
1.	 INTRODUCTION
It is well established that for estimating the 

population mean of a study variable, the transformation 
on auxiliary variable(s) is widely used for obtaining 
precise and efficient estimators, which outperform 
the usual unbiased estimator (i.e., the sample mean). 
Over the years, considerable developments have been 
made by several authors for the estimation of mean 
by utilizing transformed auxiliary variable(s) under 
various sampling designs, for instance, simple random 
sampling (SRS), two-phase sampling, and so on. Some 
noteworthy contributions under SRS design have been 
made by Sisodia and Dwivedi (1981), Upadhyaya and 
Singh (1999), Singh (2003), Singh and Tailor (2003), 
Kadilar and Cingi (2004), Gupta and Shabbir (2007), 
Vishwakarma et al. (2014), Vishwakarma and Kumar 
(2015), and Kumar and Vishwakarma (2017a).

The theory of estimation of mean has a significant 
role in various disciplines of research including 
agriculture, demographic studies, meteorology, and 
other diversified fields. For instance, the estimation 
of: average agricultural production, average life span 

of a species, average annual rainfall, and much more. 
The estimation theory is also widely applied in surveys 
dealing with small area estimation (SAE) problems.

To deal with the estimation of mean, the information 
on auxiliary variable(s) is obtained through various 
sources such as administrative records, census surveys, 
past experience, and so on. Sometimes, the prior 
information on auxiliary variable(s) is not available, and 
in that case the two-phase sampling design is utilized 
at the estimation stage. The concept of two-phase 
sampling was first introduced by Neyman (1938). The 
procedure of two-phase sampling design for estimating 
the population mean of a study variable involves two 
steps: (i) selecting a preliminary large sample (known 
as the first-phase sample) of size n′  from a population 
consisting of N units for measuring the mean(s) of the 
auxiliary variable(s), and (ii) selecting a subsample 
(known as the second-phase sample) of size n from the 
preliminary sample of size n′  for measuring the means 
of both the study variable and the auxiliary variable(s).

Some significant contributions under two-phase 
sampling design have been made by Sukhatme (1962), 
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Srivastava (1970), Chand (1975), Sisodia and Dwivedi 
(1982), Mukerjee et al. (1987), Singh (2001), Singh and 
Ruiz Espejo (2007), Singh et al. (2007), Vishwakarma 
and Kumar (2016), Kumar and Vishwakarma (2017b), 
and Dubey et al. (2020).

The use of transformed auxiliary variable(s) for the 
estimation of mean has received considerable attention 
by survey statisticians and researchers in the past as well 
as in the recent times. Considering the given fact, an 
attempt is made in this paper to develop a transformed 
class of estimators for the population mean Y  of the 
study variable Y using two auxiliary variables under 
two-phase sampling. The mean square error (MSE) 
criterion is applied for efficiency comparisons of the 
proposed class of estimators with the pre- existing 
estimators. Moreover, the validation of theoretical 
results has been made using an empirical analysis.

2.	 MATERIALS AND METHODS

2.1	 Some Pre-Existing Estimators of Population 
Mean
Sukhatme (1962) developed the following ratio 

estimator under two-phase sampling for the estimation 
of population mean Y  of the study variable Y:

d
R
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x
′ =  

 
,� (1)

where 
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n
ii

x X n
′

=
′ ′= ∑  denotes the first-phase 

sample mean of the auxiliary variable X. Also, 
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n
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1

n
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=

= ∑  denote, respectively, 
the second-phase sample means of the variables Y and 
X.

Srivastava (1970) utilized a scalar quantity α  and 
suggested the following ratio estimator for Y  under 
two-phase sampling:

ds
xy y
x
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Chand (1975) utilized the information on two 
auxiliary variables X and Z, such that X is closely 
related to Y as compared to Z (i.e., 0YX YZρ ρ> > ), and 
developed the following chain ratio type estimator for 
Y :

dc
R
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where 
1

N
ii

Z Z N
=

= ∑  and 
1

n
ii

z Z n
′

=
′ ′= ∑  denote, 

respectively, the population mean and the first- phase 
sample mean of the auxiliary variable Z.

