inclusion of the benchmarking constraint

¢——22y Ly

2 2 Yij - Note specifically that
| =1j=1 | =1j=1

the joint prior distribution 7( v, 62, B,S 2 a)of v, o,

i 52, « is the same under the nonbenchmarking and
the benchmarking models.

We proceed in exactly the same way as in the
homogeneous models to obtain the conditional
distribution of y given ¢ = 0. For i =1, ..., [; j =1, ...,

1et,u = X B tv, and D = dlagonal(O'. Ji=1, .,
l,] =1, ...,

part Y, comes first and the nonsample part y . comes

N)). Again, we arrange y such that the sample

second. For convenience, we will not distinguish
between the nonsample (ns) with and without the

observation )/ N, as it will be clear when it is written.

Let p, p . D and D, _have similar meanings. Finally,

we define three quantities. Let l//2 = 2: :][{(N/n - 1)2

- 1in,+NJ 0'i2/0'|2. Also, let b  be defined by b =

(N/n—l)(O'./O'l)/y/,i=1 e I3 7=1, .., n;and bns by
b,=—(c/0 )/l//, L.,l=-1Lj=n+1.,N,i=1l
J=n, +1 - N — 1. Fmally,

e (CTOD YIS YIRS Y I AN VL

Now using only (14) after extensive algebraic
manipulation, we have shown that

2 _
YsIB, 6", =0 ~Normal {p +dD.b,,

D, (Ig—bp,) D} (18)

and

ynslysll3'627 ¢= 0

d-b.D (y,~p) D, b
1-bb_

b_b’
D _|I _L,ns D (19)
ns[ ns 1_bsst ns}

To avoid confusion, note that Y, y is not dropped
.. Tl
from the procedure, and conditional on

ns_ns

~ Normal {“ns +

I-1 N

N, - ZZV.J ZV.J

9=0. Y, =
i=1j=1

Thus, conditional on ys,ﬁ,02¢ =0, y,,Nl
inherits all its properties from (19).

As for the nonbenchmarking model the
corresponding equations have obvious forms

yB.6°~Normal {u_, D } (20)
and

Y poB.6%~Normal {n . D _} 21

The distributions (20) and (21) are much simpler
than (18) and (19) corresponding to the benchmarking.

Thus, under the nonbenchmarking model the joint
posterior density is

7Z'(V,62, B, 5% a ly,)

o< p(yg|v,a®, B) z(v, 6% B, 6%, @)

and under the benchmarking model the joint posterior
density is

(v, 6%, B,6% aly,, ¢=0)

< p(y IV, 6%, B,¢=0) 7 (v,6°,B,6% )
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It is worth noting that ratio of two posterior
densities does not depend on (v, 2, B, 52, ) . That
is, the ratio is

Py Iv.6% B9 =0)
p(y¢Iv.6°.B)

R(vV, 62, B) =<

R(V,GZ,B) is used in the computations for

subsampling.
3.2 Computations

Because the joint posterior density 7( v, 62, B 52,

a | Yy, ¢ = 0) under the benchmarking model is very

complex we do not sample it directly. The complexity
arises because the conditional posterior densities of the
0'i2 are not simple. Thus, our computations have two
major steps. First, we fit the much simpler posterior
density under the nonbenchmarking model. Second, we
use the SIR algorithm to subsample the samples drawn
from the fit of the nonbenchmarking model.

Specifically, we draw 100,000 samples from the
nonbenchmarking model. Then, we infer about the
finite population means under the nonbenchmarking
model by taking a random sample of 10,000 of these.
To make inference under the benchmarking model, we
subsample 10,000 samples from the 100,000 samples

already drawn using R(v, 62, B) - [We take samples of
size 10,000 in both cases to obtain similar numerical
standard errors.] Thus, we describe these two steps in
the computations.

Looking to run the Gibbs sampler to fit the joint
posterior density under the nonbenchmarking model, we
observe that only the conditional posterior density of

o is nonstandard. Letting 4 = l_l:zlo'i_2 and B =

2:=10i_2 , the conditional posterior density of « is

I
2 2y | (@+D)/8%)*
p(e|6?, 5°) { . }

1

+0!2

A% Vexp{-B(a+ 1)/6%} . a>0 (22)

To draw a random value from p(a|62, 52) in

(22), we transform & to 8= o/(« + 1) which brings 6,
in the interval (0, 1). Then, we draw 6 using a grid,
dividing (0, 1) into 100 subintervals of equal widths.
This allows us to approximate the probability density
function by a probability mass function which is easy
to sample. When all the conditional posterior densities
are drawn in turn, we get a griddy Gibbs sampler (Ritter
and Tanner 1992).

