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SUMMARY

Generalized linear mixed models (GLMMs) containing fixed and random area-specific effects are often used for small
area estimation (SAE) of discrete variables (McGilchrst 1994 and Rao 2003). In GLMM, the random area effects take account
for between areas variation beyond that is explained by auxiliary variables included in the model. These area effects are generally
assumed to be independent in SAE. However, in practice area effects are correlated with neighbouring areas and the correlation
decays to zero as distance increases. In this paper we investigate SAE based on GLMM with spatially correlated random area
effects where the neighbourhood structure is described by a contiguity matrix. We use simulation studies to compare the
performances of empirical best predictor for small area proportions under such models with and without spatially correlated
area effects. The simulation studies are based on two real data sets. Our empirical results show only marginal gains when
spatial dependence between small areas is incorporated into the SAE model.

Key words : Cost function, Domain estimation, Optimal sample design, Probability of item response.

1. INTRODUCTION

The demand of reliable statistics for small areas,
when only reduced sizes of the samples are available,
has promoted the development of statistical methods
from both the theoretical and empirical point of view.
The traditional estimators (i.e. design-based direct
estimators) for small area quantities based on survey
data alone are often unstable because of sample size
limitations. In this perspective the model-based
methodologies allow for the construction of efficient
estimators by borrowing the strength through use of a
suitable small model. Such estimators are often referred
as the indirect estimators, see Rao (2003).

Commonly used model for small area estimation
(SAE) of discrete or non-normal data (e.g., binary or
count data) is a generalized linear mixed model
(GLMM) containing fixed and random effects, see Rao
(2003) and McGilchrst (1994). The indirect estimators
for small areas under GLMM are the EBLUP type
estimators, often known as the empirical best predictors
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(EBP) for small area quantities, see Saei and Chambers
(2003) and Manteiga et al. (2007). The mean squared
error (MSE) estimation of the EBP is also described in
Manteiga et al. (2007). These authors have also shown
the performance of MSE estimator for the EBP. The
area-specific random effects in GLMM take account for
the between area dissimilarities beyond that is
explained by auxiliary variables included in the fixed
part of the model. Although it is customary to assume
that these random area effects are independent, in
practice most small area boundaries are arbitrary and
there appears to be no good reason why population units
just one side of such a boundary should not generally
be correlated with population units just on the other
side. In particular, it is often reasonable to assume that
the effects of neighbouring areas (defined, for example,
by a contiguity criterion) are correlated, with the
correlation decaying to zero as the distance between
these areas increases (Pratesi and Salvati 2008, 2009,
and Petrucci and Salvati 2006). That is, small area
models should allow for spatial correlation of area
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random effects, See Cressie (1991). Such models allow
efficient use of spatial auxiliary information (Chandra
et al. 2007; Pratesi and Salvati 2008, 2009; Petrucci and
Salvati 2006; and Singh et al. 2005).

In this paper we consider unit level generalized
linear mixed models (Rao 2003, chapter 5 and Manteiga
et al. 2007) and we extend the EBP for SAE (Saei and
Chambers 2003 and Manteiga ef al. 2007) to account
for spatial correlation between the small areas where
the neighbourhood structure is described by a contiguity
matrix. We then use simulation studies to compare the
performances of EBP under such models with and
without spatially correlated area effects to examine the
gains by incorporating the spatial dependence between
the areas. The rest of the paper is organised as follows.
In section 2 we review the EBP for SAE under a
GLMM with spatially independent small area effects
(Saei and Chambers 2003, and Manteiga et al. 2007)
and discuss the extension of EBP for SAE to account
for spatial dependence between the areas. We define the
resulting estimator for the small area proportions and
their mean squared error estimator. In section 3 we
describe the design of our simulation studies and
present empirical results and their discussion. In
simulation studies we use two real data sets. The first
data comes from consumer expenditure survey of the
National Sample Survey Organisation (NSSO) for rural
areas of state of the Uttar Pradesh in India and the
second data from the Environmental Monitoring and
Assessment Program (EMAP) survey of lakes in the
north-east of the USA. It is noteworthy that two data
are from two different real life surveys (i.e., social
survey and environmental survey) and very different
from each other. This clearly gives us an opportunity
to examine the performance of proposed approach of
SAE in two different life situations. Finally, in section
4 we provide some concluding remarks and identify
further research prospects.

