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SUMMARY 

For detecting outliers in linear regression model, Cook [2] developed a 
statistic under 'mean-shift' model. This statistic is appropriately developed 
under 'variance-inflation' model for detecting outliers in the general linear 

model (y, xe, 0'21 ) for experimental designs. The simplified form of this 

statistic is obtained for both one-way and two-way elimination of 
heterogeneity settings. The relationship between Cook-statistic under 'mean­
shift' model and Cook-statistic under 'variance-inflation' model for a single 
outlier is established and it has been shown that an observation which is an 
outlier under 'mean shift' model may not be so under 'variance-inflation' 
model. Through an example it has been shown that heteroscedasticity in the 
data may not influence the estimation of parameters. 

Key words: Outlier, General linear model, Variance-inflation model, 
Cook -statistic. 

1. Introduction 

A common approach to modelling outliers in the fixed effects linear model 
is to assume that outliers result from slippages in the expected values of 
contaminated observations. However, this assumption may not hold good in 
every occasion; instead the variances of all the observations may not remain 
constant which may severely affect the estimation of parameters. It may be a 
common occurrence in agricultural experiments where all the plots in a block 
may not be uniform, causing inflated variances for some of the observations. We 
may term these observations as outliers. In case of 'mean-shift' single outlier 
model, the test-statistic for the presence of an outlier is a monotonic function of 
the largest absolute Studentized residual (Srikantan [10]). This is not always true 
for 'variance-inflation' modeL Cook et al. [4] showed that if the largest absolute 
residual corresponds to the largest absolute Studentized residual, then the 
estimated outlier is same for both the models. 

For detecting outliers in linear regression model, Cook [2] developed a 
statistic under 'mean-shift' modeL In designed experiments, the experimenter is 
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generally interested only in the estimation of a subset of parameters, rather than 
the whole set of parameters. One may, therefore, be interested to assess the 
influence of an outlying observation on the estimation of such function of sub­
set of parameters. Since the design matrix in experimental designs is deficient in 
rank, the statistic developed by Cook [2] cannot be applied to it. Bhar and 
Gupta [1] modified this test-statistic for detecting outliers in experimental 
designs. However, no diagnostic measures seem to be developed so far for 
dealing with outliers under 'variance-inflation' model. Cook et al. [4] studied 
such outliers in linear regression model. Their study, however, was confined to 
the behaviour of the estimated outlier from 'mean-shift' model under 
'variance-inflation' model. In the present paper we develop Cook-statistic under 
'variance-inflation' model for detecting outliers in experimental designs. It is 
important to note that 'variance-inflation' model is actually a heteroscedastic 
model. However, our interest here is not in the estimation of parameters under a 
heteroscedastic model; instead we are interested to see whether inflated 
variances of some of the observations cause a severe effect on the estimation of 
a subset of parameters assuming that the model is homoscedastic. 

In Section 2 this statistic has been developed under a general linear model 
set up of experimental designs. Section 3 considers the application of this 
statistic to some specific designs. The paper concludes with a Section on 
Discussion. 

Throughout we use the following notations. All matrices and vectors are 
real, vectors being written as column vectors. We denote an n-component vector 
of all unities by In ' by Jn an n x n matrix of all unities and by In an identity 

matrix of order n. Matrices At, ~(A), A- and A+ will respectively denote the 

transpose, column space (range), a generalized inverse (g-inverse) and the 
Moore-Penrose inverse of A. 

2. Development ofCook - statistic 

2.1 Cook-statistic in Mean-shift Model 

Consider the general linear model 

y XO +e; E(e) 0; D(e) = 02In; 0 2 > 0 (2.1) 

where y is an n x 1 vector of observations, X is an n x p matrix of known 

constants with full column rank p, 0 is a p x 1 vector of unknown parameters, 

and e is an n x 1 vector of independent random variables each with zero mean 

and common variance 0 2 (>0). 

Cook [2] defined a statistic which measures the effect of an outlying 
observation on the estimation of parameters of the model as 

._---_._------------_....._--_.... _-----­
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(2.2) 

where 6 and 6(1) are the least-square estimates of 8 with and without the i-th 

data point respectively and D(x) denotes the dispersion matrix of x. The statistic 

provides a measure of distance between 6 and ( 0)in terms of descriptive levels 

of significance, because Dj is actually (1- a) x 100% confidence ellipsoid for 

the vector 8 under normal theory, which satisfies D j ::; F(p, n - p, (1- a». 
Extension of D j to more than one outlier is straight forward. For usual 

interpretation of Cook-statistic, see Cook ([2], [3]). 

