
1. INTRODUCTION
Designed experiments are generally conducted 

for making all the possible paired comparisons among 
the treatments. Comparing newly developed varieties 
with a standard one (called control) is an integral part 
of many areas of scientific experimentation. In such 
situations the interest is only in a subset of all possible 
paired comparisons. Balanced Treatment Incomplete 
Block (BTIB) (Bechhofer and Tamhane, 1981) designs 
andsome reinforced BIB designs are usually used 
for the purpose. However, the BTIB designs are not 
balanced (variance balance or efficiency balance). Das 
and Ghosh (1985) introduced the concept of ‘General 
efficiency balanced’ (GEB) designs as generalization 
of different types of balanced designs. Generalized 

Efficiency Balanced (GEB) block designs developed 
through method of reinforcement by Kageyama and 
Mukerjee (1986) are similar to R-type BTIB designs 
in which no extra replicate of the control treatment is 
added other than the obligatory replicate required for 
the construction of the design. The robustness of block 
designs for test treatments vs. control treatment against 
missing observations pertaining to test treatment has 
been investigated by several authors viz., Srivastava 
et al. (1996), Singh et al. (2005), Shunmugathai 
and Srinivasan (2011) and so on. Literature survey 
reveals that the study is mostly confined to design of 
experiments where the plots in a block are uncorrelated. 
But the presence of correlation in the form of neighbour 
effects among the adjacent plots in agricultural 
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experiments is a well-established fact. Kumar et al. 
(2019) developed BTIB designs having one control 
treatment with correlated observations considering 
first order neighbour balanced (NN1) block designs in 
linear blocks. 

In the present study an attempt has been made to 
examine the robustness property of block designs (test 
treatments vs. control) with correlated observations. 
The robustness of block designs of test treatments vs. 
control with correlated observations has been studied 
for the loss of a single observation. Due to loss of a 
single observation the resultant design may become 
disconnected as well as the efficiency of the resultant 
design may be reduced in comparison to the original 
design. In the present paper, both of these criteria 
have been considered for studying robustness. Again 
robustness has been investigated for R-type BTIB 
designs only to see the consequence of loss of a single 
observation in BTIB designs in general. Results for 
other BTIB designs can easily be derived from the 
results obtained in the present study. In the next Section 
some preliminaries have been discussed. In Section 3, 
condition of robustness as per connectedness criterion 
has been developed. Efficiency of the resultant designs 
has been discussed in Section 4. 

2. SOME PRELIMINARIES
Let us consider a block design (test treatment s 

vs. control) D having correlated observations with 
treatments labelled as 1, ..., v, v + 1 with v + 1 denoting 
the control treatment and 1, 2, ..., v denoting the test 
treatments. These treatments are arranged in b blocks 
of equal sizes (k + 1). Let r = (rl, r2, ..., rv, rv+1)’ be the 
replication vector with rv+1 denoting the replication 
number of control treatment and ri denoting the 
replication number of ith test treatment, i = 1, 2, ..., v. 
A Fixed effect additive model is considered for 
analysing a block design (test treatment vs. control) 
having correlated observations as

Y= μ1 + Xτ+ Zβ + ε (1) 
where, Y is a n × 1 vector of observations, μ is a 

general mean, 1 is a n × 1 vector of ones, X is a n × (v+1) 
incidence matrix of observations versus treatments, τ is 
a (v+1) × 1 vector of treatment effects, Z is a n × b 
incidence matrix of observations versus blocks, β is a 
b × 1 vector of block effects and ε is a n × 1 vector of 
random errors. According to Gill and Shukla (1985), 
the error ε is independently and normally distributed 

with mean zero and variance- covariance matrix V, 
where 2

b k 1+= σ ⊗V I W , Ib is an identity matrix of order 
b, ⊗  denotes the kronecker product and Wk+1 is the 
correlation matrix of k+1 observations within a block). 

In the present study we considered the correlation 
structure as considered by Keifer and Wynn (1981) 
considered the effects of correlation on the efficiency of 
BIB designs. Here we refer to the model of correlated 
observations as developed by Keifer and Wynn (1981) 
(see also Shah and Sinha (1989)). The covariance 
structure of a block of size k in a block design d ∈  D 
(v, b, k) with v treatments in b blocks of size k, is 
assumed as

Cov (yji, yj’i’) = σ2,  if j = j’ and i = i’
= ρσ2, if j = j’ and |i – i’| = 1
= 0,  otherwise. 
where, yji is the observation of the i-th treatment in 

j-th block, i=1, 2, …, v; j =1, 2, ..., b.
This model of correlated observation is known 

as first order nearest neighbour (NN1) model in 
the literature. In the above NN1 model there is no 
correlation among the plots between the blocks and 
correlation structure between plots within a linear 
block are the same in each block. Thus the correlation 
matrix under the model (1) would be 

 (2)

where, ρ(-1≤ ρ ≤ +1) is the correlation coefficient 
between two neighbouring plots in a block. 

