
1.	 INTRODUCTION
Now a days, various modern technologies such 

as Computer Assisted Personal Interviewing (CAPI), 
Global Positioning System (GPS) instrument etc. are 
widely used in different surveys for data collection. 
The technologies make it easy to collect geo-referenced 
information. Hence, geo-referenced data is now readily 
available. This type of data describes the objects in 
terms of their position with a known coordinate system, 
their attributes and spatial interactions with each other. 
It is important to note that existing survey estimation 
methods rarely make use of such enriched geographical 
information. For example, under classical linear model 
based estimation of finite population total, population 
units are assumed to be independent. In many surveys 
(e.g., agricultural and environmental surveys), data 
are often spatially correlated. Therefore, assumption 
of independence is often violated and it also leads to 
biased and less efficient estimate of the parameters. 
However, to the best of our knowledge, very limited 
work has been undertaken to incorporate the geo-
referenced information for the estimation of finite 
population total or mean. 

In literature, several approaches are available to 
model the geo-referenced data. In last few decades, 
Geographically Weighted Regression (GWR) method 
has emerged as one of the popular approach to model 
geo-referenced data. In GWR, model parameters are 
estimated location-wise over the study space (Brunsdon 
et al., 1996 and 1998). Fotheringham et al. (1998) used 
two statistical techniques that are GWR and expansion 
method to examine the spatial variability of regression 
results across a region and so inform on the presence 
of spatial non-stationarity. Leung et al. (2000) studied 
a prediction problem for the analysis of spatial non-
stationarity under GWR approach and also developed 
a statistical method for testing the goodness of fit of 
the GWR model that made it possible to test spatial 
non-stationarity in a conventional statistical manner. 
GWR model is mainly used for prediction of spatial 
characteristics rather than inference (Montanari et al., 
2010). Chandra et  al. (2012) developed linear mixed 
model version of GWR and applied this model in 
small area estimation of means. Chandra et al. (2017) 
considered the problem of fixed effect parameter 
estimation of generalized linear mixed model (GLMM) 

Prediction of Finite Population Total for Geo-referenced Data 

Samir Barman, Pradip Basak and Hukum Chandra
ICAR-Indian Agricultural Statistics Research Institute, New Delhi

Received 14 January 2020; Revised 28 July 2020; Accepted 04 October 2020

SUMMARY
In many surveys (for example, agriculture, forestry, environmental and ecological surveys), data are spatially correlated and independence assumption 
is questionable. As a result, the existing estimators for population total (or mean) based on standard survey estimation method can be biased and 
less efficient. Use of spatial information in sample surveys is expected to provide a better estimation of population parameters. This paper develops 
the estimators for finite population total incorporating spatial information. The proposed estimators are evaluated through simulation studies. The 
empirical results show that the developed estimators have smaller bias and better efficiency as compared to the existing estimators.

Keywords: Geo-referenced data, Population total, Spatial information.

Corresponding author: Pradip Basak
E-mail address: pradipbasak.99@gmail.com

Available online at www.isas.org.in/jisas
JOURNAL OF THE INDIAN SOCIETY OF 

AGRICULTURAL STATISTICS 74(3) 2020  195–200



196 Samir Barman et al. / Journal of the Indian Society of Agricultural Statistics 74(3) 2020  195–200

at the presence of spatial non-stationarity in the 
population under small area estimation. 

GWR leads to a location specific model. In model 
based survey estimation, GWR approach can be used 
to model the geo-referenced data. The use of spatial 
information via GWR model is expected to provide a 
better estimation of population parameters. So there is 
a growing interest in development of methods that use 
geo-reference data for predicting the finite population 
total. It is therefore timely and important to explore the 
use of geo-referenced data for the estimation of finite 
population total. In section 2, the traditional estimators 
for prediction of finite population total are described. 
Section 3 presents the proposed estimators of finite 
population total based on GWR approach. In section 
4, results of the empirical evaluations are described. 
Finally section 5 gives the concluding remarks. 

2.	 PREDICTORS FOR FINITE 
POPULATION TOTAL
To start, let us consider a finite population 
{1,2,..., }U N=  of N units such that each unit of 

population are indexed by ‘i’. Let ( )1 2, ,..., Ny y y=y  

denotes the study variable, and ( )1 2, ,... T
N=X x x x  

a set of N p×  of auxiliary variables where each 

( )1,..., , ,
T

i i ipx x i U= ∀ ∈x  is a p-auxiliary variable 
associated with each study variable. Also let 

