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§1. Introduction—A Brief Historical Survey

The problem of the enumeration of Latin squares was first undertaken
by Euler (1782) in searching for a 6x6 Gra:co-Latin square. Using
an exhaustive process, he found 1, 1, 4 and 56 'standard' Latin squares-^
1.e., those with the letters of the first row and first column in alpha
betical order—of sides 2, 3, 4 and 5 respectively.

Cayley (1890) suggested the recognition of groups of squares by
means of the permutation .which effects passage, from one row to '
another, and he correctly enumerated the Latin squares of sides
2, 3, 4 and 5. ' , .

Tarry (1900), using an exhaustive process based on the relations
between pairs of rows, showed that there are exactly 17 distinct
groups of 6x6 Latin squares, and that they number 9408 in .all.

Fisher and Yates (1934) enumerated the 6x6 Latin squares by
the method of intramutation and transformation sets, and they also
found 9408 standard squares of 17 types, none of the 17 types having
Grffico-Latin solutions.
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Norton (1939), using the method of species and intercalates,
presented, in his own words, " an extensive—-possibly an exhaustive—
study, of 7x7 Latin and higher squares He found 16,927,968
different standard 7x7 Latin squares.

MacMahon (1915) gave a complete algebraic solution of the
problem of enumeration of Latin squares of any order. His method
is, equivalent to determining by exhaustive trial all the possible ways
of: writing a Latin square. After demonstrating the determination of

;the number of Latin squares of side 4, MacMahon says of his method,
' the calculations for higher orders become impracticable '

It is the object of this paper to' exhibit a simpler alternative
geheral solution, based on MacMahon's operators, of the problem

~--it::clirectly enumerating the standard l.atin squares of any order;
and" t®.establish two new theorems of general applicability introducing
considerable fui^ther simplifications in the use of the formula. Also
the eaunieration of the 6X6 Latin squares has, in this paft of the
paoer, bcjn carried out in detail.

§2. MacMahon's Method of Differential Operators

Before presenting the modification of .and other simplifications in
MacMahon's method, it is now essential to introduce certain notations
and definitions, together with an outline leading to his enlimerating
formula.

(L) Notation and Definitions

Def. 1. Let thep-part partition of weight )v be denoted
as usual by the symbol.

.-A"") =.
where

P2^2-^ '•••+ M'. and 771+772+ . . .+ 77,= p.

Def. 2. Symmetric Function.—Let further this partition represent
the following monomial symmetric function of the a's of ' weight' w.

• •Ps"'')— ^ •+....^„j),

where the p's are fixed and the summation extends over all the ways
of assigning the p subscripts, including permutations, from the n
available. .

Def. 3. Elementary Symmetric Function.—Iht

ay, a-i, ... a„
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defined by

= Ea-^a^ . . . a, = (1'), = 1, 2,'. . . «;

are called ' Unitary' or 'Elementary' syrnmetric functions.

Def. 4. Perfect Partition.—It is a partition such that, using its
parts, one and only one partition of every lesser number can be
formed.

e.g.—^^(4P) is a perfect partition of 7. •

The general form of a perfect partition is

Thus, putting . •

, ^ = = C =... - 1,

• , 1,2, 2^ . 2"-\

is,a perfect partition of 2"— 1, With no repeated part.

Def. 5. Composition.—This^ is a partition in which account is
taken of the order of the different parts in the partition.

Thus (21)' and (12) are different compositions of 3;

(ii) the D-OperatorS

Tt is Well known that any monomial symmetric function &f Weight
ii^ may be expressed as a linear function of the products of weight w
of the elementary symmetric functions a^, a.,, i7g, and conversely.

Let us then consider the symmetric function equality:

• • P"') = ^ (ax> a.^, ^3, . ..) ^ say (2.1)
where

a, EH (10.
Since, by definition, •

(x — a^) (x — a,). . .(x — a„) eee x"—

multiplication 'on both sides by (x —/x) yields; . ' '

(x —/a) (x - tti) (v - aj). . .(x - a„) = (ai+- /z) x"+

(a,+ /Afli) x"-i- (fl3+ fxa.^ x"-'+ ... + (—)"

+(-)"+^-W, " •
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Hence, introducingjx in (2.1) we obtain the identity

= f (ai+/X, ^2+?3+/^«2> - •)

=;^"+ rli(f> + +..., by Taylor's expansion,

^^2 ^*^3

= 0 .+ ^. D^d) + .D^cf) + • • •!

where

' • Si

(2.2)

(2.3)

and (c/i') stands for the symbolic product dixd^x .-. .s factors.

Equating powers of /x on both sides of the identity, we obtain

-Op, ' j

., etc.

A {Pi"^P "'P5"'- • •) — ^ if 5 is not included among
the parts p^, p.^, p^ ...,

D,{s) = l.
and

(2.4)

Since the effect of the operator Dx on (f> is to delete a part A
from the partition denoting the symmetric function <j), this operator
has bssii called the ' obliterating weight' operator. It will be noticed
that the D-operators obey the commutative law, viz.,

D,D,^D,D,:

(iii) Operation ofDx upon a Product of Symmetric Functions

Let (f>, denote a symmetric function, symbolised by a single
partition, and expressed as a function of the elementary symmetric
functions a^, a.^, 0-^,.. ... Let s take the values 1, 2,... . m, and set. ,

0 j>l. <j>i. ... (f>m-
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As before the introduction of an additional quantity /x in the set-
ttj, tto, a^, .,., transforms , ' . -

^ into (1 +

and
(f), into (1 + /x£>i+ • ••) 4>a> = 1, 2, ... m).