When we ran the griddy sampler, we use 1,000
iterates as a “burn in” and we picked every fifth iterate
to remove the autocorrelation. Thus, we have a random
sample of 100,000 iterates from the joint posterior
density of the nonbenchmarking model. To make
inference about the nonbenchmarking model, we
subsample a random sample of 10,000 iterates.
However, to make inference about the benchmarking
model, we subsample using the SIR algorithm.

Let Q = (v,cz,p,é‘z,a) denote the set of all

parameters, and let M = 100,000. Letting € (h), h=1,

... M we compute R(v(h) g2 ﬁ(h)) . Then, we take
a sample of size M =10,000 without replacement with

probabilities proportional to the R(v(, g2, gh)).

This is a random sample of size M from the joint
posterior density under the benchmarking model.
Bayesian predictive inference of the finite population
means of each county is now straight forward.

4. ANALYSIS OF LANDSAT SATELLITE DATA

We compare the nonbenchmarking model and the
benchmarking model under homogeneity and
heterogeneity using both corn data and soybeans data.

In this example, we will implement the two models
(NBM and BM) to predict the mean corn and the mean
soybean acres in 12 counties in north central lowa. It
was determined that there is a linear association
between the number of hectares of corn (soybean) and
the number of pixels classified as corn and soybean for
each segment obtained from satellite readings. Hence,
we model the number of hectares of corn (soybean)
using the number of pixels of corn and soybean as the
covariates. Information from 37 sampled segments in
the 12 counties were obtained from survey and satellite
data. The number of hectares of corn (soybean) and the
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number of pixels classified as corn and soybean are
available for each sample segment. Additional
information such as the total number of segments in
each county (the population size in each county), and
the population mean pixels of corn and soybean were
provided. Using these information, we estimate the
mean corn and soybean hectares for each county using
the two models. We summarize the results using the
posterior mean (PM) and posterior standard deviation
(PSD); we do not present the 95% credible intervals
because the posterior distributions of the finite
population means are approximately normally
distributed. We present in Table 1 the comparison of
the posterior inferences from the NBM and BM models
for the corn and soybean hectares data.

Table 1(b) shows that the posterior means from the
two models are mostly the same, with a slight shifting
in the posterior means from the NBM model to the BM
model. The results also show that there is a little more
precision in the BM model than in the NBM model.
Observe that the posterior standard deviations are all
smaller under the BM model than under the NBM
model in both the corn and soybean results. However,
note that for Hardin county the PSD is larger for the
BM model than the NBM model (5.61versus 5.73).
These decreases in the PSDs are reflected in the 95%
credible intervals. From Table 1, the means for the corn
(soybean) data are

|
>80 '(B'\") = 120.32(95.35)

[

'(NB'\") = 119.67(96.87)

|
but 2

Notice that the value of the overall posterior mean
from the BM model is equal to the sample mean of the
data, but this is not true for the NBM model. This
observation reflects the use of the benchmarking
constraint. We have also looked at the distance between

the direct estimators )_/I and the PMI. from both models.

As a means, we computed

|
SHR= |¥ (PM. —y%)z
i=1

For the corn data, SHR(NBM) = 81.05 and SHR(BM)
=80.84. On the other hand, for the soybean data,
SHR(NB =92.81 and SHR p,, = 91.03. In both data,
we have found that the BM model has a slightly lower
shrinkage than the NBM model. This slight difference
may again be attributed to the addition of the
benchmarking constraint in the BM model.

With regards to the data on corn and soybeans
(Battese et al. 1988), we found that it is difficult to use
twelve different sampling variances (one for each
county). There is instability because the sample sizes
are all smaller than 6 with three of them being just one.
So we decided to block the sampling variances. It is
reasonable to assume that the sampling variances are
proportional to the population sizes. Therefore, under
a self-weighting design, we can expect that the
population sizes are proportional to the sample sizes;
so we choose the sample variances to be roughly
proportional to the sample sizes. Thus, we have chosen
four different blocks (counties 1-3, counties 4-6,
counties 7-9, counties 10-12). We have run our
computations according to this adjusted specification.

We provide a similar analysis as for the
homogeneous scenario. From Table 1(a), the means for
the corn (soybean) data are

2': i |(BM)

i=1

= 120.62(96.75)

= 119.51(99.41)

Notice that the value of the overall posterior mean from
the BM model is equal to the sample mean of the data,
but this is not true for the NBM model. This
observation reflects the use of the benchmarking
constraint. We have also looked at the distance between

the direct estimators )_/I and the PMI. from both models.