2. THE EMPIRICAL BEST PREDICTOR FOR
THE SMALL AREAS

2.1 Models with Spatially Independent Random
Area Effects

To start, let us consider a finite population U of
size N and assumed to partitioned into D non-
overlapping sub-groups (or small areas or small
domains) U, each of sizes N, with i =1, ..., D such that

D
N= Zizl N;. Let j and 7 respectively index the unit j

within small area i, y;; is the survey variable of interest
and known for sampled units, x;; is the vector of
auxiliary variables (including the intercept), known for
the whole population. Let s; and 7; respectively denotes
the sample (of size #,) and non-sample (of size N; — n;)
in small area i. We assume that y;; is typically a binary
variable. Let 7; be the probability that a unit; in area i
assumes value 1. Let #; denotes the random area effect
for the small area i and assumed to be normally
distributed with mean zero and variance ¢. We assume
that u;’s are independent and y,{u; ~ Bin(1, 7;) with
E(yylu;)) = ;= 7y and Var(y; | w;) = 05 = m(1 — my). A
popular model for this type of data is the logistic linear
mixed model of the form
log it (my) = logim/(1 — mp} = my = x;B + w,,
j=1,..Nsi=1,..,D (1
where B (p X 1) is the vector of regression parameters.
For estimation of unknown model parameters, it is
common practice to express model (1) at the population
level (Rao 2003, chapter 6). What follows next, we
aggregate model (1) and write a population level
version of this model as below.

Let y;; be the N X 1 vector of response variable
with elements y;(j =1, ..., N i = 1, ..., D), X, be the
N X p known design matrix with rows x;, Gy =
diag( 1y 1 £i £ D) is the known matrix of order

I

N x D, 1; is a column vector of ones of size &, u = (u,,
..., up) and My denotes the N x 1 vector of linear
predictors 77, given by (1). We define ¢ = E(yy| u) the
conditional mean function of y;; given u with elements
u;; and Var(yy | w) = diag {0} the conditional
covariance matrix. Let g(-) be a monotonic function, the
link function (McCullagh and Nelder 1989, page 27),
such that g(l) can be expressed as the linear model of
form

gw) =n,=XyP + Gyu )

The model (2) defines a GLMM, if y;; given W are
independent and belong to the exponential family of
distribution. Evidently, the vector of random area effects
u has mean 0 and variance Q (8) = ¢l,, where I, is the
identity matrix of order D. For binomial response
variable the link function g(-) is a logit function, see
equation (1). We note that the logistic linear mixed
model (1) is a special case of GLMM for logit link. The
relationship among y;; and 1y, is represented through a
known function A(), defined by E(yy | u) = A(My).
Suppose that our interest is to predict the vector of
linear parameters for small areas © = a;y;, where
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ay = diag{a,i=1.,D} is a D x N matrix and
a =(8,,--&y )is a vector of known elements. For
example, when y;; 1s a binary variable and our aim is
to estimate proportion for small area i,

pi= Ni_lzjeUi Yi~© Ni_l{zies. i +Zj€rﬂ yj}

then a]’ (i=1, ..., D) denote the population vector with

value Ni_1 for each population unit in area i. The

estimation of parameter of interest 0 is carried out as
follows.

Without loss of generality, we arrange the vector
Y so that its first # elements correspond to the sample
units, and then partition ay, y;, My, Xy and Gy
according to sample and non-sample units as

[a y M
ay, = S:|>J’U=|: S]JIU:[ S:|
& Yr N,

XS GS
Xy = X and G = G

r r

Here a subscript s denotes components defined by
the » sample units while a subscript 7 is used to denote
corresponding components defined by the remaining
N — n non-sample units. We then write E(y, | u) = A(1;)
and E(y, | u) = A(n,). Typically, A() is obtained as g~
0. Using sample and non-sample deposition of various
quantities, parameter of interest © = ayy;; can be
expressed as

O=ay,+tay. =ay,+tasXp+Gu (3)

Here y, the vector of sample values is known,
whereas the second term of (3), which depends on the
non-samples values y, = A(X, + G,u) is unknown and
can be predicted by fitting model (3) for sample data.
In our case y, = {y;;} denotes the vector of sample
values of the binary survey variable which takes value
1 or 0. Similarly, y, = {y,;} represents the vector of non-
samples values of the survey variable. It is obvious that
the parameter of interest p; for each small area can be
obtained by using as prediction of each element {y,;}.
The problem then reduced to prediction of y,;; under
model (2) which has two unknown components B and
u. A major difficulty in use of GLMM for SAE is the
estimation of unknown model parameters  and u since
the likelihood function for GLMM often involves high

dimensional integrals (computed by integrating a
product of discrete and normal densities, which has no
analytical solution) which are difficult to evaluate
numerically. Although computationally attractive
alternatives to the likelihood method are available, they
can suffer of inconsistency (Jiang 1998).