( )1 2, ,..., NL l l l=  be the vector of location of population 
units where (lon, lat)il =  denotes the geographic 
location of ith unit. It is assumed that the population 
totals of auxiliary variables are known and there exist a 
linear relationship between study variable and auxiliary 
variables. Let s be a sample of size n drawn from 
this population. Without losing any information, the 
population can be grouped into sample and non-sample 
part, of size n and N n−  respectively. The non-sample 
part is denoted by r. Under the model based approach 
(Valliant et al. 2000), let us consider a linear model as

	 T
i i iy e= +x β � (1)

where β  is the unknown regression coefficient 
and ie  is the random error component identically and 
independently distributed as normal with mean zero 
and variance 2 1,...,i N∀ =σ . The above model at the 
population level can be expressed in matrix form as 

= +y X eβ � (2)

where y  and e  are of order 1N × , β  is of order 
1p×  and X  is of order N p× . Also ( )E =e 0  and 

( ) 2
NV = =e V Iσ . Based on this, our interest is to 

find the population total. The sample and non-sample 
partition of y, X and V is given by
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The best linear unbiased estimator of 
regression parameter β  under model (2) 
is ( ) 11 1ˆ T T

s ss s s ss s s s

−− −= =X V X X V y H yβ , where 
1 T

s s ss
−=H A X V  and 1T

s ss s
−=A X V X . The empirical 

best linear unbiased predictor (EBLUP) weight of 
population total is given as ( )T T T

n s N N s n= + −g 1 H X 1 X 1 .

The standard survey weighted estimator of finite 
population total is defined as 

(1)ˆ
i iT w y∑ � (3)

where iw  is the survey weight.
Under the linear prediction model (2), an estimator 

of population total based on the predicted values of y 
can be obtained as 

(2)

1 1

ˆˆ ˆ
n n

T
i i i i

i i
T w y w

= =

= =∑ ∑ x β � (4)

where ˆˆ T
i iy = x β  is the predicted value of y for ith 

unit. However, an important drawback of this estimator 
is that it is based on the predicted value of y . Under 
SRSWOR, when there is no auxiliary information, 

0
ˆˆ ,iy y i s= = ∀ ∈β  and the corresponding estimator is 

simplified as (2)

1

ˆ ˆ
n

i i
i

T w y Ny
=

= =∑ .

Under model based approach, an EBLUP of the 
finite population total is defined as 

(3)ˆ T
sT = g y � (5)

where ( ; 1,..., )ig i n= =g  and ig  is the EBLUP 
weight of the ith unit. Under SRSWOR, when 

there is no auxiliary information, 1 1n n
N n

n
−

= +g  

and the corresponding estimator is simplified as 
(3)ˆ T

sT Ny= =g y . It is clear that under SRSWOR when 
no auxiliary information is available all the existing 
estimators (i.e. (1) (2) (3)ˆ ˆ ˆT T T= = ) are identical.
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3.	 PROPOSED ESTIMATORS FOR 
PREDICTION OF FINITE POPULATION 
TOTAL
Let us assume a location specific (GWR) model as 

( ) ; 1,2,...,T
i i i i iy l i N= + ε =x β � (6)

where ( )i il=β β  is a vector of regression coefficient 
of order 1p×  associated with location ,il ( )20,i N∼ε σ  
and ix  is a vector of order of 1p×  auxiliary information 
associated with iy . At population level, model (6) can 
be written as

( )L= +y X eβ � (7)

Under GWR, the data are assumed to follow 
location specific regression function with geographical 
weight being used for estimation of parameters of 
this location specific or local regression function. The 
parameters are estimated using weighted least squares 
(WLS) with the weight varies location to location. Then, 
based on the observed sample, GWR method is used 
by assigning the weight to obtain the geographically 
weighted best linear unbiased estimator (GWBLUE) of 
( )  at location il  as in the form

( ) 11 1ˆ ( ) ( ) ( ) ( )T T GWR
i s ss i s s ss i s s i sl l l l

−− −= =X X X y H yβ Ω Ω �(8)

where 1 2 1( ) ( ) ( )ss i s i ss s il l l− −= =U V UσΩ  and 

( ) 1
( ) ( ) ( ).GWR T T

s i s s i s s s il l l
−

=H X U X X U

Here ( )s ilU  is the matrix of weights called spatial 
weight matrix that is specified to the location il  such 
that observations nearest to location il  are given greater 
weight than the observations far away. This matrix is 
defined as 
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where iju  is the spatial weight function based on 
Euclidian distance, gives weight to jth unit with respect 
to ith unit, is defined as 

1
1ij

ij

u
d

=
+

� (10)

where ijd  is the Euclidian distance between ith and 
jth unit. This function gives greater weight to the neatest 

observations than the observations that are far away. 
On substituting the value of iju  obtained in (10) in the 
weight matrix (9), the weight matrix can be written as 