Mukerjee et  al. (1987) defined the following 
regression estimator for Y  under two-phase sampling:

( ) ( )d
MEA yx yzy y b x x b z z′ ′= + − + − ,� (4)

where yxb  and yzb  denote, respectively, the sample 
regression coefficient of Y on X, and the sample 
regression coefficient of Y on Z. Also, 

1

n
ii

z Z n
=

= ∑  
represents the second-phase sample mean of the 
auxiliary variable Z.

Singh and Upadhyaya (1995) suggested a modified 
chain ratio estimator for Y  in two-phase sampling as 
follows:
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where ZC  is the coefficient of variation of the 
auxiliary variable Z.

Singh (2001) developed a chain type estimator for 
Y  in two-phase sampling as follows:

Z
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,� (6)

where Zσ  is the standard deviation of the auxiliary 
variable Z.

Upadhyaya and Singh (2001) developed a modified 
chain ratio estimator for Y  in two-phase sampling as 
follows:
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where 2( )zβ  is the coefficient of kurtosis of the 
auxiliary variable Z.

Singh et  al. (2007) utilized the information on 
correlation coefficient between the auxiliary variables 
X and Z, and suggested the following chain ratio-type 
estimator for Y :

XZ
SEA

XZ
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x z

ρ
ρ
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where XZρ  is the correlation coefficient between 
the variables X and Z.

Singh and Choudhury (2012) suggested the 
following exponential chain ratio estimator for Y :
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( )
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Singh and Majhi (2014) suggested the following 
exponential type estimator for Y :

expSM
x Z zy y
x Z z
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,� (10)

Mehta and Tailor (2020) developed the following 
chain ratio type estimator for Y :
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To the first order of approximation, the mathematical 
expressions for Biases of various estimators described 
above are as follows:
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Moreover, to the first order of approximation, 
the mathematical expressions for MSEs of various 
estimators described above are as follows:
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Furthermore, the minimum attainable MSE of the 
estimator dsy  is given by

( )2 2 2
min 1 3( )ds Y YXMSE y Y C f f ρ= − .� (34)

The notations used are as follows:
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2.2	 Proposed Class of Estimators
Extending the works of Singh et  al. (2007), and 

Mehta and Tailor (2020), we propose the following 
transformed class of estimators for population mean Y  
under two-phase sampling:

x ZT y
x z

α γ
α γ

′  + =    ′ +  
,� (35)

where α and γ are the scalars, which may be either 
real numbers or functions of some known parameters 
of the auxiliary variable(s).
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Some of the well-known existing estimators, as 
mentioned in Sub-section 2.1, are observed to be the 
members of the proposed class T on assigning suitable 
values to the scalars α and γ in (35), as demonstrated in 
Table 1.

Table 1. Members of the proposed class T

Sl.
No.

Authors Estimators Assigned values 
of scalars in the 
proposed class T

α γ
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2.3	 Bias and MSE of the Proposed Class
To obtain the Bias and MSE of the proposed class 

T, we consider
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Now, expressing T in terms of 0e , 1e , 1e′  and 2 ,e′  
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Multiplying out, simplifying, and retaining the 
error terms up to the second degree in (37), we have
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Taking expectation on both sides of (38), and using 

results of (36), we obtain the Bias of the proposed class 
T up to the first order approximation as follows:
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Squaring both sides of (40), taking the expectation 

and using results of (36), we obtain the MSE of the 
proposed class T to the first order of approximation as: 
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The optimum value of ψ  for which the MSE of the 

proposed class T in (41) is minimized, is given by:

,YZ Y
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Z

C
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ρ
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and hence the minimum attainable MSE of T is 
given by
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Thus, we establish the following theorem.
Theorem 2.3.1 To the first order of approximation,
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with equality holding if ( ) .YZ Y ZC Cψ ρ=