For known Q(8), the values of B and u are
estimated by Penalized Quasi Likelihood (PQL) under
model (3) fitted for sample data (Breslow and Clayton
1993). The PQL approach is most popular estimation
procedure for the GLMM and it constructs a linear
approximation of the distribution of non-normal
response variable and assumes the linearised dependent
variable is approximately normal. This approach is
reliably convergent but it has been noticed that the PQL
tends to underestimate variance components as well as
fixed effect coefficients (Breslow and Clayton 1993).
McGilchrst (1994) introduced the idea to use BLUP to
obtain approximate restricted maximum likelihood
(REML) estimates for GLMMs. This link between
BLUP and REML is illustrated in Harville (1977) for
the normal case. For given Q (), an iterative procedure
to obtain maximum Penalized Quasi Likelihood
(MPQL) estimate of B and u is described in Saei and
Chambers (2003) as below.

1. Assign initial values to B and u.

2. Update these values via

|:BneN] _ [Bold:| n V—llx,s] i
unew uoId ° Gs a773

Pold Yold
[0
-V g ]
== Yod
X\ 92
S 1
where V= | | v [X G ]
[Gs] SUXA >0
Bold Yold
0O O
J’_
0o Q!
a, 94 ,
and —, —— are first and second
8773 87738775

derivatives of /; with respect to 7;.

3. Return to step 2.
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At convergence, this gives the best linear unbiased
estimate (BLUE) for B and the best linear unbiased
predictor (BLUP) for u. Hence, using (3) we obtain the
BLUP type estimator of @ (i.e, the MPQL estimate
of 0).

In practice the variance components parameters
defining the matrix Q () are unknown and have to be
estimated from sample data. Following Saei and
Chambers (2003) an iterative procedure that combines
the MPQL estimation of B and u with ML estimation
of Q is:

1. Assign initial values to B, u and &
2. Update Q

3. Update B and u using the iterative PL estimation
procedure described in above para
4. Update n, = X, + G,u
5. Update B, = — (9, /onom])
-1 -
6. Update T, = (Q +GS S S)
7. Update o
8. Return to step 2 and repeat the procedure until the

values of the different parameters converges.

The corresponding iterative procedure used to
obtain the REML estimators is exactly the same except
that the role of T, in step 6 of ML algorithm is replaced
by the T,, submatrix of T defined in section 6.1 in Saei
and Chambers (2003). In our empirical results reported
in section 3, we adopted the REML algorithm for
parameters estimation.

Using estimated value 5 of the & leads to the
empirical BLUE |§ for B and the empirical BLUP

(EBLUP) ( for u and the EBLUP type estimator (i.e.,
empirical best predictor (EBP)) of 0 is

6 = ay +ah(X p+Gu) )

Turning now to estimation of mean squared error
of the EBLUP type predictor or EBP (4) we define

= H@,) =oh(,)/on, |, .

and B <= 32 -
the matrix of second derivatives of /; (the log-likelihood
function /; defined by the vector y, given u) with respect

M- Similarly, B, = = d,

to 73, at 17, =

We put X: = a,H,X, and G?

approximate estimate of the mean squared error for the
EBP (4) (see Saei and Chambers 2003; Manteiga et al.
2007) is

mse(0) =

where

= a,H,G,. Then an

m (8) +m,(8) +2m,@) +m,3)  (5)

m@) =G TG, with T, = (@ +GBG)™

m@) = ¢, (X,BX,~XBGT.GBX.) €/

S S S S S §S s S S

with C, = {X| -G, TG BX

m,@3) = {tr( 2 k)v(6))}

w1ch—GBG +¢GBSGGBG

S § §° S

and m(8)—aBa

Let ¢ = G* 'f and G* be the 7" row of the matrix

_ 22
G, . then V _a(gt)/aa\é 5= 9 G T.T.. Here

r's's-’

V(d) is the asymptotic covariance matrix of estimates

of variance components & which can be evaluated as
the inverse of the appropriate Fisher information matrix
for 8, see Saei and Chambers (2003). Manteiga et al.
(2007) described the EBP (4) for small area proportion
estimation and estimates of their mean squared error.
They have studied the empirical performance of MSE
estimator (5). However, they have not taken account of
spatial dependence between the small areas, which is
main objective of this article.

