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§1. INTRODUCTION—A BRIEF HISTORICAL SURVEY

'THE problem of the enumeration of Latin squares was first undertaken
by Euler (1782) in séarching for a-6x6 Graco-Latin square. Using

i.e., those with the letters of the first row and first column in alpha-
betical order—of sides 2, 3, 4 and 5 respectively.

] another and he correctly enumerated the Latm squares of "sides
2,3, 4and 5. s

Tarry (1900), using an exhaustive process bas‘ed on the relatjions
between pairs of rows, showed that there are exactly 17 distinct
groups of 66 Latin squares, and that they number 9408 in .all.

Fisher and Yates (1934) enumerated the 6><6 Latin squares by
] the method of intramutation and transformation sets, and they also
found 9408 standard squares of 17 types, none of the 17 types having
Greaco-Latin solutions.

5.

an exhaustive process, he found 1, 1, 4 and 56 ‘standard’ Latin squares-—

Cayley (1890) suggested the recognition o‘f groups of squares by -
means of the permutation .which effects passage from one row to
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Norton (1939), using the method of species and intercalates,
oresented in his own words, *“ an extensive—possibly an exhaustive—

study. of 7x7 Latin and higher squares >, He found 16,927,968
different standard 7X7 Latin squares. ‘

- MacMahon (1915) gave a complete algebraic solution of the
problem of-enumeration of Latin squares of any order. His method
i8, equivalent to determining by exhaustive trial all the possible ways
of writing-a Latin square. After demonstrating the determination of
3 ;th'v qnumber of Latin squares of side 4, MacMahon says of his method,
: “ The calculations for higher orders become impracticable. ...’

"It is the object of this paper to exhibit’'a simpler - alternative

‘weneral solution, based on MacMahon’s operators, of the problem
?"({)‘ A_\,dneu‘ly enumerating the standard ILatin squares of any order;
and to:establish two new theorems of general applicability introducing
considerable futther simplifications in the use of the formula. .Also

the enumeration of the 6X6 Latin squares has, in thls part of the -

paper, been carried out in detail,

§2. MACMAHON’S METHOD OF DIFFERENTIAL OPERATORS .

Before presenting the modification of and other simplifications in
MacMahon’s method, it is now essential to introduce certain notations
and definitions, together with an outline leading to his enumeratmg

formula.
(i) Notation and De efinitions

Def. 1. ‘Partition.—Let the p- part part1t1on of'weight w be denoted
as uésual by the symbol.

(pi™pe™ D) s

where, -
oA paat b pme=w, and b met b= p

Def. 2. Symmetric Function.—Let further this partition represeﬁt
the following monomial symmetric function of the a’s-of ‘ weight’ w

sy — )7 D1, P31 By Pz g - .
([7 l <P b)—‘g (a’j Qo™ e Oy "eQpyy " s Qe - Crytms +"'+"s)’

where the p’s are fixed and the summation extends over all the ways
of assigning the p subscripts, including permutations, from the n
available.

" Def. 3. Elementary Symmetric Function.—The quantities

ay, Gy oo Gy

e
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defined by A
a, =Ty ... a; = (19, s=1,2;
are called ‘Unitary’ or ‘Elementary * symmetric functions.

Def. 4. Perfect Partition.—lt is a partition such that, using its
parts, one and only one partmon of every lesser number can bte _ )
formed. , :

é.g.—(419)is a perfe,c;t partition of 7. o A -
The general form of a perfect partition 15 - | ‘
1AL AP+ A) (L4 B ((L+ A+ B) (1% O
Thus, putting o S ' ,
A=B=C=...=1, ’

1,228, .2
is.a perfect artmon of 2"—1, W1th no repeated part.
P

Def. 5. C'omposztzon —ThlS Is a partition in which dccount 15
taken of the order of the dlﬁ'erent parts in the partition.

Thus (21) and (12) are different compositions of 3
(u) The D- Operators '

It is well known that any monomial bymmetrlc fuhctlon of weight

‘W may be expressed as a linear function of the products of weight w

of the elementary symmetric functions a, a,, a;, ..., and conversely.
Let us then consider the symmetric function equality :
(e g™ = ¢ (al, ay as, .. )=¢say (2.1
where : '

. a;, = (1»’).‘
Since, by definition,

(x =0 (x —a)...(x —a)=x"—a x"‘l—l- as x”‘z—{— —]—( )"

‘ multlphcatlon on both sides by (x — u) ylelds

(x — Pv) (x —ay) (x —ay).. -(x —a,) = 3"1— (a4 p) x"+

(ax pay) 5" = (@5 pa) X2+ (=) (@ ey )
(=) | |



164 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTUFAL STATISTICE
Hence, introducing p in (2.1) we obtain the identity
(P pa™. )+ p" (™™ ) F R (™)

=¢ (a,+ p, az+ a5, dzt pdg, i)

g e I S : , .
o =¢+ ﬁi' di + % di% +. .., by Taylor’s expansion,

whbfe | - ~
.vdl‘é%;ﬁ—al%;faz%a:}—... - 2.2)
A u D+ Dt
where - - . :
-D,s%i). L . : 2.3)

and (d,") stands for the symbolic product dl‘xdlx ..s factors:

‘Equating powers of u on both sides of the identity, we obtain

D,, (p™pa™ps™. ..) = (P pa"ps™. ),

D,,? (Pl.mpzmpam- c) = (PP ™ L L),
e e , etc. o

: . ) : Ce _ 2.4
D, (p,™p.p;™...) = 0 if 5 is not included among )

the parts py, ps, ps -

-

e e —————

and
B Du (S) = 1'

~ Since the effect of the operator Dy on ¢ is to.delete a part’ A
from the partition denoting the symmetric- function ¢, this operator
has bzaa called the “ obliterating weight® operator. It will ‘be noticed
that the D-operators obey the commutative law, viz.,

D,D, = D,D,.
(iii) Operation of Dy upon a Product of Symmetric Functions

Let $, denote a symmetric function, symbolised by a _single -
partition, and expressed as a function of the elementary "symmetric
_ functions ay, a@,, a;,..... . Let s take the values 1,2, ... m and set

b=dude by : a |
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As before the introduction of an addltlonal quantity g in (he set.
Oyy Ogy Oy« s transforms

$ into (1 + pDy+ w*Dyt..) b,

and ' . o ' ;
¢, into (1 + pD;+ WDy ) ¢y, (s=1,2, ... m.