We thus reach the identity

(1 ...) <!>,

X (1-H/x£>^+^^Z>2+. ..) ^2

X ..: ;

X{\ +ixD,+ fi'D,+ ...),l>^. -

Equating coefficients of on both sides, we obtain

where . . • .

2^= Sum over every partition (Ai, X.^, ••• of Ainto m orfewer
parts.

and

2^3= Sum over every permutation of every selection of ,y oyt of
the m factors ^o, . . . ^m--

Writing ' .

. .Dx, . (I'm s ^^1- '̂ 2- •• • <i>m (2-5)

we" shall call

as a ' partition obliterating operator ,

In terms of these operators, our result may be written:

5x0 . (2-6)

Hence the operation is performed upon lij. <b <- ... 'h„, by
abstracting every partition of A in all possible ways from the product,
one part at most being taken from each factor. Clearly, the partition-
operators with rndre than m parts add nothing to the result.
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In terms of compositions, the formula may be written

D\ {<l>v 4>i- •• • =•

where the factors (j)„ (f>«, ,. , remain in this order, and

Ux== Sum over every composition of A into exactly m parts,
admitting zero parts,

and <f>, is unaffected by the symbol Df,.

The Z)-operators are commutative. Hence we may operate, suc
cessively and in, any order, with any number of operators Df^, Df^,

... on the product (ij. rj)^. ... Also the order of the factors
in the operand is irrimaterial to the result,

(•iv) Differential Operators and the Enumeration of Diagrams

We shall now give an example to show how a differential operation
may be dissected into several minor pperations or processes. A group
of operators then leads to various combinations of minor operations.
Each combination may be made to correspond with a lattice diagram
'obeying certain row and column restrictions, and thus the differential-
formula may be used to enumerate such diagrams.

Consider the expression

• • (4 •si • •(w,)'.
The first operation gives 3=' terms, corresponding to the 27 per

muted partitions of xix^x^ into.exactly three parts, zero being reckoned
• as a part.

. Selecting'one of the 27 terms, say

• i- . ^ ^ (xiXoXg) . (XiXoXg) = (. ..V3)(XiX2.)(XiX2X3)
OXi CX2, • "^3

we have before us one of the. 27 minor operations into which the

operatidn of ^ ^ i-'POf (XiX.x,;)^ can be dissected. This
OXo ''Xg

may be diagrammatically denoted as.a first row:

12
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c) • 2) has been performed on the firstthe diagram denoting that

econd.

The second operation on this term yields 2^ terms of the type;

factor and — upon the second.
- SXg

(• -xa) ^ (.ViXo.) ~ ix,x,x,) fe.) say.
The fo successive operations thus produce the 2-row diagram:

12 3 . •

12 3

Finally, in the third operation on this term, only one of the
2.7 minor operations is effective, viz..

The three successive minor operations thus produce the complete
diagram:

12 8

• 12 3

3 •
12

•It is clear that we can select three successive minor operations in

——V ways, since for each such selection unity is
the result, and the result for all combinations of three selections

(s. •k '
Thus the number = (S!)^ enumerates

diagrams with the following property:

(i) The diagrams have .three rows and three columns.

(ii) The numbers 1, 2, 3 pccur in each row and in each column,
but the number of entries jn each cell of the diagram i§
unrestricted.
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In general,' it may be noticed that the successive operators
correspond' to the rows and'the factors of the operand correspond
to the columns of our lattices. It is then apparent that a different
arrangement of the factors in the.operand or the operator, will yield
different types of diagrams, but obviously the enumerating number is
not chaneed.

(v) The Latin Squares Enumeraiiiig Formula of MacMalio'n

Let /„ denote the totality of Latin squares of order*, whether
standard or not standard, and the totality of standard Latin
squares of the «-th order. Then it is well known that

/„ = /7!0;-l)!i?„ (2.8)

. We shall now indicate the derivation of -MacMahon's general
formula for in the form

/„ = D"/_i(l. 2. 2\ ... (2.9)

This can be easily seen from the. .particular case of n ~ A as
follows:

Consider the'expression

• {abcd)\

where the D's are ' obliterating weight' operators and {abed) denotes
the symmetric function •.

Sa,"

Further, in order that P'ck out the numbers, a, b, e, d,
one from each factor of the operand, we must give such values to
ff, b, e, d that' {abed) is the only -partition of a b e + d into
4 or fewer parts, which' involves the parts a, b, e, d repeat:'cl or not.
The simplest solution is obtained when the numbers a, b, c, d are so
chosen that {abed) is a ' perfect' partition of the number a + b + e d.

• Since now {abed) is the only partition of a b e + d into
4 or fewer parts, the summation sign i?, in formula (2.6) drops out,
and we have the operator equivalence •

•(2.10)

In this case, therefore, the formula (2.7) reduces to

{abed)'̂ = ED„ {abed). {abed). (abed). {abed), (2.11)
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where the sum is- taken over, every composition, -which is obtainable
from the single partition (abed). • : .