2.2 Models with Spatial Dependence Random
Area Effects

In many situations the physical location of the
small areas is so relevant that the assumption of spatial
independence of the small area models becomes
questionable. That is, small area data exhibit a spatial
structure and therefore use of spatial models becomes
essential. Spatial dependency is the extent to which the
value of an attribute in one location depends on the
value of the attribute in nearby locations or small areas.
Recently the problem has been addressed by
introducing a common autocorrelation parameter among
small areas extending the linear mixed model through
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the Simultaneously Autoregressive (SAR) process
(Pratesi and Salvati 2008, 2009; Singh et al. 2005;
Petrucci and Salvati 2006, Chandra et al. 2007). These
extensions of small area models (e.g., area level models
described in Pratesi and Salvati 2008, 2009; Singh et
al. 2005 and unit level models discussed in Chandra et
al. 2007) to spatial small area models are the special
case of linear mixed models. The focus here is on the
introduction of the SAR process in the generalised
linear mixed models (GLMMs) where the vector of
random area effects v = (v;) satisfies
v=pWvt+tu=v=~1p- pW)_lu (6)
where p is spatial autoregressive coefficient which
determines the degree of spatial dependency of the
model, W is proximity or contiguous matrix of order D.
This matrix is symmetric and encapsulates the relative
spatial arrangement (i.e. neighbourhood structure) of the
small areas whereas p defines the strength of the spatial
relationship among the random effects associated with
neighbouring areas. The simplest way to define such a
matrix is as simple contiguity: the elements of W = {w;}
take non-zero values only for those pairs of areas that
are contiguous to each other. Generally, for ease
interpretation, the general spatial weight matrix is defined
in row-standardized form; in this case p is called spatial
autocorrelation parameter (Banerjee ef al. 2004). In row-
standardised form this becomes
_Jd;* if j andk are contiguous
" 10 otherwise
where d| is the total number of areas that share an edge
with area j (including area j itself). Contiguity is the
simplest but not necessarily the best specification of a
spatial interaction matrix. It may be more informative
to express this interaction in a more detailed way, e.g.
as some function of the length of shared border between
neighbouring areas or as a function of the distance
between certain locations in each area. Furthermore, the
concept of neighbours of a particular area can be
defined not just in terms of contiguous areas, but also
in terms of all areas within a certain radius of the area
of interest. In the empirical evaluations reported later
in this paper, however, we used simple contiguity (row-
standardized) to define the spatial interaction between
different areas. Here
E(u) = 0 and Var(u) = ¢l
E(v)=0and Var(v) = Q(¢ p)
= gl(dp— pW) (Ip — pW')!

where Q (¢, p) = Q(d) is the SAR dispersion matrix.
To define the EBP under spatially correlated area effects
or spatial-EBP (denoted by SEBP), the linear predictor
Ty is expressed as

Ny =XP + Gyv (7
where the vector v is an D-vector of spatially correlated
area effects that satisfies SAR model (7). For estimation
of unknown model parameters we adopt an iterative
procedure similar to one described earlier in this
section. However, variance components are now
0= (¢, p) and O is replaced by V. This leads to the
spatial EBP of O (i.e., SEBP) as

6 = ay +a h(X p+G ). (8)

The MSE of the SEBP (8) are followed from (5)
using the variance components 6 = (¢, p) and V in
place of .

3. EMPIRICAL EVALUATIONS

In this section we present simulation studies to
contrast the performance of the two SAE methods:
(1) the empirical best predictor (4) under GLMM with
spatially independent area effects, denoted by EBP (see
Saei and Chambers 2003 and Manteiga et al. 2007) and
(i1) the proposed empirical best predictor (8) under
GLMM with spatially dependent area effects, denoted
by SEBP. The empirical evaluations are based on
design-based simulation studies using two real data sets.
This evaluates the performance of these methods in the
context of real population and realistic sampling
methods. The two data sets used in the design-based
simulations are from two different types of surveys and
are very different to each other. They are