We thus reach the identity

(Ut Dy 2Dy ) ¢'= (L 4 Dyt p*Dot .. ) 6y
X (14 D+ p2Ds . ) b

X (1 4 Dyt w2Dy+...) d.

Equéting coefficients of ,u«x on both sides, we obtain

D¢ =Z,2,D\i$1. Drga. . Dr i buia- - P os<m
where ' ' N
_ X;= Sum over every partition (A, A, A) of A into m or fewer
parts. '
and

X,= Sum over every permutatron of every se]ectron of s out of
the m factors ¢ ¢, .- qu .

Writing ‘ ) _
Z‘.’-D)\ﬁbl D)\j(ﬁ' D7\s ¢ﬂ‘¢a+1' . ?5". = D()\,)\?...,\s) ¢1» ',i’z- .o d’m (2 5)

T

we- shall call

Dangeny ~
as a * partition obliterating operator’.
In terms of these operators, our result may be written:

Dyp = 2Dy, - o - 2.6)

Hence the operation Dy is performed upon d;. ¢s. b, - r/»,,, by
abstracting every partition of A in all possible ways from the product
one part at most being taken from each factor. Clearly, the partiticn- .
operators with more than m parts add nothing to the resylt,
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In terms\_ of compositions, the formula may be written ’ -
Dy (v e - D) = BN NN Dryme Q2.7

where the faciors (ﬁ,, Bas .o P remain m this order, and |

2\=: Sum over every compo<1t10n of A mto exactly m Darts
admlttmg zero parts,

and (}53 is unaﬂ’ected by the symbol Dr,.'

“The D-operators are commutative. Hence we rhay operate, suc-
cessively and in_any order, with any number of operators Dy, »D’
D,, ... on the product ¢,. s ... P Also the order of the factors
in the operand is immaterial to the n.sult

(iv) Diﬁ"erential Operators and the Enumeration of Diagrams

We shall now give an example to show -how a differential operation
may be dissected into several minor operations or processes. . A group
of operators then leads to various combinations of minor operations,
Each combination may be made to correspond with a lattice diagr am
‘obeying certain row and column restrictions, and thus the differential -
formula may be used‘to enumerate such diagrams.

Consider the expression ' .

LI S »
2x; T X, T dX, - akeXs)™

The first operation gives 3% terms, corresponding to the 27 per-
muted partitions of x;x,x, into exactly three parts, zero being feckoned
-as a part, ' '

_Selecting one of the 27 terms, say

.2 D

' D"x—l © Sxs (X3XaX3) . s— (Alxoxs) (x1x°xs) == ( \‘3)(x1x2.)(x1x2x-3)

we have before us one of the 27 minor oper'\tions into which the

2 i) ? .

sration - S 2 2 upon (x,x can be dissect 3

Opelfltlon qf Sx. X " X po (“c1 \{) be di ed. This
may be diagrammatically denoted as.a first row:




¥
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the diagram denoting that \_bx_ . b—i— has been perforﬁwd on the first
CAy 2

P
factor and — upon the second.
_ 0Xg .

The second operation on this term yields 23 terms of the type:

d D
( xa)B—Y‘

D . )
o () 5o (aexg) = (o) () (e say.

The t?-/o successive oberations thus produce'the'Q-row diagram:

Finally, in the third operation on this term, only one of.the
27 minor operations is effective, viz,,
d . 2 Y
E(. xa (L)) 3, " ox (x1x,.) =-1.

The three successive minor operations thus produce the complete
diagram: : ' ’

12 k] l
12 3
3 . 12

It is clear that we can select three successive minor operations in

2 2 ' '
22, 0%, 2y
the result, and the result for all combinations of three selections

) (x,%5%5)® ways, since for each such selection unity is

I R R .
mut be (D, S 373) (X x2x5)3.. .
Thﬁs the number (i LS ’ ('x.x.,x-)3 = (3% enumerates
dx, Xy dxg e : S

diagrams w1th the followm0 property :

(i) The dlaerams have three rows and three columm

(u) The numbers 1, 2, 3 pecur in éach row and in eaLh column,
but the riumber of entries in each cell of the dlanram is
unrestricted,
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In general,; it may be noticed ‘that the successive operators
correspond to the rows and’ the factors of the operand correspond
to the columns of our lattices. Tt is then apparent that a different
arrangement of the factors in the operand or the operator will yield
dlfferent types of diagrams, but obviously the enumerating number is
not changed, -

(v} The Latin Sguares Enumeraiing Formunla of MacMahon

Let 7, denote the totality of Latin squares of orderg, whether
-standard or not standard, and R, the totality of -stanfard Latin
squares of the n-th order. Then it is well known that

I=n'(G—DIR, (2.8)

We shall now indicate the derivation of -MacMahon’s general
) formula for I, in the form-

I= D'y (L2. 25 . 20, (2 9)

This -can be easily seen from the .particular case of n=4 as
follows :

Consider the expression

‘D4a f-b+c+d (”bc‘d)‘jl

where the D’< are obhteratmg weight > operators and (abed) denotes
the symmetrlc function -

Za® ata,’n’.