2.4	 Efficiency Comparisons
It is well known that the variance of sample mean 

y  under simple random sampling without replacement 
(SRSWOR) scheme is given by

2 2 2
1 1( ) .Y YVar y f S f Y C= = � (45)
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For making efficiency comparisons of the 
proposed estimator T with the well-known pre-existing 
estimators, we obtain the following conditions by 
utilizing equations (23) to (33), (41), and (45):
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2.5	 Cost Function Analysis
For obtaining the optimum sample sizes of the 

first-phase and second-phase samples, we consider a 
cost function of the form:

1 2c c n c n′= + � (58)
where c is the total sampling cost. Also, 1c  is the 

cost per unit associated with the first-phase sample of 
size n′ , and 2c  is the cost per unit associated with the 
second-phase sample of size n. 

The optimum values of n′  and n  which minimize 
the MSE of the proposed class T for a fixed cost 0 ,c c≤  
are obtained on using a Lagrangian function of the 
form:

1 2 0( ) ( )L MSE T c n c n cλ ′= + + − � (59)
where λ  is the Lagrange’s multiplier. 
Now, from (41), we have

( )
( )

2 2 2 2
1 3

2 2 2
2

( ) 2

2

Y X YX Y X

Z YZ Y Z

MSE T f Y C f Y C C C

f Y C C C

ρ

ψ ψρ

= + − +

−

2 2
2 2 2 2

1 3 22 22 2X Y X Z Y Z
Y YX YZ

S S S S S Sf S f Y f Y
Y X Y ZX Z

ρ ψ ψρ
   

= + − + −   
   

( ) ( )2 2 2 2 2 2
1 3 1 1 2 2 22 2Y X YX Z YZf S f R S R S f R S R Sψ ψ= + − + −

where the notations used are as follows:

1

2

, , , ,
, , .

Y Y X X Z Z

YX YX Y X YZ YZ Y Z

C S Y C S X C S Z R Y X
R Y Z S S S S S Sρ ρ

= = = =

= = =

Hence, on simplification, we get

21 1 1 1 1 1( ) YMSE T S
n N n n n N

ξ τ     = − + − + −     ′ ′     
� (60)

where
2 2

1 12X YXR S R Sξ = − , and 2 2 2
2 22Z YZR S R Sτ ψ ψ= − .

On substituting (60) in (59), we get
2

1 2 0
1 1 1 1 1 1 ( )YL S c n c n c
n N n n n N

ξ τ λ      ′= − + − + − + + −     ′ ′     
� (61)

Now, differentiating L  with respect to n′  and n  , 
equating the results to zero, and then using (58), we 
obtain the optimum values of n′  and n  as follows:

1 2

cn
c c A

′ =
+

� (62)

1 2

c An n A
c c A

′= =
+

� (63)
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( )
( )

2
1

2

where Yc S
A

c

ξ

τ ξ

+
=

− .

Hence, on substituting the values of n′  and n  from 
(62) and (63) in (60), we obtain the optimum MSE of 
the proposed class T as 

21 2 1 2

1 2 1 2

( ) ( )1( )

( ) ( ) 1

opt Y
c c A c c AMSE T S

Nc A c A

c c A c c A
c c N

ξ τ

  + +  = − + −  
    

  + +  + −  
    

( )2 21 2( ) 1 1 11Y Y
c c A S S

c NA A
ξ τ τ

 +  
= + − + − +  

  
� (64)

In a similar manner, the optimum values of n′  and 
n  for various pre-existing estimators are obtained, 
along with their optimum MSEs, and the findings are 
presented in Table 2.