i) The National Sample Survey Organisation (NSSO)
Consumer Expenditure Survey: The basis data
comes from the survey that underpins the
empirical results reported in Sud e al. (2008). 1
used the 61% round survey of NSSO (July 2004-
June 2005), the quinquennial series of consumer
expenditure survey for rural areas of the state of
Uttar Pradesh in India. From this survey, I
consider a sample of 307 household from D =10
selected districts (districts are the small area of
interest) of state of Uttar Pradesh. The selected
districts are all from eastern region of the state so
that reasonable neighbourhood can be constructed.
This sample of 307 households was bootstrapped
to create a realistic population of N = 76,062
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households by sampling with replacement with
probability proportional to a household’s sample
weight. However, in doing so we divided the
survey weights in original sample data by 10 to
reduce the overall population size, keeping in
mind the computation intensity. Note that this
does not change the original layout of the survey
data except the population sizes used in SAE. A
total of K = 1000 independent stratified random
samples were then drawn from this bootstrap
population, with total sample size equal to that of
the original sample and with districts defining the
strata. Sample sizes within districts were the same
as in the original sample (varies from 16 to 45).
The Y variable of interest takes value 1 if the
Household’s Monthly Per Capita Expenditure
(MPCE) is less than median MPCE of these 10
districts and 0 otherwise. We used the household
holding (hectares) of the household as the
auxiliary variable. The aim is here to estimate the
proportion of households below median MPCE
class in each district. The results from this
simulation are presented in Table 1.

The Environmental Monitoring and Assessment
Program (EMAP) Survey: The data consist of a
sample of 349 plots in the lakes from the North-

eastern states of the U.S. The survey is based on
a population of 21,028 lakes from which 334 lakes
were surveyed, some of which were visited, in
different plots, several times during the study
period (1991-1995). The total number of
measurements is 551. The 349 plots are the result
of their grouping by lake and by 6-digit
Hydrologic Unit Codes (HUC). Space-Time
Aquatic Resources Modelling and Analysis
Program (STARMAP) at Colorado State
University supplied this data set, developed by
EMAP. The HUCs are considered as regions of
interest. These areas were having sample sizes as
1 only. Therefore we decided to combine these
regions with their similar regions. Consequently,
we left with 23 small areas. Sample sizes in these
23 areas vary from 2 to 45. We generated a
population of size N = 21,028 by sampling N
times with replacement from the above sample of
349 plots (units) and with probability proportional
to a unit’s sample weight; and then K = 1000
independently stratified random samples of the
same size as the original sample were selected
from this (fixed) simulated population. HUC
sample sizes were also fixed to be the same as in
the original sample. The variable of interest y

Table 1. District-wise performance measures for the NSSO data. Districts are arranged in
order of increasing population size.

Mean squared error
Districts Relative Bias, % Relative RMSE, % | Coverage rates EBP SEBP

EBP SEBP EBP SEBP EBP SEBP True Estimated | True Estimated

1 90.24 60.68 107.95 78.59 0.67 0.90 0.020 0.008 0.015 0.008

2 —4.42 1.94 21.18 19.59 0.97 0.98 0.009 0.011 0.008 0.011

3 -6.06 -3.07 16.63 14.65 0.96 0.97 0.009 0.011 0.007 0.009

4 1.28 0.04 15.37 15.59 0.98 0.97 0.005 0.008 0.005 0.007

5 —-0.35 0.91 18.18 18.07 0.97 0.96 0.007 0.010 0.007 0.008

6 4.92 4.80 18.85 19.30 0.98 0.98 0.005 0.009 0.006 0.007

7 —-6.70 —6.48 11.25 10.99 0.93 091 0.007 0.005 0.007 0.005

8 -1.26 -0.91 12.41 13.68 0.98 0.96 0.004 0.005 0.005 0.005

9 13.10 16.11 29.52 31.24 0.96 0.92 0.005 0.004 0.004 0.004

10 -2.94 —4.57 9.03 9.63 0.96 0.94 0.004 0.004 0.004 0.004
Average 8.78 6.94 26.04 23.13 0.94 0.95 0.0075 0.0075 | 0.0068  0.0068
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takes value 1 if Acid Neutralizing Capacity (ANC)
- an indicator of the acidification risk of water
bodies- in water resource surveys is less than 500
and 0 otherwise. The elevation of the lake is the
auxiliary variable. We are interested in estimation
of small area proportion of plots for which ANC
less than 500. Results from this simulation

experiment are set out in Table 2.