( )s ilU . The corresponding WLS estimate of the model 
parameters is given by 

( ) 1ˆ ( ) ( ) ( )T T
i s s i s s s i sl l l

−
= X U X X U yβ � (11)

An estimator of population total based on GWR 
approach is defined as 

( )(4)

1 1

ˆˆ ˆ ( )
n n

T
i i i i i i

i i
T w y l w l

= =

= =∑ ∑ x β � (12)

where ( )ˆˆ ( ) T
i i i iy l l= x β  is the predicted value of 

the study variable ( )i iy l . This estimator uses the 
spatial information. Under SRSWOR, when there is 
no auxiliary information, the corresponding parameter 

β  at location il  become 0
1

1ˆ ˆ( ) ( ) ,
n

i i j ij
ji

l l y u
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Another survey estimation technique has been 
developed by incorporating the spatial relationship of 
the variables under study in the linear regression model. 
Let us consider a statistical linear model that able to 
take into the account spatial varying behaviour as

 = +y X eβ � (13)
where y  is the dependent data vector of order 
1N × , β  is a 1p×  vector of unknown parameters, 

X  is a covariate matrix of order N p×  which contain 
spatial information and e  is 1N ×  model error follows 

( )2, NN  0 Iσ  such that ( ) 0E =e  and ( ) 2
NV = =e V Iσ . 

Based on the sample, model parameters are estimated. 
Here we can’t directly apply the ordinary least square 
method as a technique of parameter estimation. In 
this case we have used WLS method to estimate the 
unknown parameters of the model. The weights of 
WLS method represent the information about the 
population spatial variations. The weight matrix is a 
square symmetric matrix where individual weights are 
generated based on some distance function, defined as
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where iju  is the spatial weight function given to jth 
location (j=1,…,n) in the sample to ith (i=1,…,n) point 
based on the Euclidian distance. The corresponding 
WLS estimate of the model parameter can be denoted by 
ˆ S S

s= H yβ  where ( )( ) ( )
11 1S T S T S

s ss s s ss

−− −
=H X X XΩ Ω  and 

( ) ( )1 12S S S
ss s ss s

− −
= =U V UσΩ . Under model assumption, 

the empirical best linear unbiased predictor (EBLUP) 
type weight of population total is given as

( ) ( ).TS S T T
s n s N N s n= + −g 1 H X 1 X 1 � (15)

We have proposed an estimator that carries the 
spatial information of the variable based on the EBLUP 
type weight as

( )(5)

1

ˆ
nTS S

s s i i
i

T g y
=

= =∑g y .� (16)

where S
ig  is the EBLUP type weight of ith unit. 

This estimator carries the spatial information through 
EBLUP type weight. Under SRSWOR, when there is 
no auxiliary information, the EBLUP type weight of the 

population total is then ( )1 2, ,..., ,TS
s n n

N n D D D
D
−

= +g 1  

where 
1 1 1

n n n
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D D u
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= =∑ ∑∑  and the estimator (16) leads 

to (5)
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4.	 EMPIRICAL EVALUATIONS
Empirical evaluations have been carried out 

to investigate the finite sample performance of the 
proposed estimators for prediction of finite population 
total using geo-referenced data. The performance of 
the proposed estimators defined by (4)T̂  and (5)T̂  are 
compared with various existing estimators defined by 

(1)T̂ , (2)T̂  and (3)T̂ . In the simulation study, spatial 
population data is generated under a spatial dependent 
linear model with simultaneous auto regressive (SAR) 
type error structure, i.e., effects of neighboring units 

have a SAR type correlation. Here, population size is 
considered as N=8100 and assumed to be located on 
a N N×  grid with intersections uniformly spread 
between -1 to 1 and with a distance ( )2 / 1N −  
between any two neighboring intersections along 
both the horizontal and vertical axes. Population 
data is generated under (i) no auxiliary variable: the 
model, 50 ; 1,....,i iy i N= + =α  and (ii) single auxiliary 
variable: the model, 50 ; 1,....,i i iy x i N= + + =α   , 
where the vector ( , 1,2,... )i i N= =αα  of random 
errors are generated via a random draw from 

( )( )2 1, [( )( )]T
N NN −− −0 I U I Uσ ρ ρ , with values of ρ  

and σ  set to 0.80 and 20 respectively. The auxiliary 
variable ix  is generated by chi-square distribution 
with 20 degrees of freedom. From this population, 
different samples of size, n=200 and 300 are selected 
using SRSWOR and the population total is estimated 
using different estimators included in the simulation 
study. The simulation has been run R=1500 times. The 
estimators are evaluated based upon the criteria of 
percentage absolute relative bias (ARB) and percentage 
relative root mean squared error (RRMSE), defined by

1

ˆ1 100
R

r
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T TARB
R T=

−
= ×∑
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1

ˆ1 100
R
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T TRRMSE
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 −
= ×  

 
∑ ,

where T is the actual value of the population 
total, r̂T  is the predicted value of the population total 
for the rth simulation run and R is the total number of 
simulation run. The results of the simulation study are 
presented in the following tables.