In other words, we have to delete every permutation of n, h,,c, d
dropping one and only'one letter from each factor in the symmetric-
function product: " . ' ' '

iabcd) , (abed) . (abed) . (abed),

and keeping the factors in .this order. We have, therefore, broken
up the operation ,into 4.! minor operations.

A typica] term would be .

. (a.cd)(.bed)(abe.)(ab.d).

This may be diagrammatically represented as a 1st row:

- b a d c-

On each such term, we apply the second operation The
letters dropped out give us the second row .of our diagrams; of the

type: • - '

b a- d c '• •

c b ' a d -

and the symmetric-function product term is now

(a..d)(,.ed)(.bc.)(ab.:). . • • • '

On every such term, we apply the 3rd operation The. letters
deleted generate the 3rd row of our diagrams of the type

b a d c

• c b a d

a d c b-

and the symmetric-function term reduces to

,.(...d)(..c.)(\b..)(a.:.).
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The 4th operation iJa+s+c+s now generates the 4th row and gives
us completed diagrams of the type: ,

' b ' a d c

c ' b .a d

.. ^ d .c -b .

d c b a ,

reducing the symmetric-function term to unity.

The number

D'̂ a+i+c+i {abcdY ' . .

therefore enumerates diagrams of the type:

(i) The diagrams have four rows and four columns.

(ii) Every letter a, b/c, d occurs only once in each row and once
in each column.'

i.e., the Latin squares of order four.

The reasoning is obviously quite general, and 7„ the totality of
« X « Latin squares, is enumerated by

Jn —^ !1i+J)2+•••+»"-(/'l'P,)

where {p-^, p^, ... is a perfect partition of the number px+p^_+-... +p„.
The only perfect partition involving distinct parts is given by' the
powers of 2

l,2,2^ 2^ • .

Hence, finally, the. general formula may be written in the form:

i (2.12)
• /„ = (1.2.22...2--1)"

with n\ in - 1)!

(vi) Illustration . ' ;

Ex.- 1. Enumeration, of A X A Latin Squares.—The enumerating
forfnula is, taking « = 4,

. • = -4.^
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I • ...

Using the equivalence Djg = the 1st operation gives:

4! X (248) (148) (128) (124).

The 2nd operation gives

4! X [(48) (48) (12)(12)+(24) (48) (18) (12)+(28) (48) (12) (14)+

+(28) (14) (28) (l4)+(24) (18) (28) (14)+(48) (14) (28) (12),

- +(28) (14) (18) (24)+(24) (}8) (18).(24)+(48) (18) (12) (24)].

The 3rd operation gives, in order: . ,

4! X [4 +.2 + 2 + 4 + 2 + 2 + 2 + 4 + 2]. X(0 (2) (4) (8).

The 4th operation gives, finally

4! X'[4+2 + 2 + 4+'2 + 2 +2 + 4 + 2] x l.

or - • T, = 4\ X 24, -

4! X 24
and R. = = 4.

4! X 3!

Thus there are 4 standard squares of side four. • :

§ 3'. The Modifications of MaciMahon's Formula

It is clear that to find the number of standard squares, we
must first evaluate I„, the number of standard and non-standard squares
by formula (2.12). Since it is known that

/5 = 56 x 5! X.4! = 161,280,

the calculations even for become almost unmanageable. We shall
now derive a formula which gives R„ directly, without the necessity
of'first evaluating/„. • . -

Consider the formula for the 4 x 4 Latin squares:

•®\+s+c+(! (ohc^)^.

Take the 1st operation Since we want standard Latin
squares, the 1st- row must be ' '

a, b,e,d

in alphabetical order, i.e-, we delete ' a ' from the 1st factor, ' b ' from
cl]a 2nd, ' c' frpn} the 3rd and ' d '• frpni the 4th,
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Hence the formula for building up the,last three rows becomes

•^a+Ii+c+d ^ri+6+c+i ^/i+6+c+i ^b.cd) (ctcc/) (^obcf) (obc).

Since the Ist column must also be in alpha:betical order, •

• In the 2nd operation we must delete ' b ' from the 1st factor and
the formula becomes

/^o+ii+c+tf ^o+6+c+(f i^cct) {cibd} (cibc).

In the 3rd operation we must delete ' c' from the 1st factor and
the formula becomes •

£>„+6+,+d (d) iacd) (abd) (abc).

Finally, in the 4th operation, we must delete 'd' from the 1st
- factor and the formula becomes

Ri = D,^i>+c-Da+b+d-Da+,+i (acd) (abd) (abc). (3.1)

The method of proof is quite general, and noting that the
operators are commutative, we may state our result in the form of a
theorem-:

Theorem 1.—The number, of standard Latin squares of side n is
enumerated by the formula '

Rn— ^Pi+Ps+--'+P„-^Pi+MPi+---+t,n'" '

. (Pi, Pa, •• 'Pj (Pi, Pi> Pi, •• ••(Pi,P2, • •-Pn-i) \(3.2)

where {p„ p^, Ps, • • PJ is the perfect partition (1.2.4.8.16.

We shall, for brevity, drop the p's arid write only the suiBxes. Since
the p's have to be deleted, it follows that on working with the same
rules of operation of the D's, it is immaterial whether we-delete the
numbers „

1,2,2=, ...2"-'; . '

or the numbers ' -
1,2, 3,-,../j..