Further, in order that D, ... pick out the numbers a, &, ¢, 4,
one from each factor of the operand, we must give such values to-
a, b, ¢, d that {abed) is the only -partition of ¢ -+ b+ ¢+ d into
4 or jewer parts, which involves the parts a, b, ¢, d repeat>d or lzb/.
The simplest solution is obtained when the numbers a, b, ¢, d are so
chosen that (abed) is a ¢ perfect ’ partition of the numbera + b 4 ¢ + d.

Since now (abed) is the only partition of at+b+c+ d into
4 or fewer parts, the summation sign 2 in formula (2.6) drops out,
and we have the operator eamv(ﬂence :

D ~(2.10)

G+ b4-c+d = L (ebddy
- In thlS case, therefore, the formula (2.7) reduces to i
Da+,,+c+d (abczl)4 == 2D, (abcd) D, (abed). D, (abcd) D,, (abcd) (” 11)
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where the -sum -is' taken over: every Lonrposrt'on “which is obtalnable

-from the single partrtron (abcd)

In other words we have to delete every permutd'ron of a,b,¢,d
dropping one and on]y one letter from each ﬁxctor m the symmetuc-
funetron product:

(abed) . (ql_;c_d) . @_m (dbed),

and keepinq the factors in this ofder. -We have, therefme broken

up thé operation Dg,;,,,.q into 4! minor operations.

A typical term would be
‘ . (a cd)( bed) (abe.) (ab. d)

This may be diagrammatically represented as a 1st row:
‘ -4 ‘ ' a d ’ ¢ ]

On each such term, we apply the second operatlon D,, tbpepds  ThE

_ letters dropped out give us the second row .of our drdgrams of. the ‘

type

SR | ; | ;',f[f

BN

dnd the 's_.ymrrietric_-fttnction‘product term is now
(a. d)( cd)( be. )(ab )

On every such term, we z\pply the 3rd operatlon D, yyia The,let’ters
deleted Qenerate the 3rd row of our dragrams of the type - _ '

b a d ¢
c 6 a d
a d ¢ b
‘and the symmetric-function term -reduces to R .

( ..d.)(.,c..)'(:.l);:)'(a;i.).
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- The 4th operation D, +upera DOW oenerates the 4th row and glves
us completed dlagrams of the type

b a d ¢
¢ b " a d
a d ¢ b
d ¢ 4 a

redué’ing the symmetric-function term to unity.
The number A .
1= D4,y 0pa (abed)?
- therefore enumerates diagrams of the type:

(i) The diagrams have four roWs and four columns.

(ii) Every letter a, b, ¢, d occurs only once in each row and once
in each column.’

i.e., the Latin squares of order four.
The reasoning is obv1ously quite general and , the totality of
n X n Latin squares, is enumerated by :

I = D PytDots s oON- (Pl, Pss . )"

where (pl,‘ Dos + . Dy)is aperfect partition of the number pl—{—p‘,—}— +pﬂ (
The only perfect partmon involving dlstmct parts is ‘given by 'the .
powers of 2 s
1, 2,' 22,23 .
Hence, ﬁndlly, the. genera‘l‘ férm-ula_may be written in the form:
© I =Dy (1.2.28...0)
t ) } (2.12) |

.1 . K I, .
Wlth » . ' . R" ——m'

(v1) IIlustratzon

Ex. 1. Enumeration. of 4 4 Latm Squares. —The enumeratlng
formula is, taking n = 4,

L= Dy (248,
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Usmg the eqmvalence D10 = Di.s.a.8p the Ist operatlon gives:
41 x (248) (148) (128) (124)
The 2nd operatlon gives
41X [(48) (48) (12) (12)+(24) (48) (1) (12309 (49 (12 (14)+
+(28) (14) (28) (14)4-(24) (18) (28) (14)+(48) (14) (28) (12).
+(28) (14) (18) (24)+(24) (18) (18) (24)--(48) (18) (12) 24)].
The 3rd operation gives, in order:
41 x [4+°+2+4+2+2+2+4+2] x(l)(2)(4)(8)
The 4th operatlon gives, ﬁna]ly
4 ><[4+2—|—2+4+2+?+2+4+2] ><1

“or - R ]_4|><24
' ' 4v><24 -
and‘ = 31 = 4, K

Thus there are 4 sfandard squares of side four.

§ 3. THE MODIFICATIONS OF MACMAHON’S FORMULA

It is clear that to find R,; the number of standard squares, we
must first evaluate I, the number of standard and non- standard squares -
by formula (2 12, Smce it 1s known that

1—56X5'><4'—]61280

the calcu]atlons even for R, become almost unmanageable ‘We shall
now derive a formula which gives R dlrect]y, without the necessity
of first evaluatmg I, .

Consider the formu]a for the 4 x 4 Ldtm Squares
. D4a+b+c+d (abed)*,

Takc the 1st operatlon Da+,,+c+,, -S,‘ihce we want standard Latin
squares, the lst-row must be - :

a, b, c,d'f

in alphqb“tlcal order, 'e we delete “ @’ from the 1st f'\ctm ‘b’ from
the 2nd, frorn the 3rd and ‘4> from the 4th
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Hence the formula for burldm" up the Jast three rows becomes
Da+b+c+,l D, bicsa D,,+,,+,,+d (bed) (acd) (abd) (abc)
Since the Ist column must also be in alphabetu.al order

- In the 2nd operatron weé must delete b’ from. the lst factor and
the formula becomes :

Da+b+c+d Dﬂ+b+c+d (Cd) Da+c+d (aca) (abd) (abc)

In the 3rd- operatlon we must delete ‘¢’ frorn the Ist factor and
: the formula becomes :

Dn+b+e+d (d) Da+b+d . i a+c+d (aéd) (”bd) (dbc).