2.2 Cook-statistic in Variance-inflation Model 

Now consider the general linear model (2.1), for an experimental design d 
(say) with the design matrix X deficient in rank, i.e., Rank(X) = m« p). Let 
8 = (8~ 8;)', where 81 be a v-component vector containing all parameters of 

interest to the experimenter and 82 be a (p - v) component vector containing 

the set of nuisance parameters in the model that are not of much interest to the 
experimenter. Thus 

y=(XI X2{:~)+e (2.3) 

where X is partitioned in conformity with the partition of the parameter vector. 
We also assume that the ranks of XI and X2 are ml and m2 respectively. From 
the normal equations X'X8 = X/y we obtain, on eliminating 82, the equations 

involving only 81 as 

(2.4) 

where 

The matrix B is symmetric and idempotent and the matrix COl is 

symmetric. Since the linear model considered here is for experimental designs, it 
is not unrealistic to assume that the column space of Xl and X2 contain the 
vector I, thus Co 1 =o. 

I 

Suppose that t (t ::; min(ml' m2 )} of the n observations are suspected to be 

outliers in the sense that the variance of each of the t observations is shifted 
from the error variance of others. Then we have the variance-inflation model as 
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(2.5)y=(X, x,{::]+z 
where E(z) 0, D(z) = ri' [~ 
rP > O. and Wi > 1; V i = 1 •...• t are unknown. We also assume that the 
distribution of z is nonnal with mean vector 0 and dispersion matrix as given 
above. The model (2.5) can alternatively be written as 

y=(X, (2.6)x,{::]+U5+e 
where U=(ul.u2 •...• Ut);h~= (O, ... ,l(i-th),O, ... O);i=l, ...,t 

and 0 = (01, ••• , Ot) 
Now OJ'S are distributed nonnally with mean 0 and common variance 

c:,i (Wj I); Vi = I, ... , t; and the components of e are as usual distributed 

nonnally with mean 0 and variance (J2 . Thus from (2.5) it follows that 

D(y) = X3 [,: I~J =(J2 [In - U(lt W}U
/
] = 1: (say) (2.7) 

Clearly 1: is non-singular and, 0 and e are independent by assumption. 

Now,1:-1 =~In +~UW*UI (2.8)
(J (J 

- . (I-WI I-W t ]where W.-dlag --, ...,-- (2.9) 
WI W t 

Now from (2.5) the nonnal equations for estimating the linear functions of 
the parameters 01 are 

(2.10)

r [ where c~ = [ X~1:-IXI ] - [ X~1:-IX2 ] [ X21:-I X2 X21:-I X I ] (2.11) 

r [ and Q~ =[X~1:-ly] - [ X;1:-I X2] [ X;1:-IX2 X;1:-ly ] (2.12) 

--_ ................ _-_...... 


http:U=(ul.u2
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Now C~ and Q~ can alternatively be written as 
I I 

(2.13) 

(2.14) 

where L = X~BU*, F = I + U~X2(X;X2)-X;U*, U. = UW'y2 and Cal and 

are the corresponding matrices under the homoscedastic model. Clearly the QaI 

matrix F is non- singular. 

Now we have the following theorem 

Theorem 2.1. (i) E(Q~I ) == C~J 8) 

(ii) D(Q~I ) =C~ 

We assume that the design d is connected and the rank of C~ is (v - 1).
I 

This can be checked by the connectedness property of the design under 
homoscedastic model, since a' design that is connected under homoscedastic 
model is also connected under heteroscedastic model (see Gupta [7]). Let POI 

be the set of all (v - 1) orthonorrnalized contrasts of the parameters 91 , The 

(v -1) x v matrix P is such that pp' = ti=O), p'p == Iv _'!'J v and the least 
v 

square estimator of P81 is given by Pel' where e1 is any solution of the normal 

equation (2.10). Since the least square estimator is BLUE, the set is also BLUE. 
Then we have 

Now taking the Moore-Penrose inverse of Cs + L F-I L' , we get 
J 

(2.15) 

where E =F +L'C~ L and clearly it is non- singular. 
J 

Now we give the following lemma. 