The performance of different small area estimators
were evaluated with respect to three basic criteria —the
relative bias and the relative root mean squared error
both expressed as percentages of estimates of the small
area proportions and the coverage rate of nominal 95
per cent confidence intervals for these proportions. In
the evaluation of coverage performances intervals are

Table 2. Region-wise performance measures for the EMAP data. Regions are arranged in
order of increasing population size.

Regions| Relative Bias, %| Relative RMSE,% | Coverage rates Mean squared error

EBP SEBP
EBP SEBP EBP SEBP EBP SEBP | True Estimated True Estimated
1 -8.13 -9.16 8.27 9.47 0.99 0.99 0.0068 0.0199 0.0172 0.0168
2 -1.72  -0.66 1.82 0.79 0.99 0.99 0.0003 0.0016 0.0096 0.0137
3 —14.08 -18.18 14.15 18.65 0.99 0.99 0.0200 0.0290 0.0152 0.0088
4 -423 -3.86 428 3.95 1.00 0.99 0.0018 0.0026 0.0143 0.0280
5 — — — — — — 0.0639 0.0460 0.0201 0.0124
6 -1.06 -2.06 1.10 2.20 1.00 1.00 0.0001 0.0003 0.0087 0.0061
7 241 225 15.83 15.42 0.87 0.87 0.0143 0.0193 0.0129 0.0119
8 6.43 0.29 75.18 71.60 0.91 0.87 0.0442 0.0430 0.0042 0.0062
9 — — — — — — 0.0133 0.0185 0.0083 0.0059
10 0.50 1.10 18.06 17.85 0.94 0.94 0.0131 0.0142 0.0074 0.0033
11 -240 -0.81 6.16 5.71 1.00 0.94 0.0033 0.0047 0.0054 0.0057
12 10.84  15.66 28.92 32.03 0.98 0.96 0.0161 0.0236 0.0083 0.0107
13 36.37  28.01 73.68 68.63 0.97 0.97 0.0263 0.0258 0.0093 0.0069
14 -035 -0.62 6.45 6.42 0.93 0.94 0.0031 0.0031 0.0040 0.0027
15 4.53 2.96 23.48 22.97 0.95 0.96 0.0071 0.0076 0.0075 0.0099
16 -4.65 -5.03 4.71 5.12 1.00 1.00 0.0022 0.0032 0.0034 0.0026
17 -2.64 -2.60 2.69 2.66 1.00 1.00 0.0007 0.0011 0.0057 0.0058
18 3.48 8.45 2427 26.52 0.90 0.86 0.0180 0.0134 0.0038 0.0048
19 0.44 0.14 591 5.87 0.97 0.97 0.0022 0.0027 0.0052 0.0055
20 221 3.69 27.50 27.66 0.87 0.87 0.0163 0.0106 0.0045 0.0051
21 -0.72  -0.55 5.20 5.10 0.96 0.96 0.0021 0.0027 0.0035 0.0045
22 -2.17 -1.39 11.35 11.08 0.93 0.92 0.0087 0.0076 0.0041 0.0048
23 052 -045 8.43 8.39 0.97 0.97 0.0030 0.0038 0.0040 0.0044
Average 1.22 0.82 17.50 17.53 0.96 0.95 0.0125 0.0132 0.0081 0.0081
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defined by the estimate of small area proportion plus
or minus twice their standard error. The relative bias
was measured by %AvRB, where

fm i‘l(K‘lzlemk)—l}{xmo

with average over the small areas. The root mean
squared error was measured by %AvRRMSE, where

%AvRRMSE
= mean[M . {\/K_lszzl(ﬁ\k -my)? H 100

Coverage performance for prediction intervals was
measured by %AvCR, where

%AvCR

%AVvRB = mean
|

K
- mean{K—lzl (I - my|< 2|\7|i1k’2)}><100
: k=1

Note that the subscript £ here indexes the K
simulations, with mz; denoting the value of the small
area i mean in simulation £ (this is a fixed population
value in the design-based simulations considered here),
and ﬁ\k , Mik denoting the area i estimated value and
corresponding estimated MSE in simulation k. The
actual area i mean value (averaged over the simulations)

- K
is denoted by M, = K 12k=1n]k :

In Table 1 we report the relative bias (RB) and
relative root mean squared error (RRMSE), coverage
rates (CR) for nominal 95% intervals for small area
proportions and the mean squared error (both true and
estimated) of small area proportion estimates for two
methods of small area estimation (i.e., EBP and SEBP)
based on repeated sampling from the simulated NSSO
population. Analogous results for repeated sampling
from the simulated EMAP population are presented in
Table 2.