The formula (3.2) may then he written

-R„= -D,,245...ti) • • • ^(ias...n-l)

(134,..«) (1245;..«)...(123...« - 1). (3.3)
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We shall now illustrate the working of this formula Tor the
enumeration of 4 x 4 Latin squares. The work may be compared with
Ex. 1 based on MacMahon's formula.

E\. Irt. Enumeration of A X ALatin squares (Aliter).—From (3.3),
we have • "

-Ri = -^^(134) •^(12J) •-^(123) (^34) (124) (123).

Operation /),i34, gives the terms

(34)'(12) (12) + (13) (24) (12) + (14) (12) (23).

Operation Z) ,12,,) gives the terms

(3) (2) (1) + (3) (1) (2) + (3) (2) (1) + (1) (2) (3).

Operation D ,^23) g'ves, finally
7?, =• 1 + 1 + 1 1 = 4.

Further Simplifications

It is very simple to apply the general formula (3.3) to the enumera
tion of the 5 X 5 Latin squares.

However, we shall now prove two further general theorems, which
apply to squares of any order, and introduce considerable additional
simplifications in the enumeration. ' -

It is convenient to introduce the idea in terms of the formula for
enumerating the 5x5 Latin squares;

R,= (abce) (ahcd).

Consider the operation of Clearly, we can
break up this operation into the following four parts:

Operation Terms'obtained

fi) Wlien is deleted from tlie 1st factor

(ii) „ 'c> ,,

(iii) 'd' ' ' „

(iv) „ 'f' ,, ,,

{(lie) D (cdc) {ahde){abcc)(tibcd)

[side] D (ado) (.abdi)(abce\abcd)

(ace)D (ace) (abde){abu)(.abcd)

{acd) D („cd) (ai>dc){abce){abcd)

The result of the operation is then the sum of the terms
in (i), (ii), (iii) and (iv).
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Let US now denote an element 6 in the /-th row and _/-th column
of a Latin square by the symbol . .

('"> y, 0).

Consider now the totality of standard Latin squares of order 5,
containing the eifiiTients ; , . . .

(2, 2, a), (1, 2, c), (2, 2, d), (2, 2,e)i

i.e., the niinlber of ways of Writing Latin squares under ,the foilbwifig
constraints:

a b c d Ci a h c d e, a b c d a b c d e

b a .. . h c .... b d .. , be,,.

C c ..... c ... . c . . ;.• .

d .... d ... . d . . . . d ... .

e ... . e ... . e ... . e ... .

Denote these numbers by the symbols

, I Q . ) ^6 »

respectively,

Clearly,
+ Cj 'i-Dg 4- £^5'

We shall now prove that

Q = n, = 4.

Proof—\t follows from (i), (ii), (iii), (iv) above that

^5 ^(i+6+c+(i • ^\cde) (^^bde^ (^dbce') (^obcd).

^5 ^a+b+d+e^a+i-rc+e^a+b+c-i-i -^(arfe^ {^bds^ {(Xbce) (^(ibcd}.

^5 -®0+Ii+tf+c-^a+6+c+c^a+6+c+iI •{ace) {abde) {abce)'{abed),

{acd) {abde) {abce) {abed).

Notice that the result in any given case of performing the indicated
operations is a numerical constant independent of the choice of a, b,
c, d, e. Hence, the result would be the same,' if in any one formula,
we replace a, b, c, d, e by any' permutation of these letters,

i
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We note that the interchange of the two letters 'c' and ' d'
converts the formula for C5 into the formula for Z)g—the order of the
factors in theoperator or the operand being immaterial. It immediately
follows that ' '

C5 = D,.

Similarly, the interchange of ' r/' and ' f ' shows that

D, = E,. .

We have therefore established that

and consequently
/?, = /<5 + 3.Q. (3.4)

The- method of proof is quite general, and can be immediately'
extended to squares ofany order. We may, therefore, state our general
result in the form' of:

Theorem 2.—Let the universe of standard Latin squares of order
n, containing the letters a, c, d, e, f, . •. in the cell (2, 2)-be denoted
by ...

Then

= 23, = , V •(^•5)
and

/?„=--4 + (/I-2).. • (3.6)

It will be noticed that the enumeration of

R„ = A„ + C„ + D„ + E„ + F„+... •

has been reduced to the enumeration of A„ and C„ only.

We now pass on to sinjplifications in the enumeration of An or
C„. These simplifications result from a recognition of what may be
termed ' equinutnerous subsefs' of terms at various stages of the
differential operations.

[)oj\ 6.—If among the set of terms obtained after a jD-operation
we can find a subset of terms, each member of which gives, on
performing the remaining £)-operations, the same numerical result,
then the subset consists of ' equinutnerousterms.

Epr recognising such subsets, we shall prove the following
theorem; •
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Theorem 3.—If two terms of a set^ obtained after a D-operation,
are connected by a permutation which leaves the remaining Z)-operators
invariant, then the two terms are equinumerous.

/"rao/.—Denoting the remaining set of operations by the symbol
8, and the two terms by a, /3, we have the formula;:

8 (a) = TVj

8 ifi) = N., say.

The permutation converts a into ^ and keeps 8 invariant. It
therefore converts 8 (a) into 8 (/3).