I
As a means, we computed SHR = \/ 2(PMi - 7% )2 .
i=1
For the corn data, SHR ) ,=85.89 and SHR
=85.26. On the other hand, for the soybean éata

SHR (NBM) = 113.41 and SHR BM) 107.23. Also, the
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Table 1. Comparisons of the nonbenchmarking (NBM) and benchmarking (BM) models using posterior means (PM)
and the posterior standard deviations (PSD) for the finite population mean of corn and soybeans by county (cty)
under the (a) homogeneous model and (b) heterogeneous model
Corn Soybean
NBM BM NBM BM
Cty PM PSD PM PSD PM PSD PM PSD
a. Homogeneity
1 123.49 9.32 124.15 8.53 78.82 11.30 77.56 10.35
2 124.27 9.33 124.91 8.41 94.29 10.97 92.89 10.17
3 110.89 10.01 111.55 9.50 87.72 10.80 86.07 10.20
4 114.07 8.50 114.74 7.77 81.97 9.91 80.48 9.61
5 138.64 8.47 139.41 7.89 67.02 7.87 65.74 7.45
6 109.76 7.54 110.31 6.91 113.83 7.31 112.24 6.83
7 116.08 7.24 116.44 6.80 97.44 7.53 95.82 7.46
8 122.80 7.29 123.55 6.58 111.97 7.49 110.37 7.15
9 112.14 6.94 112.84 6.32 110.00 6.47 108.50 6.08
10 123.86 6.23 124.63 5.96 100.42 6.18 98.74 6.12
11 111.55 6.91 112.21 6.47 118.27 6.39 116.66 6.13
12 131.16 5.90 131.76 5.73 75.16 5.61 73.50 5.73
b. Heterogeneity
1 120.98 7.94 122.18 6.68 88.46 10.52 85.26 9.36
2 122.27 7.74 123.55 6.82 94.56 10.23 91.33 9.75
3 115.50 8.22 116.81 7.76 96.19 10.12 93.02 9.58
4 116.41 7.19 118.12 6.57 101.04 11.31 95.23 10.74
5 131.70 7.92 133.40 6.99 86.24 11.10 80.27 10.21
6 105.72 7.00 107.38 6.14 116.31 8.78 110.46 9.28
7 117.68 6.34 118.66 5.45 91.03 8.69 89.76 7.84
8 121.85 6.25 122.82 5.09 108.02 8.21 106.72 7.03
9 108.40 6.59 109.17 5.74 114.96 7.39 113.47 6.69
10 125.74 5.99 126.46 4.83 97.72 7.72 96.94 6.45
11 117.65 7.09 118.46 6.05 104.70 10.57 103.84 9.71
12 131.67 5.74 132.35 4.74 82.64 8.05 81.69 6.92

PSDs are slightly smaller for the BM model with the
PSD for soybeans in Pocahontas county under the BM
model larger than under the NBM model (8.78 versus
9.28).

Again the differences between the BM and NBM
models are similar under heterogeneity. There is an
increase in PM from NBM to BM, and there is a
decrease in PSD from NBM to BM. As for the

homogeneous models, this is true for both corn and
soybeans. There are diierences in the homogeneous and
heterogeneous models. The PSD’s for corn are almost
always smaller under the heterogeneous model.
However, for soybeans there are some counties with
larger PSDs under the heterogeneous model. For
soybeans we observe an important difference between
the PMs for the homogeneous and heterogeneous
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benchmarking models. The posterior means are higher
for some counties and lower for others by quite a bit.
We have calculated the percent changes for the
heterogeneous model over the homogeneous model for
each county. There are increases for counties 1, 2, 3,
4,5,6,9, 12 which are 12.2, 0.3, 9.7, 23.3, 28.7, 2.2,
4.5, 10.0 and decreases for counties 8, 9, 10, 11 which
are 6.6, 3.5, 2.7, 11.5. The changes for corn are
relatively small.

5. SUMMARY AND CONCLUSION

We have developed a Bayesian benchmarking
approach to estimate finite population means of small
areas under a nested-error regression model. We have
discussed two important scenarios, one in which there
is a common sampling variance (homogeneity) and the
other in which there are unequal sampling variances
(heterogeneity). It is important to consider a
benchmarking model with heterogeneity because
unknown to the investigator it could very well be the
case for small areas that the sampling variances are
unequal, which can make a difference in inference
about the finite population means for both corn and
soybeans.

We have obtained some theoretical results for the
homogeneous scenario. We also found a closed form
for the distribution of the finite population means,
which makes it easy to generate samples from its
distribution. The proof of the propriety of the posterior
distribution also showed a simple procedure to obtain
samples from the posterior distribution of the
parameters. Because of this, we do not have to use a
Markov chain Monte Carlo method to make inferences;
we simply use the composition method which provides
random samples. Relative to the nonbenchmarking
model, we found that there is a shift in the posterior
densities of the finite population means. Moreover, the
results showed a slight increase in the precision for the
estimate of the finite population mean in each area
under the BM model; this increased precision is
observed in the slightly narrower 95% credible intervals
in the benchmarking model.