Lemma 2.1. D(Pe1 ) = [P{CsJ + LrIL')PTl 
(12 
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Now we consider another model in which the outliers are actually omitted 

Y,o = [X"o X"., ) [ ::)+ z,., (2.16) 

where (t) denotes the removal of t rows from the corresponding vector and 
2 I n-matrices. Note that the dispersion matrix :I:(t) now becomes 0 t • The 

normal equations for estimating the contrasts of the parameters under the 91 

model (2.16) are given by 

CH e _ QH (2.17)ell It - all 

where C~l = X~(t)Xl(l) - X~(t)X2(t)(X;(I)X2(1»-X;(t)XI(I) (2.18) 

and Q~l = X~(t)Yl(t) - X~(t)X2(1)(X;(t)X2(t)rX;(I)Y\(t) (2.19) 

The matrices C~ and Q~ can alternatively be written as 
Vlt Ult 

C~ =C" - L.K1L: (2.20)
H VI 

and Q~ = Q" - L.F.-1U'By (2.21)
it 01 

where L. =X~BU and F. =U"BU (2.22) 

We also assume that the residual design obtained after deleting t outlying 
observations remains connected. This fact can be checked by the connectedness 
property of the residual design under homoscedasticity, since it is known that if 
a design obtained after deleting t observations is connected under homoscedastic 
model it is also connected under heteroscedastic model (see Lal et ai. [8]). The 
set of all orthonormalized contrasts for the parameters al is given by palt . If 

ell is any solution of the normal equations (2.17), then 

pelt =P(C~ )- Q~ =P(C" - L.F.-1L:t (Q" - L.F.-1u"By) (2.23)
H It 'OJ 01 

Now taking the Moore-Penrose inverse of C - L.F.-1L: we get a1 

Wit =P(C~ + C~ L.E.-'L~C~ )(Q" - L.K'U"By)
1 1 ' ''I 

(2.24) 

where E. = F. - L:C; L. 
1 

(2.25) 

Lemma 2.2. The difference between the estimators of the contrasts under 
the model (2.6) and (2.16) can be expressed as 

" nQ +Pa, - CVIt = - PCa,GBy 

where G = (LEL' + L.E.L:)C; X~ - LF-lU: - L.F.-1U' +LEL'C! LF-1u: 
1 "I 

(2.26) 

---- ---------~ -------------------- ----------------------­
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Cook-statistic: From (2.2) and using Lemma 2.2 we get Cook-statistic 
under variance-inflation model as 

O~ =y'BG' C~l JY(0(PS1)r PC~lGBy /(v - 1) 

=y'BG' C; [Ca +LF-1L'] C; GBy /(v - 1) a2 (2.27)
1 I I 

where &2 is substituted for 0 2 . 

Remark 2.1. Suppose that only a single outlier is present. Without loss of 
generality we assume that the 1st observation is an outlier. Thus U = U1 • Then 

Cook- statistic takes the following form 

Or =d(L~C~lQa, - u~Byr ( L:C~, L. ) (2.28) 

where d =do 11 +(1~w -a;BuTL:C:,L.) 

(2.29) 

Remark 2.2. If all the Wi'S are equal to 1, then w. =0 and the Cook­
statistic can be written as 

H y'VU(U'VUrIU'BXIC~ X~BU(U'VU)-IU'Vyo - - 0 (2.30)1 
I - (v-I)&2 - I 

Thus variance-inflation model is transformed into mean-shift model 
(Bhar and Gupta [ID. 

Remar#= 2.3. Cook-statistic under 'mean-shift' model, i.e., 0 1 actually 
represents the volume of confidence ellipsoid (see Cook and Weisberg [5]) and 
thus 01:S; F( 1- Ct., p, ne) , where p is the rank of the corresponding dispersion 

matrix and De is the degrees of freedom (dt) for estimating 0 
2

. Cook and 

Weisberg [5] suggest to compare 0 1 with critical value of F. Now O~ also 

represents confidence ellipsoid under heteroscedastic model. Thus the critical 

value of F can be taken as good approximation for Or . In the literature it is 

found that 0 2under heteroscedastic model is estimated with the same df as it is 
estimated under homoscedastic model (see, e.g. Sen and Srivastava [9]), 
Moreover, here Wi'S are estimated either assuming that they are equal or 
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proportional to some character. Thus they may be treated as adhoc estimates and 
df may be taken as it is taken under homoscedastic model. We, therefore, 

suggest that D~ as given in (2.27) may be compared with the critical value of F 

with v-I and De df. 

Estimation ofw 

In practice Wi'S are unknown. These are to be estimated from the data. 
Here we obtain the estimates of Wi'S by assuming that all Wi'S are equal. The 
extra sum of squares due to the parameters 0 under the model (2.6) is given by 

sL where s~ =y'VU(U'VU)-IU'Vy and V =I - X(X'X)-X'. Under the 

variance-inflation model s~ has the expectation 

E( s~ ) = 0'2 + tr(U'VU) O'~ , where O'~ =0'2 (w - I) (2.31) 

where tr(.) denotes the trace of a square matrix. Since, the variance-covariance 
matrix of y is now 

D(y) = [In + (w -I)UU'] 0'2 = 0'2 In + UU' G~, an estimate of O'~ is 

obtained as 

(2.32) 

(2.33) 

It is indeed possible that cr~ is negative and wis negative. However, we 

take the absolute value of was an estimate of w. 