The notations used in Table 2 are as follows:

( )2
1 1 2 2

1 1 1 1
2 1

; 2Y
YX X

c S
A R S R S

c

ξ
ξ

ξ

−
= = − ,

Table 2. Optimum n′  and n along with the optimum MSEs of various estimators for fixed cost 0c c≤

Estimators n′ n Optimum MSEs

y ---

2

c
c

22 1
Y

c S
c N

 − 
 

d
Ry

1 2 1

c
c c A+

1

1 2 1

c A
c c A+

1 2 1 2 2
1

1 1

( ) 1 1 11Y Y

c c A
S S

c NA A
ξ

  +  − − −      

dsy

1 2 2

c
c c A+

2

1 2 2

c A
c c A+

1 2 2 2 2
2

2 2

( ) 1 1 11Y Y

c c A
S S

c NA A
ξ

  +  − − −      

dc
Ry

1 2 3

c
c c A+

3

1 2 3

c A
c c A+

( )1 2 3 2 2
1 1

3 3

( ) 1 1 11Y Y

c c A
S S

c NA A
ξ τ τ

  +  + − + − +      

d
MEAy

1 2 4

c
c c A+

4

1 2 4

c A
c c A+

1 2 4 2 2
3

4 4

( ) 1 1 11Y Y

c c A
S S

c NA A
ξ

  +  − − −      

SUy

1 2 5

c
c c A+

5

1 2 5

c A
c c A+

( )1 2 5 2 2
2 2

5 5

( ) 1 1 11Y Y

c c A
S S

c NA A
ξ τ τ

  +  + − + − +      

Sy

1 2 6

c
c c A+

6

1 2 6

c A
c c A+

( )1 2 6 2 2
3 3

6 6

( ) 1 1 11Y Y

c c A
S S

c NA A
ξ τ τ

  +  + − + − +      

USy

1 2 7

c
c c A+

7

1 2 7

c A
c c A+

( )1 2 7 2 2
4 4

7 7

( ) 1 1 11Y Y

c c A
S S

c NA A
ξ τ τ

  +  + − + − +      

SEAy

1 2 8

c
c c A+

8

1 2 8

c A
c c A+

( )1 2 8 2 2
5 5

8 8

( ) 1 1 11Y Y

c c A
S S

c NA A
ξ τ τ

  +  + − + − +      

Re
dcy

1 2 9

c
c c A+

9

1 2 9

c A
c c A+

( )1 2 9 2 2
4 6 6

9 9

( ) 1 1 11Y Y

c c A
S S

c NA A
ξ τ τ

  +  + − + − +      

SMy

1 2 10

c
c c A+

10

1 2 10

c A
c c A+

( )1 2 10 2 2
6 6

10 10

( ) 1 1 11Y Y

c c A
S S

c NA A
ξ τ τ

  +  + − + − +      

MTy

1 2 11

c
c c A+

11

1 2 11

c A
c c A+

( )1 2 11 2 2
7 7

11 11

( ) 1 1 11Y Y

c c A
S S

c NA A
ξ τ τ

  +  + − + − +      



107Manish Kumar et al. / Journal of the Indian Society of Agricultural Statistics 76(2) 2022  101–110

( )2
1 2 2 2 2

2 2 1 1
2 2

; 2Y
YX X

c S
A R S R S

c

ξ
ξ α α

ξ

−
= = − ,

( )
( )

2
1 2 2 2 2

3 1 1 1 2 2
2 1

; 2 , 2Y
X YX Z YZ

c S
A R S R S R S R S

c

ξ
ξ τ

τ ξ

+
= = − = −

−
,

( ) ( )
2

1 3 2 2 2
4 3

2 3

; 2Y
Y YX YZ YX YZ XZ

c S
A S

c

ξ
ξ ρ ρ ρ ρ ρ

ξ

−
= = + − ,

( )
( )

2
1 2 2 2 2 2

5 1 1 2 1 2 1 2
2 2

; 2 , 2Y
X YX Z YZ

c S
A R S R S R S R S

c

ξ
ξ τ ψ ψ

τ ξ

+
= = − = −

−
,

( )
( )