Then, the information matrix (C matrix) for 
estimating the treatment effects in model (1) can be 
obtained by generalized least squares method as (Gill 
and Shukla, 1985) 

 (3)

2.1 R-type BTIB designs
Let us add one extra treatment as (v+1)th treatment 

to each and every block of any BIB design (v, b, r, k 
& λ). Now the resultant design D with v+1 treatment 
in b blocks of size k+1 is a design with correlated 
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observations as mentioned in (1). Also let the first 
v treatments be the test treatments and the (v+1)th 
treatment be the control treatment. Thus the replication 
number of the control treatment would be r* = b and 
let λ* be the numbers of times the control treatment 
appeared in the design with v test treatments as pair. 
The resultant design is also an R-type BTIB design. 
According to Theorem 2.1 (Majumder, et al., 2013), 
the elements of C- Matrix (3) of design D with (v+1) 
treatments will be 

 and

, 

where, ei= Number of blocks with treatment i at 
an end; Nij= Number of blocks with treatments i and 
j in adjacent positions and eij= Number of blocks with 
treatments iand j such that either one of them occurs at 
an end position. Thus the C-matrix (3) can be written as 

, (4)

where , I is an identity 

matrix of order v and J (=1v1’v) is a matrix of all unit 
elements of order v. Since Md is positive definite and 
non-singular matrix of order v, a generalized inverse 
of C as given by (Srivastava, et al., 1996) will be Cg, 
where 

 (5)

Example 1: Let us consider an example of a design 
of test treatments vs. control treatment (R- type BTIB 
or GEB) with (v+1 = 8, b = 21, k+1= 5) developed from 
a neighbour balanced (NN1) BIB design with (v = 7, 
b = 21, r = 12, k = 4). The blocks of the design are given 
below:

(1 3 6 4 8), (2 4 7 5 8), (3 5 1 6 8), (4 6 2 7 8), 
(5 7 3 1 8), (6 1 4 2 8), (7 2 5 3 8)

(3 2 4 5 8), (4 3 5 6 8), (5 4 6 7 8), (6 5 7 1 8), 
(7 6 1 2 8), (1 7 2 3 8), (2 1 3 4 8)

(2 6 5 1 8), (3 7 6 2 8), (4 1 7 3 8), (5 2 1 4 8), 
(6 3 2 5 8), (7 4 3 6 8), (1 5 4 7 8)

Here, eij = 3, Nij = 3, eij’ = 15, Nij’ = 3, ei = 3, ej’ = 21, 
here [eij + (k + 1) Nij] = 18, where i(≠ j) = 1, 2, … , 7, 
j’ = 8.

3. ROBUSTNESS OF R-TYPE BTIB 
DESIGNS WITH CORRELATED 
OBSERVATIONS
In what follows, we study the robustness property 

of test treatments vs. control treatment block (R- type 
BTIB) designs having correlation structure as 
described in (2) against loss of a single observation 
pertaining to test a treatment. Consider a block 
design D with correlated observations as discussed in 
Section 2. Without loss of generality, let an observation 
corresponding to a treatment in the first block be 
missing in the design D. Let D0 be the resultant design. 
Let the information matrix of D0 be C0, then C0 can be 
written as, 

C- C0= ww’, 
where, the matrix ww’ is an information matrix of 

order v+1 for the first treatment (the missing treatment) 
in a test treatments vs. control block design (D). It is a 
symmetric matrix with row and column sums as zero.

Now depending upon the position of the missing 
observation, the structure of would be as follows:

Structure of ww’ for missing observation 
occurring at the end position in a block i.e., 1st or 
(k+1)th

Let an observation corresponding to first(or last)
position of the 1st block of D be missed. Suppose the 
missing treatment be p and it has only one immediate 
neighbour (right or left) is q as the blocks are linear 
in nature, where (p(≠q) = 1, 2, …, v+1). In pth row/
column of ww’ matrix, (p, p) cell, (p, q) cell, (p, k+1) 



162 Manoj Kumar et al. / Journal of the Indian Society of Agricultural Statistics 74(2) 2020 159–164

cell and rest cells have the elements a, b, d and c 
respectively. In the qth row/column of (q, p), (q, q), 
(q, k+1) and (q, rest) cells will have the elements b, e, 
handg respectively. Similarly, in (k+1)th row /column, 
the cells like (k+1, p), (k+1, q) and (k+1, k+1) have 
the elements d, h and m respectively and rest of the 
elements are j. The (k-2) rows/columns (of the k-2 
remaining treatments in the first block) are identical. In 
each of these rows/columns, any cells with p, q and k+1 
will be c, g and j, respectively. Whereas, the other cells 
are equal and the value will be i. Among v+1 rows/
columns of ww’ matrix, all cells of remaining (v-k) 
rows/columns will be zero. The matrix ww’ will be 
divided by a common scalar element n.