Finally, in the 4th operatron we must delete ‘d’ from the Ist
factor and the formula becomes

Ry = Duyrse-Dassya-Dosord (acd) (abd) (abo). -~ (3.1

. The method of proof is qurte ceneral and noting that the
. operators are- commutatlve we may state our result in the form of a

' theorem

THEOREM l——The number. of standard Latm squares of side n i5s
: enumerated by the formula -

R,= Dm+m+---+n,, . Dm+m+m+£-+,,,, e Dﬂr+ﬂ2+---;{-1§'ri—1‘
R N SURVATCATAY M SRS S S EEN XN
Where (py; P Pas -« <Pa) IS the perfect partition (1.2.4. 8.16.. 2,

We shall, for brevity, drop the p’s and wrife only the sufﬁxes Since
the p’s have to be deleted, it follows that on working with the same
rules of operation of the D’s it- 1s 1mmater1al whether we’ delete the

numbers R : . '~'1
' o 1;2,‘22,'...2”"_ '

or the numbers - - - S
' 1,23 ,..0.
The formula (3.2) may then be written
_.R,,=_ ‘D(134.:.;.) D(1245...”). D(us...q'_r? ' ' o o
(134,..n) (1245.-.m)...(123..n — 1). ., . (3.3)
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We shall now illustrate the working of this formula Tfor the

enumeration of 4 x 4 Latin squares. The work may be compared with
Ex l based on MacMahon’s formula.

Ex. la. Enumeratzon oj 4 X 4 Latin squares (A/zte/) —From (3. 3),

we have .
-Rd — D(134) D (123) (134) (124) (123)

) Operation D3 gives the terms

(34) (12) (12) + (13) (24) (12) + (14) (12) (23).

Operation D, gives the terms

GOO+EOME+EA@W+1 Q).

. Operation D s, gives, finally

Ry=1+1+1F1=4"

" Further Simplifications

It is very simple to apply the general formula (3. 3) to the enumera-
tion of the 5 x 5 Latin squares.

However, we shall now prove two further general theorems ‘Which
apply to squares of any ‘order, and mtroduce con51derab]e add1t10na1~
simplifications in the enumeration.

It is convenient to introduce the idea in terms of the formu]a for
enumerating the 5X5 Latin squares: :

Ry = Dyyorase Diyvyage Da-{«b+c+e atbtetd (acde) (abde) (abce) (ade)

Consider the operation of Dy, 410 = Dode; Clearly, we can’
break up this operdtion into the following four parts:

Operation - Terms “obtained

(i) When ‘%’ is deleted from the st factor (¢de) D (edo) (abde)(a'&w)(ezb;d) .

(i) o, @ o, T, (ade) D (yao) (abde) ((lbt{.’)((lb[dj
(i) . @ . ) " (ace) D (age) (abde)abec)abed)
(iv) o, ‘¢ " ',, (acd) D (gea) (atde)(abce)(abed)

The result of the operation D ., is then the sum of the térms
in (1), (i), (ii)) and- (iv). ‘
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Let us now denote an element 6 in the /i-th row and j-th column
of a Latin square by the symbol

(i, j, 0).

Consider now the totality of standard Latin squares of order 5,
containing the eléments

G, 2. q), 3,3,0, (2,2, d), 22,04

, the nurriber ‘of ways of writing Latin squares tinder the following
\ constramtq

b~c-d:e, a b ¢ d e, a b oc d e

a b c de .a
b a . . . Ibc B I A b e .
o d A d L d

€ . .. e L L e L L e
Denote these ﬁhmbers by the symbols
4 .. ¢, p £,
respectively. - ’
Clearly,
‘ Ry= Ay + Cy++Dy -+ E,
We shall now prove that
C,= D= E,
Proof.—Tt follows from (i), (ii), (iii), (iv) above that
: A Ay = D,,'.,_“‘;j;g{?,;ﬂ,‘ﬂ”D,,+l,+c+d.(ca'e_) D4, (abde) (abce) (abcd);.
o= DunsersDursiessDuspsess: (4e) Doy, (abde) (abee) (abed).
- Dy = Da+b+,‘,+,,Da+b+c+gDa+,,+c+d.('ace) D .,y (abde) (abce)y (abcd).
Ey = DoyviasDasscrsDassiess-(acd) Doy (abde) (abee) (abed).

" Notice that the result in any given case of performing the indicated
operations is a numerical constant mdependent of the choice of a, b,
¢,'d, e. Hence, the result would be the same, if in any one formula,
we replace a, b, ¢, d, e by any permutation of these letters,
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We note- that the interchange of the two letters ‘¢’ and ‘4’

converts the formula for C; into the formula for D;—the order of the
factors in the operator or the operand being nnmaterlal It 1mmedlate1y

follows-that S
’ C5 = D5.

Similarly, the interchange of ¢ d’ and ¢ ¢’ shows that '
D, = E..
We have therefore established that

C, — D, = E

and consequently - .
' Ry=As +3.Cs - (3.4)

The ‘method of proof is quite “general, and can be immediately

extended to squares of any order. We may, therefore, state our general
tesult in the form of:

THeorEM 2.—Let the universe of standard Latin squares of order
#, containing the letters a;-¢, d, e, f, ... in the cell (2, 2)-be denoted
by Ay, Cps Dy Eps Fis - -
Then
C, = D,=E, = Fy= .. T N (3.5)
and '

it will be notlced that the enumeration of

R, = A, + Co+ D, + E, + Pt

" has been reduced to the enumeration of 4, and C, only.