3 Outliers in Some Specific Designs 

In the last section, we have derived Cook-statistic for outlier detection in 
general linear models. In the present section, we apply this test statistic to 
designs for both one-way and two-way elimination of heterogeneity settings. 

3.1 Outliers in Designs for One-Way Elimination of Heterogeneity 

3.1.1 Some Preliminaries 

Consider the usual intra-block model of n-observations 

y=J.ll+d'''C +D'I3+e (3.1) 

with E (e) =0 and D (e) =~ In 

Here 6,' is an n x v (0 - 1) design matrix for treatments, D' is an 
n x b (0 - 1) design matrix for blocks, J.l is the general mean, "C is a 
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v-component vector of treatment effects and J3 is a b-component vector of block 
effects. Also, A'l = 1, D/I = 1, Al = r, DI = k, where r = (rl...., rv)' and 
k =(k[, .'" kb)' are the vectors of replications and block sizes, respectively. We 
also define N = AD' = ({nij», where the non-negative integers njj denote the 

number of times i-th treatment appears in the j-th block; L.njj = rj, 
J 

Vi = 1, ... , v; L. njj = k j'V j = I, ... , b. Here the parameter vector of interest is 
i 

't, and the normal equations for 't is obtained from (2.4) as 

c't't =Q't (3.2) 

where c't=ABA', Q't =AByand B I-D{D/D)-ID' (3.3) 

3.l.2 Single Outlier in Binary Block Designs 

Cook-statistic: Without any loss of generality we assume that the 
observation pertaining to the first treatment in the first block is an outlier. Then 
the incidence matrix N can be written as 

(3.4)N=[1 Ell
f No 

where, f is a (v - I) component (O I) vector of incidence of remaining (v-1) 
treatments in the first block, E is a (b - I) component (0 - I) vector of incidence 
of the first treatment in the remaining (b - I) blocks and No is the incidence 
matrix of the remaining (v - I) treatments in the remaining (b - 1) blocks. 

The matrix L. given in (2.22) becomes in the present case as 

1 

L. =ABU1= J.Jkl - l ] = (kl-I)2U (3.5)O
kll -f l k, ) 

(3.6)where Uo =Ik,(k, -1) r V' [k~f 1] 

I Ik, 1 (/C+ Q l' · ulBu, = ~ and L. a) 0) -uIBy) = u,Vy = -rl 

where rt is the first ordinary residual. Thus from (2.28) we get 
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DH - d U~C;Uo t~ - d D (3.7)
1 - 0 U~C;Uo v-I - 0 1 

where t~ is the Studentized residual for the first observation 

(3.8) 

and Dl is the corresponding Cook-statistic under the homoscedastic model. 

Lemma 3.1. Dr s Dl 

Proof: do given in (3.8) can alternatively be written as 

d, =[l+(W-1 I-t Jll+(W +- :}-U~C:UO)l 
Since the residual design after deleting the outlying observation remains 

connected, (1- U~C;Uo) > 0 (cf. Dey [6]). Again w > 1, therefore do s 1. 

Hence the proof follows from (3.7). 

Remark 3.1. From Lemma 3.1 it is clear that an observation which is an 
outlier under mean-shift model may not be so under variance-inflation model. 
This was also observed by Cook et al. [4] in case of regression model. 

3.1.3 Multiple Outliers in Variance·inflation Model 

If the magnitude of the variance of each outlying observation, i.e., Wi is 

known then the expression for D~ given in (2.28) can be directly used for 

testing the influence of these outliers. But if the values of w/s are unknown, 
then these are to be estimated from the data, which is extremely difficult. 
However, a convenient formula for estimating the magnitude of inflated 
variance can be obtained once we assume the equality of these magnitudes, and 
for that the estimating procedure is given in Section 2. Thus replacing the 
matrices Ca and B in the expression (2.28) by appropriate matrices for designs 

I 

for one-way elimination of heterogeneity setting we can easily test for outliers. 