2
1 2 2 2 2 2

6 1 1 3 2 2 2 2
2 3

; 2 , 2Y
X YX Z YZ

c S
A R S R S R S R S

c

ξ
ξ τ ψ ψ

τ ξ

+
= = − = −

−
,

( )
( )

2
1 2 2 2 2 2

7 1 1 4 3 2 3 2
2 4

; 2 , 2Y
X YX Z YZ

c S
A R S R S R S R S

c

ξ
ξ τ ψ ψ

τ ξ

+
= = − = −

−
,

( )
( )

2
1 2 2 2 2 2

8 1 1 5 4 2 4 2
2 5

; 2 , 2Y
X YX Z YZ

c S
A R S R S R S R S

c

ξ
ξ τ ψ ψ

τ ξ

+
= = − = −

−
,

( )
( )

2 2 2 2 2
1 4 1 2

9 4 1 6 2
2 6 4

; ,
4 4

Y X Z
YX YZ

c S R S R SA R S R S
c

ξ
ξ τ

τ ξ

+
= = − = −

−
,

( )
( )

2 2 2
1 2 2 2

10 1 1 6 2
2 6

; 2 ,
4

Y Z
X YX YZ

c S R SA R S R S R S
c

ξ
ξ τ

τ ξ

+
= = − = −

−
,

( )
( )

2
1 2 2 2 2 2

11 1 1 7 5 2 5 2
2 7

; 2 , 2Y
X YX Z YZ

c S
A R S R S R S R S

c

ξ
ξ τ ψ ψ

τ ξ

+
= = − = −

−
.

3.	 RESULTS AND DISCUSSION

3.1	 Empirical Analysis
To examine the efficiency of the proposed class T 

as compared to the pre-existing estimators, we have 
considered three real population datasets. The analysis 
has been done using Wolfram Mathematica software. 
The descriptions of the populations, along with the 
values of respective parameters, are given below:

Population I- [Source: Anderson (1958)]
Y: Head length of second son,
X: Head length of first son,
Z: Head breadth of first son,
N=25, 10, 7, 183.84, 185.72, 151.12,n n Y X Z′ = = = = =

2( )

0.7108, 0.6932, 0.7346, 0.0546,
0.0526, 0.0488, 2.6519.

YX YZ XZ Y

X Z z

C
C C
ρ ρ ρ

β
= = = =
= = =

Population II- [Source: Handique (2012)]
Y: Forest timber volume in cubic meter (Cum) in 

0.1 ha sample plot,

X: Average tree height in the sample plot in meter 
(m),

Z: Average crown diameter in the sample plot in 
meter (m),

N=2500, 200, 25, 4.63, 21.09, 13.55,n n Y X Z′ = = = = =

0.79, 0.72, 0.66, 0.95, 0.98,
0.64.

YX YZ XZ Y X

Z

C C
C
ρ ρ ρ= = = = =

=

Population III- [Source: Sukhatme and Chand 
(1977)]

Y: Apple trees of bearing age in 1964,
X: Bushels of apples harvested in 1964,
Z: Bushels of apples harvested in 1959,

2 2 2

N=200, 30, 20, 1031.82, 2934.58,
3651.49, 0.93, 0.77, 0.84,

2.55280, 4.02504, 2.09379.
YX YZ XZ

Y X Z

n n Y X
Z
C C C

ρ ρ ρ

′ = = = =

= = = =

= = =

The optimum values of the scalar ψ  are computed 
for the above mentioned populations, and the findings 
are presented in Table 3. Moreover, the values of 
the scalars 1 2 3 4 5, , , , andψ ψ ψ ψ ψ  are obtained for the 
above mentioned populations, and the findings are 
demonstrated in Table 4.
Table 3. Optimum values of the scalar ψ  in various populations