Since the numerical result of any operation is independent '6'f
perrhutations within its letters, it follows that

• 8(a) = 8(/5) • • ;

i.e.., = ' (3.7.)

We shall now illustrate the use of these -theorems on the enume*
ration of Latin squares of order 5. ' ^

Ex. 2. Enumeration of 5 X S Latin Squares.—Torm\i\dL .y) gives"

- ^5= ^,1345,^,,245,£>,1235,,£><,23,, (1345)'(1 245) (1235) (1234)

The operation Z),t345, gives the following four sets of terms:

(i);(345):(124) (125) (123)-..(Deleting I from the 1st factor)
(345).(125),(123) (124)., .^2

' (ii) (145).(245) (123) (123). .

(145).(124)(235)(123)...;, ( „ 3 „ ) "
(145).(125) (123) (234)... r, . '

• (iii) (135),(245) (123) (1,24).../,

(135). (124) (235) (124).../, ( „ 4 „ )'
(135). (124) (125) (234).../,. .

(iv) (134).(245)(125)(123).../„

(134).(125) (235) (124)...( „ 5 „ ') '

(134). (125) (125) (234).,.•
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From Theorem 2, it will be noted that the sets (ii), (iii) .and
(iv) are equivalent, so that it is tmnecessary to write doWn the sets
(iii) and (iv), and that

^5 — t'l "I" '2] /
and

C5 = -Oti045j-D,i2a5)-®(l,234) I's + U"i"

^ince the order of the factors in- the operand ,is immatferial; it
fdilows that

Next note_ that and /g are connected by the transposition* (45);
Which leaves the operator set

^(124S)-^(1235)^(1234)
invariant.

it follows from Theorem 3, that and fg are equinurnefotis.
Hence

^5 = •0(1245)'̂ (1235)^(1234)

C5 = •Oa246)-^(1235)^(W34) [''s + 2/4].

We now consider the operations on 4 in turn: '

Term ?i.-(123) (124) (125) (345).

D ,1245, gives

(23) (14) (12) (35) -f (23) (12) (15) (34) + (13) (24) (1^) (35)

• _ . +(13) (12) (25) (34).
Last two operations give

1 + r+1 + 1=4.

Term ^3-—(123) (123) (145) (245).

D ,1216, gives -

2 [(23) (13) (15) (24)+(23) (13) (14) (25)]. ^ ••

Last two operations give

2..[1 + 1] = 4:

Tern; ?4.—(123) (124) (145) (235). '

* Interchange of two letters.

G
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^ ,1245, gives:

• (23) (14) (15) (23)+ (23) (12) (14) (35) +(13) (24) (I5) (23)

• • • • + (13) (12) (45) (23).
Last two operations give ^ • ;

2 + 1 + 1-+ 2-6.

it will' i)g noticed that the last two operations can be perfbrined
Simply by inspection. The last operation need not be performed, as
there is only one way of writing the last row, when the previous rows
are?-written' down. The- penultimate operation is easily performed,
when we notice that the part ' 5 ' can be deleted fro^i only one faptor..

.W^i-thus-^obtain
,4g = 2x=4^8'

, C5=.4 +2-X 6 =.16.
From formula (3.4),

;?5.= .45+3.Q

' == 8 + 3.16 ••
= 56. '

§4. The Enumeration of 6 x 6 Latin SquarFS ,

The formula (3.3) gives • .

=•' •0,13456,^(12456)^(12^50 ^(12346)^(1-^346)
(13456) (12456) (12356) (12346) (12345). .

Consider the operation of i)-,1245b,.

This operation can be split up into five parts according as 1, 3,
4, 5 or 6 is deleted from the first factor. .The first two parts give us
the following two sets of terms corresponding to Ag and Co'-

We have

Ae == i'(1245li)^(12L36)0(l-2346,-0,12345)
1(1234)2.(1256)2.(3456)+ (,

+ 2.(1234) (1236) (1245) (1256).(3456) - ' 2U

. +(1235)2.(1246)2.(3456) . ts

+ 2.(1234) (1235) (1246) (1256).(3456)' • - 2t, '
+ (1236)2.(1245)^(3456) h

+ 2.(1235) (1236) (1245) (1246).(34.56).] ' ' •
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Ce —^(12456)^(12S56) |̂12S4C)^(12345)

- [2.(1234) (1235) (1236).(1456) (2456)+

+ (1234)^(1256).(1456) (2356)

+ (1234) (1235) (1246).(1456) (2356)

+ (1234) (1236) (1245).(1456) (2356)

. + (1234) (1235) (1256).(1456)-:(2346)

' + (1235)2.(11246).(1456) (2346)

+.(1235) (1236) (1245).(1456) (2346) •

' • . + (1234) (1^36) (1256);(1456>(23-4S), - • •
,. + (1235) (lb6) (1246),(1456) .(2345)

, ^ + (1236)2. (il245);(1456). (2345).]
|; ' • •• •

We can then use formula,(3.6)', which for « = 6 gives

l| - + • . .(4.ir

• To detect equinunierous terms among the ,we have .now to use
connecting permutations .which keep the operator set

li - • r • ^ '
= ^(12456) ^(12356)^(12340).^(12M6) '

invariant. ,

We obtain,the following equinumerot^s subsets:

i; Table-I

Equiri'umei-ous subsets with i invariant , j .