The models with heterogeneity of sampling
variances are more complex. Unlike the scenario with
homogeneous variance, we were not able to use random
samples to fit these models. Instead we have used the

griddy Gibbs sampler to fit the nonbenchmarking model
and coupled with the SIR algorithm to fit the
benchmarking model. We have considered blocking the
sampling variances for the application (i.e., partition the
counties so that within the same partition set there is a
single sampling variance). Blocking does help to reduce
the errors of the predictions for corn and not so much
for soybeans especially for the larger samples. The
predictions for corn are more similar to the
homogeneous scenario but those for soybeans are more
different.

Our research on the nested error regression model
currently looks atrobustness. It is necessary to further
study the heterogeneity of the sampling variances; this
has been a long standing problem. Future work on the
nested error regression model to address the
assumptions of linearity of the expected response and
the normality of the sampling errors and random effects
are important goals in small area estimation. These
works will be useful to predict crop productions for
small counties.
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APPENDIX

Proofs of Lemma 2.1 and Lemma 2.2

Lemma 2.1

First, consider the slightly simpler notation in
which

Z |eq. 0% ' Normal (. 07), k= 1,2, ... N
1 N l n

subject to the constraint — 2 z = — 2 z, . Make
N3 Ny=1

19 18
the transformation ¢ = — - — with Z,,
¢ N glzk n glzk :

. Zy,_ untransformed. We can show that the jacobian

is NV, and

1 N/2
p(Zl, e ZN_]’ ¢= Olu’ 0-2) = N( 2}
2no

k=1

20'2 k=1 K n

N-1 2
- Zk_aNJ

k=n+1
n ‘N N-1
WhereZN=[2(——1)ZkJ—( 2 ZkJ
k=1 n k=n+1

After some algebraic manipulation, we have
Z g la 0% ¢=0~Normal, (9, 0*(I,,_, — D)), where

1 , . _
0 = @+ f(N—nJ(aN_a a(N))a with @y =

’ _ N -n ’ ’ [
(0{1, s aN_l) anda—[( - jln’_lN—l—n} . Now,

’

match the original vector y = (y’s,yns') with (z, ...,

Zn’ Zn +1°

desired result.

ey zN)’, as well as p with ¢, to obtain the

Lemma 2.2

Omitting the conditioning on ¢ = 0, the joint
posterior density

1+(n+1)/2 /2
2 1 1-p
z\V,B, 0%, ply. )<| —= —

20

X exp {—%(1_7/0] [(V - B_lC’ZA (ys— Cxﬁ):,
[1, +C,AC,] (v-B'ClA (v, - Cxﬁ))}}

1 1—p ’
e { ‘Q(TJ[%— )
(A - ACZB_lc,zA) (ys_ CXB):I }
where
1 1 B
B=1+C,AC_ A= [(_ij(ln —-a- f)Jnﬂ ,

and C_and C_ are as defined in (8).

First, it can be shown that

VB, 0'2, P Yg~ Normal ( B_lc’ZA (ys _Cxﬁ)’

e

Integrating out v from 7Z(V, B, 0'2,,0|ys), we get

ﬂ(B'Uz’plys)“(%rmz[édﬂz
e {_i 1_—p)[(ﬂ—ﬁ)' v(p_,g)}}

202 p

X exp {—2%2 :L_T’O)[y’s(D -pc,vic,D)y, }}
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and it can be shown that

|3|O'2,/O,yS ~ Normal [ﬁ,gz(L]V—lj
1-p

where G = (1_7/))[)/; (D - DCX(V)-1C’XD)ys }

" Finally, integrating out o? from 7 0'2,p|y , we get
where = B=VC/Dy_, D = A — AC_B 'C/A, and ( ;)

V=CDC..
X X

n/2
T, (Plyg) = (ﬁ) qvpY2 (B2

Then, integrating out g from 7[([3, 0'2,,0|ys), we
have

)< (]

+(n+p)/2 x (y'S (- DCX(V)_lC’XD)yS){n;p) (23)

To complete the proof, we showed that 7, (p|ys)

P12, 1 U2, 4 \U2
X (L) [—J (—) is proper for all p, 0 < p < 1. It is worth noting that
1-p IV B B, V and D depend on pthrough A in which p appears
1 (1-p\T, 1, in the function (1 — p)/p. Thus, once (1 — p)/pis finite,
X exp {_ 20_2( 0 j[ys (D -DCV 1CXD)yS}} A will be finite and so are B, V and D. This is true if
we assume that p lies in a closed interval in (0, 1) [e.g.,
and it can be shown that, provided n > p, (.0001, .9999)]. Therefore, the right side of (23) is
n-p G finite; and so the inegral over (.0001, .9999) is finite.
-2 -
o “|p,yg ~ Gamma ( > E) Thus, 7, (p|ys) is proper.
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