Table 1 presents the values of percentage absolute 
relative biases and percentage relative root mean 
squared errors recorded by the different estimators 
with auxiliary variable investigated in our simulations. 
These results show that both relative biases and relative 
root mean squared errors decreases with sample size 
of all the estimators. The proposed estimator (4)T̂  
has the minimum relative biases as compared to all 
other estimators considered in the simulation study. 
The relative root mean squared errors of both the 
proposed estimators (4)T̂  and (5)T̂  are smaller than 
the existing estimators (1)T̂ , (2)T̂  and (3)T̂ . Further, 
between two proposed estimators, the estimator (4)T̂  
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is more efficient than the estimator (5)T̂ . Overall, the 
proposed estimators outperform the existing estimators 
for spatial population. 

The values of percentage absolute relative biases 
and percentage relative root mean squared errors of 
the different estimators with no auxiliary variable 
investigated in the simulations are set out in Table 2. 
Two points standout from these results. First, all the 
existing estimators are identical. Second, the proposed 
estimators show superior performance as compared to 
the existing estimators. In case of no auxiliary variable, 
between two proposed estimators, the estimator (5)T̂  is 
marginally better than the (4)T̂ .

It worth noting that the proposed estimator (4)T̂  and 
(5)T̂  mainly differ in terms of the spatial weight matrices. 

These spatial weight matrices are used in estimating 
the model parameters. The estimator (4)T̂  is based on 
GWR approach which uses location specific spatial 
weight matrix to obtain location specific estimates of 
model parameters. On the other hand, in the estimator 

(5)T̂  a spatial weight matrix is used to incorporate 
spatial correlation in estimating the global estimates of 
model parameters. The performance of two estimators 

(4)T̂  and (5)T̂  in the simulation studies are essentially 
as one would expect. In GWR approach the regression 
coefficients associated with the auxiliary variables are 
location specific, so the estimator (4)T̂  dominates the 

estimator (5)T̂  when auxiliary variable is used. In case 
no auxiliary variable is used, the estimator (5)T̂  which 
uses the global estimates of parameters and incorporate 
spatial correlation outperforms the estimator (4)T̂ . 

5.	 CONCLUSIONS
This paper describes estimation of finite population 

total for geo-reference data. In particular, two different 
estimators are proposed for finite population total 
suitable for spatial population. The first estimator is 
developed expanding the GWR approach and using 
location specific spatial weight matrix whereas the 
second the estimator is motivated using a global spatial 
weight matrix defined for sample data. The empirical 
results based on simulation studies indicate that the 
proposed estimators perform better than existing 
estimators both in the presence and absence of auxiliary 
information. Hence, the proposed estimators for finite 
population total can be a sound alternative to existing 
estimators for spatial population data. Further, in this 
paper we have explored one type of spatial weight 
function based on inverse of Euclidian distance, thus 
there is a scope for improvement by exploring some 
other form of spatial weight function.
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Table 1. Percentage absolute relative bias (ARB, %) and percentage relative root mean square error (RRMSE, %)  
of different estimators with auxiliary variable

Sample Size Performance Criteria
Existing Proposed % Gain

(1)T̂ (2)T̂ (3)T̂ (4)T̂ (5)T̂ (4)T̂ (5)T̂
200 ARB 18.53 18.53 18.57 18.16 18.55 2.03 0.12

RRMSE 24.28 24.28 24.29 23.71 24.03 2.21 0.23

300 AB 16.02 16.02 16.06 15.61 15.84 2.54 1.14

RRMSE 20.49 20.49 20.54 19.94 20.37 2.69 0.85

Table 2. Percentage absolute relative bias (ARB, %) and percentage relative root mean square error (RRMSE, %)  
of different estimators with no auxiliary variable

Sample Size Performance Criteria
Existing Proposed % Gain

(1)T̂ (2)T̂ (3)T̂ (4)T̂ (5)T̂ (4)T̂ (5)T̂
200 ARB 26.00 26.00 26.00 25.59 25.57 1.58 1.63

RRMSE 33.60 33.60 33.60 33.06 33.04 1.62 1.67

300 AB 20.90 20.90 20.90 20.60 20.59 1.43 1.46

RRMSE 27.16 27.16 27.16 26.74 26.72 1.56 1.63
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