2t,

ha

hi

h-i

hi

hi

he

Subset

• ir-
Connecting Permutatioli'

lI
(46) (56) -

...... . / ^ '

Subset j

Connecting Peimutatioii;
. 'i- ' /e '-' • '

(56) (46) •

Subset 1 ,

Connecting Permutation

''s <12 he': '

(45) (56) -

ji
Subset . !•

Coniiecting Permutatiori
!l

^9 ^10-.. -^11 ' ^13 ^14 ^15

. . (50) (456) (46) . (456) (45) • ;

N.B.—The arrows indicate liiat the perniutatfon (456) is applied to, the earlier
terms,/.e., to rjo and ^
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We have thus reduced the enumeration of and Cg to the
following:

^6 = ^(i213C)^(]235C)^(12346)^a234r) [3'l + 6/3] (4.2)

and

^6 = -®(l245C»Pa235G)''̂ a234C)^a2346) [2^7 + 3^8 + (4.3)

. We shcill now apply the operation • to the terms
^8> '•9 iin (4.2) and (4,3).

0,12156) • ='O.mse, (1234)^(1256)^(3456) gives

- 4 (-(123) (125) (134) (256) (346)+ - 4 [u, -

•"+•(123) (126) (134) (256) (345) u,

•+(125) (126) (134) (234) (356) u,.

+ (123) (125) (156) (234) (346)

+(123) (126) (156) (234) (345).] u,]

12150,-^2 = £>,12456, (1234) (1236) (1245) (1256).(3456) gives •

' •=[(125)^(136)(234)(346)+(125)(126)(136)(234)(345)+ + w,.
+ (124)(125)(136)(234)(356)+(123)(126)(145)(234)(356) u, + u,-

+ (123)(125)(156)(234)(346)+(123)(124)(156)(234)(356) u,, +

- + (124)(125)(134)(236)(356)+(125)2.(134)(236)(346) . %„ + ^^3

+ (125)(126X134)(236)(345)+(123)(125)(145)(236)(346) u,, + .

.+ (123)(126)(145)"(236)(345)+(123)(124)(156)(236)(345) Kj, +
+ (123)^(156)(245)(346)+(123)(125)(136)(245)(346) 11,, + u,,

+ (123)(126)(136)(245)(345)+(123)(126)(134)(245)(356) + u.,

+ (123)=.(145)(256)(346) + (123)(124)(136)(256)(345)

•+ (123)(124)(134)(256)(356)+(123)(125)(134)(256)(346).].«,, + u,,]

./\.2456,-?7 = (1234) (1235) (1236).(1456) (2456) gives

= 1(123)='.(456)2+

+ (123)^(136)(245)(456)+(123)^(134)(256)(456) , Wo, + t/,,,

+ (123)^(135)(246)(456)+(123)^(145)(236)(456)
+ (123)^(156)(234)(456)+(123)^(r46)(235)(456) w., +
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+ (123)(l34)(!56)(236)(245)-h(123)(134)(145)(236)(256) •, W33 +

+ (123)(135)(146)(236)(245)+(123)(135)(145)(236)(246) W35 + «3o

+ (123)(136)(156)(234)(245)+(123)(1,36)(145)(234)(256) u,, + u,,

+ (123)(135)(156)(234K246) + (123)C135)(146)(234)(256) ' u,, +

+ (123)(136)(146)(235)(245)+(123)(136)(145)(235)(246) u,, +

+ (123)(I34X156)(235)(246)+(]23)(134)(146)(235X256).] U43.+ t'14]

(1234)^(1256).(1456) (2356) gives

=2 [(123)(126)(134)(235)(456)+(123)(125)(134)(236)(456)+ 2[ti,,+ u,,

+ (123)(134)(I46)(235)(256)+(123)(134)(145)(236)(256) " + u,,

+ (123)(146)(156)(234)(235)+(126)(134)(156)(234)(235) + i,,,

+ (123)(145)(156)(234)(236)+(I25)(134)(156)(234)(236)

+ (123)(125)(146)(234)(356)+(123)(126)(]45)(234)(356).] u,, +
• . • i ' "

^ ,12456, (1234),(1235) (1246).(1456) (2356) gives

' =[(123)^(146)(235)(456)+(123)^(124)(356)(456)+ ["55 + "sh

+ (123)(126)(134)(235)(456)+(123)(124)(135)(236)(456)

+ (123)^(145)(246)(356)+(123)(124)(156)(234)(356) , w,; + u,,
+ (123)(126)(145)(234)(356)+(123)(124)(146)(235)(356) u,, + it,,

; + (123)(134)(I56)(235)(246)+(123)(135)(146)(235)b46) + Wg4
-f- (123)(135)(145)(236)(246)+(123)(146)(]56)(2?4)(235) u,, +

+ (126)(135)(146)(234)(235)+(123).(146)2,(235)2 ^

+ (126)(134)(146).(235)2+(126)(135)(145)(234)(236)

+ (124)(135)(156)(234)(236)+(123)(145)(146)(235)(236)

+ (126)(134)(145)(235)(236)+(124)(134)(156)(235)(236).] + u,,]

The reduction of the ii, (i = 1, 2, .. .74) .