We now pass on to simplifications in the enumeration of A4, or
C,. These simplifications result from a recognition of what may be
termed ¢ equinumerous subsets’ of terms at various stages of the
differential operations. '

Dzf. 6.—If among the set of terms obtained after a D-bperation
we can find a subset of terms,.each member of which gives, on

parforming the remaining D-operations, the same ‘numerical result,

then thc subset consists of  equinumerous ™ terms.

theorem:

R,=A,+(n=2.C, -~ = (3.6

Epr recognising such -subsets, we shall prove the -following
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THEOREM 3.—If two terms of a set, obtained after a D- opcmtlon

are connected by a permutation which leaves the remaining D-operators -

1nvar1ant then the two terms are equinumerous.

Proof.—Denoting the remaining set of operations by the symbol
8, and the two terms by a, B, we have the formulz:

8 (a) ‘=
8 () = N, say.

The permutatlon converts a into B and keep< 8 invariant, It

therefore converts 8 (o) into & (8).

Since the numerical result of any operation js mdependent ‘of
permutations w1thm Aits letters, it follows that

. B 8(11)23_(/3) _ | S
ic., o M=N. B

' We shall now 1llustrate the use of these theorems on the enume-
ration of Latin squares of order 5. =~ .. :

Ex. 2. Enumeratton of 5 X 5 Latin Squares.—Formula (3.3) gives
Ry = D 1345 D 45, D235 D gasy (1345) (1245) (1235) (1234)

The operation D35 gives the following four sets of terms:

~

- (i) (345).(124) (125) (123)...1, (Deleting | from the st factor)
(345).(125) (123) (124). . .1, '

(ii) (145).(245) (123) (123).. .1, . A
(145).(124) (235) (123)...1, ( , 3 )
(145).(125) (123) (234). . .1,

- (iif) (135).(245) (123) (124). . t ' |
(135).(128) (235) (124)...t, ( ., 4 )
(135).(124) (125) (234). . .1, . '

() (134).245) (129)(123)...1 _
(134).(125) (235)(174).~..t]0 ( , 5 )
(134).(125) (125) (234). .. 1y ’ :
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From Theorem 2, it will be noted that the sets (ii), (iii).and
(iv) are equivalent, so that it is tnnecessary to write down the sets
(iii) dﬂd @iv), dnd that

‘ A5 = D(12451D;1235) (1238 [f1 + fz] po
and .
Cs = Dyous; D asasy Dynzayy [t 4 1y + 1]

Since theé order of thé factors in- the operand .is immaterial, it
Next note that t and I; are connected by- the transp051t10n* (45)
which leaves the operator set

. . D(1245)‘D(1235)D(1234)
invariant.

It follows from Theorem 3, that 7, and # aré equinumerous,
Hence ' ' : Co '
A- = D(1245)D(12'45)Du234, 2’1]

Cs = Doy D aassy D azagy [fa + 21,].
We now consider the operations on &, ¢, #, in turn:
Term t,.—(123) (124) (125) (343). '
D (245 8ives

(23) (14) (12) (35) + (23) (12) (15) (38) + (13) (24) (12) (39)
+(13) (12) 29) (34). -

Last two operations gfve _
T I T =4,
Term t,—(123) (123) (145) (245).

D 445 gives | ‘ o _
2 [(23) (13) (15) (24) + (23) (13) (14) 25)].  ~
Last two operations give . e
| . 201+ 1] =4
Term 1,—(123) (124) (145) (235).

* Interchange of two letters.

6
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D‘({;;g‘ 'éiv'es :
(23) (14) (15) (23) + (73) (12) (14) (35) + (13) 24)'(15) (23)

S+ 03 (12) (45) (23).
Last two operations give

2-{;'1‘—{-"1':4,—2:6. ,

It will be noticed that the last two operations can be performed
simply by inspection. The last operation need not be performed, as
there'is only one way of writing the last row, when the previous rows
arstwritten” down. The- pﬂnultxmate operation is easily performed,
when we notlce that the part * 5 can be deleted from only one faptor..

Westhus-obtain
- ,45=2><‘4:LS‘

Cy=442.x 6 =16.

Prom formula (3.4), '

RSF 145——{" 3Cﬁ
=8 3.16
= 56, '

§4. THE ENuMéRAT‘IoN OF 6 X 6 LATIN \'SQUARF,S,

The formula (3.3) gives - ' A

Re - D(1345b)D(1245h)D(12 *56) D(1“346)D(1 2345)
(13456) (12456) (12356) (12346) (12345).

Consider the operation of Dz

_This operation can be split up into five parts according as 1, 3,
4, 5 or 6 is deleted from the first factor. .The first two parts give us
the following two sets of terms correspondmg to A and C;:

We have
Ag :'D(1245(;)D(12-'_56)D(1'2346\D(l?345) -

‘[(1234)2‘.(1256)2.(3456)+ ) ‘ t,

1 2.(1234) (1236) (1245) (1256).(3456) - - 21
+ (1235)2.(1246)2 .(3456) } . ot
- 2.(1234) (1235) (1246) (1256)..(3456) " T
- (1236)2.(1245)2 .(3456) o
L0 (1235) (1236) (1245) (1246).(3456).] ~ ~ - 21,

BN

B T v T O P W

e
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g »