Population I II III

YZ Y
opt

Z

C
C

ρ
ψ =

0.7756 1.0688 0.8502

Table 4. Values of the scalars in various populations

Scalars Populations

I II III

1 ( )Z

Z
Z C

ψ =
+

0.9997 0.9549 0.9996

2 ( )Z

Z
Z

ψ
σ

=
+

0.9544 0.6098 0.4093

2( )
3

2( )( )
z

z Z

Z
Z C

β
ψ

β
=

+

0.9999 * *

4 ( )XZ

Z
Z

ψ
ρ

=
+

0.9952 0.9536 0.9998

5
2( )( )z

Z
Z

ψ
β

=
+

0.9828 * *

* Information on 2( )zβ  is not available for the concerned populations.
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The Biases, and percent absolute relative biases 
(PARBs) of various estimators of Y  have been 
computed for the concerned populations, and the 
findings are demonstrated in Table 5. The PARBs are 
obtained on using the following formula:

( )( )( ) 100 100,
E YBiasPARB

Y Y
ϕϕϕ

−
= × = ×

where 

Re, , , , , , , , , , ,

, .

d dc d dc
R ds R MEA SU S US SEA SM

MT

y y y y y y y y y y y

y T

ϕ =

Moreover, the MSEs and percent relative 
efficiencies (PREs) of various estimators of Y  have 
been obtained, and the findings are presented in Table 
6. The PREs are computed with respect to the sample 
mean y  on using the following formula:

( )( , ) 100,
( )

Var yPRE y
MSE

ϕ
ϕ

= ×

where 

Re, , , , , , , , , , ,

, .

d dc d dc
R ds R MEA SU S US SEA SM

MT

y y y y y y y y y y y

y T

ϕ =

Table 5. Biases and PARBs of various estimators of Y

Estimator Population I Population II Population III

Bias PARB Bias PARB Bias PARB

y 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

d
Ry 0.0057 0.0031 0.0364 0.7872 17.9526 1.7399

dsy -0.0006 0.0003 -0.0055 0.1188 -2.0041 0.1942

dc
Ry 0.0116 0.0063 0.0358 0.7742 27.1208 2.6284

d
MEAy ** ** ** ** ** **

SUy 0.0116 0.0063 0.0355 0.7667 27.0929 2.6257

Sy 0.0102 0.0055 0.0340 0.7345 6.9059 0.6693

USy 0.0116 0.0063 * * * *

SEAy 0.0115 0.0062 0.0355 0.7665 27.1046 2.6269

Re
dcy -0.0002 0.0001 -0.0026 0.0566 -2.7434 0.2659

SMy 0.0054 0.0029 0.0351 0.7572 14.8853 1.4426

MTy 0.0111 0.0060 * * * *

T 0.0018 0.0010 0.0340 0.7334 6.8905 0.6678

*Information on 2( )zβ  is not available for the concerned populations, 
**Data is not sufficient.

Table 6. MSEs and PREs of various estimators of Y

Estimator Population I Population II Population III

MSE PRE MSE PRE MSE PRE

y 10.36 100.00 0.7661 100.00 122303.00 100.00

d
Ry 8.46 122.54 0.3831 200.01 87929.70 139.09

dsy 8.18 126.67 0.3435 223.02 83125.30 147.13

dc
Ry 5.80 178.82 0.3371 227.27 43689.90 279.93

d
MEAy 9.23 112.25 0.5009 152.95 110763.00 110.42

SUy 7.59 136.60 0.7188 106.59 77081.90 158.67

Sy 5.71 181.60 0.3454 221.80 54553.70 224.19

USy 5.80 178.83 * * * *

SEAy 5.79 179.14 0.3375 227.04 43685.60 279.96

Re
dcy 5.87 176.54 0.3614 212.00 49351.30 247.82

SMy 5.92 175.09 0.3500 218.91 50019.90 244.51

MTy 5.76 179.94 * * * *

T 5.55 186.65 0.3369 227.39 42273.10 289.32

*Information on 2( )zβ  is not available for the concerned populations.
Bold values indicate the maximum PREs.