We shall now use Theorem 3, to detect equinumerous terms among
the set of //'s. Notice that the connecting permutations which can be
used for the purpose must now keep the operator set

• "5 = -D(1235C)£^(12;i46)^(12il]6) " '
invariant.

"^e notice the following,equinurnerous subsets;,



Table II, Equinumerous subsets with 7} invariant

N.B.—Figures in brackets denote connecting permutations

Subset
No.

, TeiTOS in the Subset . ; ,
Represent
ative Term

1

(/25=!. > "48=1 • "65= 1 ^ ^ ''47 =
"4 «5 "10 "ir. "19 "M I "36 i «37 «39 "41 "44 "62-

(56) '(12)(56) (se), (56) (46) (12) (132)(45) (45) . (456) (56) (450) (46) (23)
"1

2

,

"3 "74 • ' ' • •
(13)

"3

-3

(46) (13) ,
."c

4 /ff fis '^12 " 1 •

(12) (40) (12) (12) ('46) ,
"7 '

5
^ , ^ -> • "03 = 1.

"61="54 = "l) • "17 "21 "23 "33 «35 «38 "40 "42 «43 i "53 •
(46) (12)(46) (46) (132) (451 (456) (56) (456) (46) (23)(45)

. "9

6 , 1/60 11 '^10 ^^-20 ^^24: '^64 •
• (46) (12J (46)' (132) (45).

"11

!, 7 "18 "22 "50 • - '
(46) '(45)

"18

8 "26 • "26

9

• ?/55 = 1
tin '^28 '^29 ^^30 '^31 ^^32 i '̂ ^56 *

(48) (45) (12)(56). (46) (45) - (13)(45)

"27

: 10 "57 =".45 "46 • "58 ' . ' "
(56) (45)

«45

11 "66 = "49 "El "72 • • ' • •
(56) (45)

"49

12 "50 "r,2 ''07 "70^ "71 , "73 '
(56) (456) (23)(56) (46) (465)

"50

13 "68 • "es

Note.—The arrows indicate that the permutations are applied to thp^arlier terms

CO"
INJ

O
C

z
>
r

H

m

5
o

•>
z

•<

o
"n

>
O

2
o
c

C

>
r

>
H
00

d
o
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We have thus reduced the terms Uy u^, ..-"71, to the following
thirteen representative"terms:

Ul, M3, Ug, U'j, Mg, Uii, Uig, Ihyr ":i6> "oO' '̂ 08' (4-4)

The evahmtion of the in the series (4.4)

We shall now evaluate in succession the result of operating with

V= ^(12356)^(12346)^(12315) I

on the terms in (4.4).

(i) T^rm »?.(123) (I25)( 134) (256) (346)
gives Last two operations give

. [(23) (15) (14) (26) (34) + • 1 ' .
+ (23) (12) (14) (56) (34) +2

+ (13) (25) (14) (26) (34) +2
+ (13) (12) (34) (25) (46) +1 •

• + (12) (15) (34) (26) (34) . +2
+ (12) (12) (34) (56) (34)] - +4

Tjw, = 12

(ii) Term v'h = ^.(125) (126) (134)X234) (356)
gives

[(25) (12) (14) (34) (36) +' 1
+ (12) (26) (14) (34) (35) +1
+ (15) (12).(34) (24) (36) +1
+ (12) (16) (34) (24) (35) ' +1
+ (12) (12) (34) (34) (56)] +^

-qUs = 8

(iii) Term vuc. = 77.\125)^(l'36) (234) (346)
^,i235S) gives

j2 [(25) (12) (16) (34) (34)+ 2[2
+ (25) (12) (13) (34) (46) +1

+ (15) (12) (36) (24) (34)] W^l]

••• V"r, = !
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(iv) Term = t?.(125) (126) (136) (234) (345)

£>,12356) gives

. [(25) (16) (13) (24) (34) + . 1

+ (25) (12) (16) (34) (34) + 2

+ (15) (26) (13) (24) (34) + 1

+ (12) (26) (13) (34) (45) . + 1

+ (15) (12) (36) (24) (34). + 1

+ (12) (12) (36) (34) (45)] +2

rjUy = 8

(v) Term vUg = '?.(123) (126) (145) (234) (356)

Diiiiss) gives
[(23) (16) (14) (24) (35)+ 1

+ (23) (12) (14) (34) (56) - +2

+ (13) (26) (14) (24) (35) + 1

+ (12) (26) (14) (34) (35) + 1

+ (13) (12) (45) (24) (36) + 1

+ (12) (12) (45) (34) (36)] +2

JJWg = 8

(vi) Term TjUn = >?.(123) (124) (156) (234) (356)

•0,1235 (i) gives
[(23) (14) (16) (24) (35) + 1

+ (23) (14) (15) (24) (36) + 1

+ (13) (24) (16) (24) (35) +2

+ (13) (24) (15) (24) (36) +2-

+ (12) (24)'(16) (34) (35) - +1

+ (12) (24) (15) (34) (36) . + 1

V"ii =

(vii) Term (123)2.(156) (245) (346)

£>(12350, gives
2 [(23) (13) .(15) (24) (46) + 2 [1

+ (23) (12) (16) (45) (34) + 1

• +(13) (12) (56) (24) (34)] +2]-

V'-hs = '
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(viii) Term yju,^ = rj

^,12356) gives

I2.[(23)(13)(12).(46) (45)] 12: [2] •

• — 24

[h) Term = ry.(123)^(136) (245) (456)

^<12350, gives
2 [(23) (13) (16) (24) (45) +

+ (23) (12) (13) (45) (46)

+ (13) (12) (36) (24) (45)]

(X) Term-qu,, = r?.(123) (126) (134) (235) (456)

^>(12350, gives

• [(23) (16) (14) (23) (45) +
, + (23) (12) (14) (35) (46)

-H (13) (26) (14) (23) (45)
+ (13) (12) (34) (25) (46)

+ (12) (16) (34) (23) (45)

• + (12) (12) (34) (35) (46)]

2 [1

+ 2 .