Ce = D(12436)D(12"56)D|1204(:)D(12"45) . o

[2.(1234) (1235) (1236)..(1456) (2456)+ R A
+ (1234)2.(1256).(1456) (2356) T
- (1234) (1235) (1246)..(1456) (2356) g
+ (1234) (1336) (1245).(1456) (2356) g
- + (1234) (1235) (1256). (4sey@34e) g
o s 4-(1235)2 (11246) (1456) 2346) 7 by
o L (1235 (1236) (1245).(1456) (2346) - T b
» L4 (1234) (1236) (1256):(1456) 234). - - o 1y
: ] .+ (1235) (1236) (1246),(1456) (2345). ' Tt
L 236, (12491456 @3490) - - ng

We can then use formula (3.6), which for n = 6 g1ves o
. RG—AG+4C5 | @y

To detect equmumerous ‘terms amonv the tt, we- have. now to use
connecting permutatiofis which keep the operator set )

.
! ] . .
. = (12455)D(lzase)D(12340)D(12—::453 " -
1nvarlant g .
_ We obtain the follong equmumerous subsetm :
: TABLE-T .
‘Equ_infilm‘erous subsets ‘with ¢ ‘irzzlv'afianr o -
Subset ‘ :;"* N T 5 -
. ’ Copnecting Perm‘utat-ion? SRR .~'- (45) - (@6) )
< ‘ Subset C |I L ' byt e .
Céﬁhecting Permutatioxl{f A E (56) _k46) - S
_ Subget [ e tm hg st
| - . Connecting Permutatiog S (45)  (86)"
‘ ’ i e s ‘
| Subset . v : g L1p.. ~t1f Ttz 14 t1'5
i " Connecting Permutatic;%"m B ) (456) (46) 456 (45) -
|

‘N.B.—The arrows mdlcate that the permutatlon (456) is '1pphed to. the earller
terms, i.e., to t1p and £, .
C
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We hav_e thus reduced the enumeration of A4, and C4 to the
following:

Ag = D(i2'4SC)D(12356)D(12346)D(1‘.’.24;’) 34 + 685] - (4.2)
and \ ' ' ”

Cg :'D(t245€)D(128a6)D(12346) ;1%45) [2; + 3t8 =+ 61,]. ‘ 4.3)

W-u shall now apply the operatlon D(mm, to the terms tl, Iy, -

oty Iy, rq in (4 2) and (4.3).
' Dmm,.rl = Dypaysqy (1234)2. (1256)2 (3456) gives
= 4{(123) (125) (134) (256) (346)4- - 4 [u,

“I(123) (126) (134) (256) (345) 0

-(125) (126) (134) (234) (356) .
1(123) (125) (156) (234) (346) "
+(123) (126) (156) (234) (345).] ]

D(m,s, t: = Dyaise, (1234) (1236) (1245) (1256). (3456) gives -

—[(125)z. (136)(214)(?46)-{4(125)(176)(136)(’734)(345)+ [y + v

+ (129)(125)(136)(234)(356)+:(123)(126)(145)(234)(356)  uy + ug
(123)f1?5)(15_6)(234)(346)+(123)(1?<})(156)(234)(356) Uiy + Uy
© e (124)(125)(134)(236)(356) +(125)2. (134)(236)(346) - ugo +- 1y

+ (125)(126)(134)(236)(345) - (123)(125)(145)(236)(346) 1y, + 15 .

+ (123)(126)(145)(236)(345)+-(123)(124)(156)(236)(345) 1ty + 1115
- (123)2.(156)(245)(346) -+ (123)(125)(136)(245)(346) Uig + tyg
i (123)(126)(136)(245)(345)+(123)(1”6)(1?4)(245)(356) Ugy + Uy
4 (123)2.(145)(256)(346) - (123)(124)(136)(256)(345) ag + tog

4 (123)(124)(134)(256)(356)+ (123)(125)(134)(256)(346).] ttgy + 5]

Dassey e -_ Dgassey (1234) (1235) (1236)..(1456) (2456) gives

=[(123)2.(456)2 ' [uzg -

4 (123)2.(136)(245)(456)+(123) . (134)(256)(456) . Uay - thog :
£ (123)2.(135)(246)(456) (12392, (145)(236)(456) 11z -+ Uiy

+ (123)2.(156)(234)(456)+(123)*. (146)(235)(456) gy g
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-+ (123)(134)(1 56)‘(2365(245) - (123)(134)(145)(236)(256)

C = (123)(135)(146)(236)(245)4-(123)(135)(145)(236)(246)

1 (123)(136)(156)(234)(245) +-(123)(136)(145)(234)(256)
+ (123)(135)(156)(234)(246)-+(123)(135)(146)(234)(256)
+ (123)(136)(146)(235)(245)+(123)(136)(145)(235)(246)

Mgy oF gy

Uss + Ugg

Ugqy -t Usg

CUge T+ 1y

Uy —+ Uy

- (123)(134)(156)(235)(246) 4-(123)(134)(146)(235)256).] gy, ~+ tys]

Dygassny-Ts = Disusey (1234)2.(1256).(1456) (2356) gives

2 [(123)(126)(134)(235)(456)+(123)(125)(134)(236)(456)+ 2sigs-t tsg S ‘

1 (123)(134)(146)(235)(256)-+(123)(134)(145)(236)(256)
+ (123)(146)(156)(234)(235)+-(126)(134)(156)(234)(235)
-+ (123)(145)(156)(234)(236) +(125)(134)(156)(234)(236)

Ugg -+ U5

U5 + Use

Uy, + Hyg " ‘

+ (l23)(125)(146)(234)(356)—1—(123)(126)(]45)(234)(356)] Ugy -+ Ugy]