3.2 Outcomes of the Analysis
From Table 5, it is revealed that the sample mean 

(‌ y ) is an unbiased estimator of the population mean 
(‌Y ), whereas the proposed class T as well as the other 
existing estimators are biased estimators of Y . Hence, 
the following results are obtained from Table 5:

(i) In population I, we have
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

d
SM R S MT SEA

dc
SU US R

B T B y B y B y B y B y

B y B y B y

< < < < < <

< <

(ii) In populations II, we have
( ) ( ) ( ) ( ) ( ) ( ) ( )dc d

S SM SEA SU R RB T B y B y B y B y B y B y< < < < < <

(iii) In population III, we observe that:
( ) ( ) ( ) ( ) ( ) ( ) ( )d dc

S SM R SU SEA RB T B y B y B y B y B y B y< < < < < <

(iv) In all the three populations, the 
Biases of the estimators dsy  and Re

dcy  are 
negative. Moreover, in populations I and II, 
we observe that: Re( ) ( ) ( ),dc

dsB y B y B ζ< <  where
, , , , , , , , .d dc

R R SU S US SEA SM MTy y y y y y y y Tζ =
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However, in population III, it is observed that 
Re( ) ( ) ( )dc

dsB y B y B ζ< < .
(v) In all the three populations, the patterns observed 

in Biases as mentioned above in (i), (ii), and (iii) also 
prevail for PARBs. Moreover, in populations I and II, 
it is observed that Re( ) ( ) ( )dc

dsPARB y PARB y PARB ζ< <  . 
Also, in population III, it is observed that 

Re( ) ( ) ( )dc
dsPARB y PARB y PARB ζ< < .

Furthermore, the following results are obtained 
from Table 6:

(i) In all the three populations, the proposed class 
T has minimum MSEs, and hence consequently the 
maximum PREs, as compared to the sample mean ( y ) 
and the other existing estimators.

(ii) Among the members of the proposed class T, 
the MSEs of estimators dc

Ry  and SEAy  are nearly the 
same in the respective populations I and II. However, 
in population III, the MSEs of estimators dc

Ry  and SEAy  
vary considerably. 

(iii) In population I, the MSE of Singh (2001) 
estimator Sy  is minimum and nearly the same as that 
of some other members of the proposed class T, for 
instance, MTy , SEAy , USy , and dc

Ry . Moreover, among 
the members of the proposed class T, the MSEs of 
Chand (1975) estimator dc

Ry  is least as compared to 
the other members in the population II. Furthermore, 
in population III, Singh et al. (2007) estimator SEAy  has 
minimum MSE as compared to the other members of 
the class T.

(iv) In all the three populations, the sample mean 
( y ) has maximum MSEs and consequently the 
minimum PREs as compared to that of the proposed 
class T, and the other existing estimators. 

4.	 CONCLUSION
On the basis of results of Table 5, we conclude that 

the proposed class T is positively biased in all the three 
populations, and has minimum bias as compared to the 
other positively biased estimators, in the concerned 
populations. Furthermore, on the basis of results 
of Table 6, we conclude that the proposed class T 
outperforms the sample mean ( y ) and the other pre-
existing estimators. Moreover, it has been established in 
Sub-section 2.2 that the proposed class T encompasses 
a wide range of members on assigning specific values 
to the scalars andα γ . The Biases and MSEs, along 
with the PARBs and PREs, of the members of proposed 

class T are compared among themselves as well as with 
the sample mean ( y ) and the other existing estimators, 
and the findings are demonstrated in Tables 5 and 6, 
respectively.

Also, the optimum sample sizes of the first-phase 
and second-phase samples, under a specified cost 
function, have been obtained for the proposed class 
T as well as for the other pre-existing estimators of 
population mean Y . In addition, the optimum MSEs 
have been computed for the specified cost, and the 
findings are elaborated in Sub-section 2.5.

In view of the theoretical and empirical results, 
we conclude that the proposed class T is superior to 
the other pre-existing estimators, and hence is more 
applicable for the estimation of population mean Y  of 
the study variable Y.
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