7?W27 = 8

2

+ 1

+ 1

+ 1

+ 1

+ 2

^«45 =

(xi) Term rju^s = •^•(123) (146) (156) (234) (235)
gives

[(23) (14) (16) (34) (25)+ 1
+ (23) (14) (16) (24) (35) +1
+ (13) (46) (15) (24) (23) +1

+ (12) (46) (15) (34) (23) +1

+ (13)-(14) (56) (24) (23) +2

+ 02) (14) (56) (34)(23)] +2

VUl9 =

. 185
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(xii) Term = r] .(126) (134) (156) (234) (235)

^>,12356) gives
[(26) (14) (15) (34) (23) +

+ (16) (34) (15) (24) (23)

+ (12) (34) (16) (34) (25)

-t- (12) (34) (16) (24) (35)

+ (12) (14) (56) (34) (23)]

(xiii) re/'/JVTyWes =-'?•( 123),(146)^(235)2

-0,1235^) gives

4 [(13) (46) (14) (25) ^23) +
+ (12) (46) (14) (35) (23)]

1

+2

+2

+ 1

+2

4[1

Hrl]

Vhs =

The evaluation of the above thirteen representative terms is
summarised in the following equation

TjUx = 12, 7JU.26 = 24.

r]U3=r]U^==7]U^=r]Ug==TJUii=7]Uj^^—r]U2.,=7]Ui~riUig=7]U.^^,=r]U^^ = ?>\

- Using the equinumerolis subsets in Table IT, and equation (4.5)
we then obtain the following table of values for.theTj.Wj ('=1; 2,-.. .74):

Table III ,

The values of rj.u^ (/ = 1, 2, .. .74)

(4.5)

Hi •

«1, Hi Ui, «5, «10, «15i «1B> «25. ".341
"361 "37i "39i "4l> "44' "47i "iB. "02i "osJ

«2 0

Remaining «,•

12

24

8

Evaluation of the it^ in (4.2) and (4.3)

Denoting by i the operator

-i = -C*(12436)^(12356) ^(12346) ^(12U45)
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i| " •

we can now write-dovijn the following equations,; • - .

("i+ "2+ "3+ ¥i+ "5) • • ,
7} (Mg-jt-M7+MgW25)

' = 7] (Mao+ M27+ «28+ •••+ "44) , •

("45!+ "40+ "47+ •••+."54)

1^9 = rj (Wb6;4- "5(1+ «57+ • "71)- .
Using Table III, it is now easy to calculate the since,wp can

easily pick out the terms' contributiiig a 12 or 24. Every other'term
contributes an 8. S • , -

ii ' • •
Thus, ] .

= 4 [4 X 12 + 1 )!< 8] = 4.[56] = 224

14 = , [4 X 12 + 16|,X 8] = 48 + 128 = 176
^ [1 'x 24 + 6 |< 12 + 12 X8] = 24 + 72 + 96= 192 (4.6)
= 2 [2 X 12-h'8 X 8] = 2.[88] = 176

= [2x12+18,; X 8] = 24 + 144 =168

The value t>/ Ro . j . ' ,
Substituting fronj (4/6) into (4.2) and (4.3) we obtain

^ 6?j} =3X224 + 6X-176 = 672 +' 1056 - 1728
and

Ce = ^{2^7+ SCg'-f 6?g} = 2x192+3x176+6x168
= 384 + 528i+ 1008 = 1920

Substitution in (4.l»)i|then gives .

i?6 = '4„ + 4.ci • • .
= 1728 + 4 X .1920

= 1728 + 7680 . "

= 9408. ' '
|;

§5. Summary

. MacMahon's method of differential operators acting on symmetric
Function operands has been simplified- and applied to the enumeration
of 6 X 6 Latin squares. A modified formiila giving the number
of standard Latin squares—directly and exhaustively, has been derived,
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The enumeration of in its turn, has been reduced to that of
A„ and C„, which are the numbers of standard Latin squares containing
the letters 'a' and ' c' in the second row-second column-cell. The
enumeration of and C„ has been further simplified by the use of
certain permutations which keep the operators invariant. •

The 6x6 squares have been exhaustively enumerated before, and
so the present enumeration could only be expected to give the .same
number, viz., 9408 standard Latin squares.

The,va!ue of this approach, however, lies in providing a neat and
exhaustive method for the enumeration of 7x7 Latin squares. The
real strength inherent in the theorems established in the present paper
would be evident from the simplifications they introduce therein. It
is hoped to present this solution, as the second part of this paper,
in a subsequent communication.
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