D(m;m) g =D gouze (1234) (1935) (1246) (1456) (2356) gives

T =[(123)2. (146)(235)(456)+-(123)2 . (124)(356)(456) +
- (123)(176)(134)(235)(456)+(123)(174)(135)(236)(456)
+ (123)2.(145)(246)(356)+(123)(124)(156)(234)(356) _

+ (123)(126)(145)(234)(356)+-(123)(124)(146)(235)(356)
+ (123)(134)(156)(235)(246)+(123)(1 35)(146)(235)(246)
- (123)(135)(145)(236)(246) -+ (123)(146)(156)(234)(235)
‘+’ (1:26)I(135)(146)(2'34)(235)4—'(123):(146)2..(235)?
 (126)(134)(146)..(235)24-(126)(135)(145)(234)(236)

 (124)(135)(156)(234)(236)+-(123)(145)(146)(235)(236)
4 (126)(134)(‘145)(235)(236)+(1’24)'.(]34)(]56)(235j(236_).] try + ]

The reduction of the v, 1=1,2, ...74)

We shall now use Theorem 3, to detect equinumerous terms among
the set of u’s. Notice that the connecting permutations which can be

used for the purpose must now keep the operator set

. = D(12356)D(1234G)D(l'z;'ms)
invariant, |

We notice the following equinumerous subsets ;.

Ugy -+ Uzg

[uss -+ Usg

Usy + Usg

gy T U

Ug) + Uge
Ugs + g,
Ugs -+ Ugg

Ugy + Ugy

Up -+ Uy




N

TABLE II. Equinumerous subsets with w invariant

N.B.—Figures in brackets denote connecting permutations

< N Al rese t—
S;Yb(;fﬂ . Terms in the Subset i\tie\%)éerfglr‘ml '
tog'= h ‘ ' —— 4=\ C o ngs=) — —_
uy : o' ny us n19 s 19 34 ) [ZT 237 39 gy %y
(56) (12)(56) (56) (56) (46) (12) ~ (132)(45) 45) . (456) (56) (456) (46)
A 2 g Hqg . ‘ “y
] (13)
3 g 21y Ney - g
(46) __(13)
4 "y "e 12 IR TR : ~ - uy -
(12j(46) (12)  (12)(46) . '
~ . ' —> L — — 1;0;,;:]_ L g
5 Hgy T U5y =g - 247 a1 23 3y 35 %38 %40 Hqn Hag #53
(46) (12)(46) (46) (132) (45) (456) (56)  (456) (46) _ (23)(45)
—_ ‘ ‘ %31
6. Ugg =111 20 (EN) Moy . Hog '
To(46) (12)  (46)" (132)(45)
L 7 g #gg %59 i g
(46) (45)
8 ' wag - ’ Usg
: ' ”55=1 a7
9 sog s oy 30 wyy J g
(48) (45) (12)(56). (46)  (45) - (13)(45)
N .10 [lr-7=l/j45 ngg  lMgs - "ys
. ’ (36)  (45)
11 - 1Hgg =t 49 gy 'u‘72 249
(56)  (45)
‘ —_—— ‘ e %50
12 50 n5e ugr 2q0 g Ugy .
(56) (456)  (23)(56) (46) (465)
13 | g . - ’ g8

Note.—The arrows indicate that the permutations are applied to the earlier tepms.

781
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We have thus reduced the terms uy, u, ..

thirteen representative-terms:

U, Uy, Ugy Upy Uy, Uyy, Uig, Ungs Uagr tiss Usgs Usps s

The evaluation of the nu, in the series (4.4)

We shall now evaluate in succession the result of opvratmg w1th

n = D(12356)D(1.234G)D(l‘zzusx
on the terms in (4.4). '

(0) Tzrmnu, = 7.(123) (125)( 134) (256) (346)

- [(23) (15) (14) (26) 34) +
+ (23) (12) (14) (56) (34)
+ (13) (25) (14) (26) (34)
+ (13) (12) (34) (25) (40)
+ (12) (15) (34) (26) (34) .
+ (12) (12) (34) (56) @341

(i) Term nu; = 7.(125) (126) (134) (234) (356)
D g5 giVES
[(25) (12) (14) (34) (36) +
+ (12) (26) (14) (34) (35)
+ (15) (12).39) (24) (36)
+ (12) (16) (34) (24) (39)
+ (12) (12) (34) (34) (56)]

(ili) Term nug = n.(125)%.(136) (234) (346)
) D 12356, givVES
2 1(25) (12) (16) (34) (39 +
T (25) (12) (13) (34) (46).
4 (15) (12) (36) (24) (34)]

D256 gives Last two operations give

1
+2
+2
+1.
+2
+4

")”1 = 12

+1
+1
+1
+4

NUz ==

22

+1
+1]

'nu6—8

.Uy to the following
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~(iv) Term nu, = 7.(125) (126) (136) (234) (345)
D233, 8IVES

-[(25) (16) (13) 249 (34) + .
-+ (25) (12) (16) (34) (34)
+ (15) (26) (13) (24) (34)
+ (12) (26) (13) (34) (45)

- (15) (12) (36) (24) (39) .