The results in Table 1 show that the average
relative bias (%AvRB) and average relative root mean
squared error (Y%AvRRMSE) of the proposed estimator
(i.e., SEBP) is smaller than the EBP. Looking at the
region specific results in Table 1 we note that relative
biases in 7 out of 10 and relative root mean squared
errors in 5 out of 10 regions are smaller for SEBP than

the EBP. It seems advantageous to include spatial
effects in EBP, with a marginal gain. The average
coverage rates (%0AvCR) are slightly underestimated if
spatial effects are ignored in small area models, which
again show an advantage of including spatial structure.
Table 1 clearly shows a consistently good performance
of MSE estimate (5) for both SEBP and EBP estimators.
We further note that the average value of true MSE of
small area proportions for SEBP is slightly lower than
the EBP. In 8 out of 10 districts the values of true MSE
of SEBP are either smaller or equal to that of true MSE
of EBP. This again indicates the gain in small area
estimation by incorporating the spatial dependence
between the areas.

In Table 2 we noticed that results for regions 5 and
9 are missing. In these two regions true small area
proportions (i.e. population proportions for small areas)
are zero. Consequently, we could not calculate the
relative performance measures (i.e. relative bias and
relative root mean square error) since denominators
were zero in these cases. The average results in Table
2 therefore are based on the average of remaining 21
regions. In terms of relative biases and relative RMSEs
the conclusions from Table 2 are almost identical to
results of NSSO data reported in Table 1. In contrast,
ignoring the spatial structure in EMAP data leads to
overestimation of coverage rates. From the results in
Table 2 too we observed only marginal gain in SAE by
incorporating spatial effects in estimation. Overall gain
by incorporating spatial effects (when neighbourhood
structure is described by a contiguity matrix) in small
models for binary variable is marginal. The results in
Table 2 show that the MSE estimator (5) performs very
well for the EMAP data too. The comparative
performance of this estimator for the EBP and SEBP
is identical to that of NSSO data.

Overall empirical results reveal that MSE
estimator performs well. Only a marginal gain can be
achieved by including spatial structure in small area
estimation of proportions. It is noteworthy that
relatively the gains in SEBP are better for NSSO data
than the EMAP data. A critical examination of original
sample data reflects that the NSSO data has marginally
higher degree of spatial dependence between areas than
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the EMAP data. The relative gains in NSSO data are
therefore more evident than in the EMAP data.

4. CONCLUDING REMARKS

This paper describes SAE of proportions under the
GLMM with spatially correlated random area effects
where the neighbourhood structure is defined by a
contiguity matrix. The empirical results, based on two
real data indicate that the gains from inclusion of spatial
structure in SAE do not appear to be large. Note that
the spatial models considered in this paper are based
on neighbourhoods defined by contiguous areas. It is
easy to see that this is just one way of introducing
spatial dependence between area effects, and several
other options remain to be investigated, e.g.
geographical weighted regression etc.

There are many issues that still need to be explored
in the context of using unit level models with spatially
distributed area effects in SAE of discrete data. The
most important of these is identification of situations
where inclusion of spatial information does have an
impact, and the most appropriate way of then including
this spatial information in the small area modelling
process. An important practical issue in this regard
relates to the computational burden in fitting spatial
models to survey data. With the large data sets common
in survey applications it can be extremely difficult to
fit spatial models without access to high-end
computational facilities. Although spatial information
is becoming increasingly available in environmental,
epidemiological and economic applications, there has
been comparatively little work carried out on how to
efficiently use this information. A further issue relates
to the link between the survey data and the spatial
information (Chandra et al. 2007).

The development in this paper assumes that the
sampling method used is uninformative for the
population values of Y given the corresponding values
of the auxiliary variables and knowledge of the area
affiliations of the population units. As a consequence,
same model applies at both sample and population
level. However, many often survey data comes from

complex sampling designs (e.g., NSSO data illustrated
in section 3). There are approaches to incorporate the
complex sampling designs for SAE of continuous data
(e.g., Pseudo EBLUP under a linear mixed model).
However, to my knowledge no such parallel work has
been reported for estimation with discrete data. This can
be a future research work.
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