Remark 3.2. Proceeding on the same lines as for designs for one-way 
elimination of heterogeneity, we can easily show that the Cook-statistic for 
designs for two-way elimination of heterogeneity can be written as 

--_.....__...­
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where 

(3.9) 

• 1 (I);do= 1+ -w g.1 U·C+ U·[{1-(l-W)g2f~1[ 1-(I-w)g2 i 9, i 
1 

g, is the norm of the vector X;Bu" gz is the i-th diagonal element of B, Dj is 

the corresponding Cook-statistic under 'mean-shift' model. Here the matrices 

C:,, XI and B are to be changed appropriately with the corresponding matrices 

of designs for two-way elimination of heterogeneity. 

4. Discussion 

In this section, we discuss various aspects of heteroscedasticity in data 
generated from designed experiments. We begin with the following data set. 
Table 1 contains the grain yield (in Kg.) of rice variety IR8 with six different 
rates of seeding, from a Randomized Complete Block Design experiment with 
four replications. Figure within the parentheses indicates the observation 
number. 

Table 1. Grain yield of rice variety IR8 (in Kg.) 

Treatment N0'II-__~__..,..__~R:;:.epI:.:I;:;;ic;..;;atrio;;.;;n:...:N:...;.o::.;;._____..,..__-:--__ 
. 1 2 I 3 4 

1 5113(1) 5398(7) 5307(13) 4678(19) 
2 5346(2) 5952(8) 4719(14) 4264(20) 
3 5272(3) 5713(9) 5483(15) 4749(21) 
4 5164(4) 4831(10) 4986(16) 4410(22) 
5 4804(5) 4848(11) 4432(17) 4748(23) 
6 5254(6) 4542(12) 4919(18) 4098(24) 

We compute the Cook-statistic given in (3.7) for all the 24 observations. 
The observations are numbered block wise in the ascending order of treatments. 
The largest value of Cook-statistic among the 24 observations is 0.018 and it 
pertains to observation number 8 corresponding to the treatment number 2 in the 
second block. The table value of F for 5 and 16 degrees of freedom and at 5% 
level of significance is 0.21. It, therefore, follows that none of the 24 
observations is influential due to inflated variance. 

We now consider the possibility of the presence of two outliers. We 
calculate Cook-statistic for two observations obtained from (2.27) for all 
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possible pair of observations. It is found that the maximum value of Cook­
statistic is 0.201 corresponding to the pair of observations (2, 8). Again we find 
that two observations at a time are not influential. Naturally, a question may 
arise as to whether the data really exhibits heteroscedasticity? To ascertain this 
we construct a simple F-test taking mean square error (rnse) for 2 outlying 
observations and rnse for remaining 22 observations and perform all possible 

n C2 F-tests. Following pairs of observations are found to be significant: (2,13), 
(3,6), (3, 13) (5, 10), (7, 24), (8, 12), (8, 17), (8, 19), (8, 20), (8,22), (8, 24), 
(9,17), (9, 20), (9, 22), (9, 24), (14,19),04,21), (14, 23), (17, 22) and (21, 23). 
This result reveals one point clearly that the heteroscedasticity may not always 
affect the estimation of parameters. Even if heteroscedasticity is confirmed, we 
should not analyze the data assuming the model as heteroscedastic. Instead, we 
should check whether this heteroscedasticity really affects the parameter 
estimation or not. The present study provides a statistical tool to assess the 
influence by the presence of inflated variance of a few observations. If the 
heteroscedasticity of some observations does not affect the parameter 
estimation, we do not bother about their presence. We can as usual carry out our 
analysis assuming the model as homoscedastic. 

Generally, in a particular situation we expect the presence of only a few 
outlying observations. For detecting t outliers through this statistic, one has to 

consider Cook-statistic for all nc t sets. But before analysing the data one can test 

for heterogeneity of error variance. Some simple tests can be constructed for this 
purpose. For example, if Wi'S are all equal, then one can construct an F-test as 
described earlier. This can also be generalized to the case when all Wi'S are not 
equal. Thus one can identify the subsets of data, in which heteroscedasticity is 
present, and Cook-statistic can be applied to that particular subset and not to all 
the n Ct subsets. 

In general if heteroscedasticity is confirmed, we take some appropriate 
measures such as variance stabilizing transformations and so on. But before 
applying transformation, one should check whether this heteroscedasticity is 
really influential in terms of parameter estimation. If this heteroscedasticity is 
not influential, we need not transform the data. 

Another point worth noting is that sometimes heteroscedasticity arises due 
to the fact that some important covariates are not included in the model. For 
example inflated variance may occur due to heterogeneous plots within a block 
as explained in the introduction. But variance may not be inflated for all the 
plots. Moreover, it may not happen in all the blocks. Thus, one should identify 
the outlying observations in a particular block and then test whether they are 
influential or not. If they are influential, then one can include size or some other 
character of plot to ensure homoscedasticity. 
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