+ (12) (12) (36) (34) (45)]

42
_+,[
+1
+1
+2

oMy =8

. (v) Term ity = 1.(123) (176) (143) (234) (356)
D 12356, gives
[(23) (16) (14) (24) (35) +
+ (23) (12) (14) (34) (56)
+ (13) (26) (14) 24) (35)
+ (12) (26) (14) (34) (35
+ (13) (12) (45) _(24) (36)
+ (12) (12)-(45) (34) (36)]

(v1) Term nuy, = 7.(123) (124) (156) (234) (356) -
D 1235 5 gives

[(23) (14) (16) (24) (35) +
+ (23) (14) (15) (24) (36)
+ (13) (24) (16) (24) (35)
1 (13) (24) (15) (24) (36) -
+ (12) (24) (16) (34) (35)
+ (12) (’4),(15) (34) (36)

(vil) Term muyg = 7.(123)%.(156) (245) (346)
D 2555, gives
2 [(23) (13) (15) (24) (46) -+
+ (23) (12) (16) (45) (34)
© 4 (13) (12) (56) (24) (34)]

1
- 42

+1 .
+1-

+1
42

. nu9—~8'

41
+2
+2
+1
+1I
Ny = 8

21
+1
+3]-

Nty = &
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(viii) Term muys = 7.(123)3.(456)2
D 12354, gives

12.[(23) (13) (12).(46) (45)] -

120021 ¢

o Mg == 24

(i), Term quy, = 7.(123)2.(136) (245) (456)
~ Dasssg gives -
2 [(23) (13) (16) (24) (45) +
+ (23) (12) (13) (45) (46)
+ (13) (12) (36) (24) (49)]

+1T

S Ny, = 8

(x) Term mu = 7.(123) (126) (134).(235) (456)
D 2356 gives ‘ -

- [(23) (16) (14) (23) (45) +
+ (23) (12) (14) (35) (46)
4+ (13) (26) (14) (23) (45)
+ (13) (12) (34) (25) (46)
+ (12) (16) (34) (23) (45)
+ (12) (12) (34) (35) (46)]

41
+1
a1
+1
+2

o gy =8

(xi) Term nug, = 7.(123) (146) (136) (234) (235

a ‘ D 2356 21VES

[(23) (14) (16) (34) (25) +
+ (23) (14) (16) (24) (35)
" | + (13) (46) (15) (24) (23)
: + (12) (46) (15) (34) (23)
+ (13)(14) (56) (24) (23)
+(12) (14) (56) (34) (23)]

MUy =8

)

o
+1
+1
+2
+2
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(xii) Term nugy = 7.(126) (134) (156) (234) (235)
D 1235 gives
[(26) (14) (15) (34) (23) +
+ (16) (34) (15) (24) (23)
+ (12) (34) (16) (34) (25)
+ (12) (34) (16) (24) (35)
+ (12) (14) (56) (34) (23)]

(xiii) Term nugy = 77.(123).(146)% .(235)*
D 2356, 8iVES
4 [(13) (46) (14) (25) 23) + 411
+ (12) (46) (14) (35) (23)] , +1]

Tigy = 8

The evaluation of thé above thirteen representafne terms 1is
summarised in the following equation:. :

nuy = 12, Nihag = 24,

‘ }(4 5)
Ny =Tl =" Uy==) Uy =" Uy =7 g ="NUp 7 =NUys="Uyg =")U5, 77“63—8

Using the equinumerois subsets in Table IT, and equation (4.5)
we then obtain the following table of values for.the 5.y, (i=1, 2,-...74):

TasLe III )
The values of 7. u,: (=12 ...74

2

Hys Mo Uy Ugs gy H1gy H1ps Hug, U3y |
Hzgs B3qy #30y 141y #ags a7y Xigs Yo g5 )

Uag

Remaining #;

Evaluation of the &t; in (4.2) and (4.3)
Denoting by ¢ the operator

f = D(12456)-D¢12356)Daea;s;D(lz:ms)
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J Co

we' can now write- down the followmg equations.;

&y =4 (”1+ “2+ U+ %+ us)
= 7 (uo+ Upt gt )
Et,= 7 (uas+ un7+ Uggt .- u44)
£ty = 2.1 (4 '+ Ut “47+ . tgg)
§f9'= Uj (u55+ Uggt Uggt .o u“)
Using Table III, it is now easy to calculate the &t,, since we can
easily pick out the terms contrlbutmg a 12 or 24. Every other term

contributes an 8. ‘5
Thus, li ]

"§t1v_4[4><12+1><8]_4[56]—274 )

Ehy = [4><12+16><8]—48+1?8—176 ‘ l

&, = [1x24+6><12+12><8]_24+72+96 2; (4.6)

§t8=2[2x17+8><8]—2[88] 176, l :

A J

The value of Rg . | )

Substituting from (4.6) into (4. ”) and (4.3) we obtain :

A= (it 6t2} — 3 X 2244 6 x 176 = 672 41056 == - 1728

[2><12+18 XS]—24+144——168

and . ) .
Co = £ {2+ 35+ 615t = 2x 19243 X 17646 X168
384 + 528”+ 1008 = 1920

Substltutlcn in (4. 1\ th@n gives .
R6 = A, + 4. C
— 1728 + 4 % 1920
— 1728 4 7680
—o408.
. §5. SUMMARY

. MacMabhon’s method of differential operators acting on symmetric
tuncuon operands has-been simplified and apphpd to the enumeration .
of 6 x 6 Latin squ'lres A modified formula giving' R,-—the number
- of standard Latin Squares—dxrectly and exhaustwely, has been. derlved
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The enumeration of R,, in its turn, has been reduced to that of

4, and C,, which are the numbers of standard Latin squares containing

. h= letters “a’ and ‘¢’ in the second row-second column-cell. The

enumeration of 4, and C, has been -further simplified by the use of
certain permutat1ons which keep the operators invariant. -

The 6 X6 squares have been exhaustively enumerated béfore and
so the present enumeration could only be expected to give the same
number, viz., 9408 standard Latin squares.

The value of this approach, however, lies in providing a-neat and
exhaustive method for the enumeration of -7x7 Latin squares. The
raal strength inherent in the theorems established in the present paper
would be evident from the simplifications they introduce therein. It
is hoped to present this solution, as the second part of this paper,
in a subsequent communication. ‘
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