For easy understanding, let us consider a design 
with v+1 = 8 and k+1 = 5 and the initial block of the 
design be (1 3 6 4 8). Let a single observation pertaining 
to the treatment 1be missing from the initial block. 
Then the structure of ww’ would be as follows:

a 0 b c 0 c 0 d
0 0 0 0 0 0 0 0
b 0 e g 0 g 0 h
c 0 g i 0 i 0 j1ww '
0 0 0 0 0 0 0 0n
c 0 g i 0 i 0 j
0 0 0 0 0 0 0 0
d 0 h j 0 j 0 m

 
 
 
 
 
 =  
 
 
 
 
  

where, 
n = [k + 1 + 2ρk] [k + 2ρk - 2ρ]; 
a = [k - ρ2 - 2ρ + 2ρk] [k + 2ρk - 2ρ]; 
b = [kρ - 2ρ - 1 - 2ρ2 + 2ρ2k] [k + 2ρk - 2ρ]
c = -[1 + 3ρ + 2ρ2] [k + 2ρk - 2ρ]; 
d = -[1 + 2ρ + ρ2] [k + 2ρk - 2ρ]; 
e = 1 - 2ρ(k - 2)- ρ2(7k - 9)-2ρ3(3k - 4); 
g = 1 - ρ(k - 5) - 2ρ2(2k - 5) - 4ρ3(k - 2); 
h =1 - ρ(k - 4) - ρ2(3k - 7) - 2ρ3(k - 2); 
i = 1 + 6ρ + 12ρ2 + 8ρ3;
j = 1 + 5ρ + 8ρ2 + 4ρ3 and m = 1 + 4ρ + 5ρ2 + 2ρ3.
Structure of ww’ for missing observation 

occurring at 2nd or kth positionin a block
Let 2nd or kth position be missed in a particular 

block of design D (with v+1 = 8 and k+1 = 5), then the 
simplified form of ww’ is given below. 

a ' 0 b ' c ' 0 d ' 0 e '
0 0 0 0 0 0 0 0
b ' 0 f ' g ' 0 h ' 0 i '
c ' 0 g ' j' 0 k ' 0 l '1ww '
0 0 0 ' 0 0 0 0 0q '
d ' 0 h ' k ' 0 m ' 0 n '
0 0 0 0 0 0 0 0
e ' 0 i ' l ' 0 n ' 0 p '

 
 
 
 
 
 =  
 
 
 
 
  

where, 
q’ = [k + 1 + 2ρk] [k + 2ρk - 4ρ]; 
a’ = 1 - 2ρ(k - 2) - ρ2(5k - 8) - 2ρ3(k - 2); 
b’ = -[1 + ρ(k - 2) + 2ρ2(k - 1)] [k + 2ρk - 4ρ]; 
c’ = 1 - ρ(k - 6) - 4ρ2(k - 3) - 4ρ3(k - 2); 
d’ = 1 - ρ(2k - 5) - 6ρ2(k - 2) - 4ρ3(k - 2); 
e’ = 1 - ρ(k - 5) - ρ2(3k - 8) - 2ρ3(k - 2); 
f’ = [k - 4ρ2 - 4ρ + 2ρk] [k + 2ρk - 4ρ]; 
g’ = -[1 + 4ρ + 4ρ2] [k + 2ρk - 4ρ]; 
h’ = [-1 - ρ(k - 3) - 2ρ2(k - 2)] [k + 2ρk - 4ρ]; 
i’ = -[1 + 3ρ + 2ρ2] [k + 2ρk - 4ρ]; 
j’ = 1 + 8ρ + 20ρ2 + 16ρ3; 
k’ = 1 - ρ(k - 7) - ρ2(4k - 18) - 4ρ3(k - 4); 
l’ = 1 + 7ρ + 14ρ2 + 8ρ3; 
m’ = 1 - 2ρ(k - 3) - ρ2(7k - 17) - ρ3(6k - 16) and 
n’ = 1 - ρ(k - 6) - ρ2(3k - 13) - 2ρ3(k - 4).
Structure of ww’ for missing observation 

occurring at 3rd or (k-1)th position in a block
Suppose missed plot be 3rd or (k-1)th position in a 

particular block of design D(with v+1 = 8 and k+1 = 5), 
then obtained ww’ is an information matrix of a missed 
plot for the design D. 

p ' 0 n ' n ' 0 i ' 0 p '
0 0 0 0 0 0 0 0
n ' 0 m ' m ' 0 h ' 0 n '
n ' 0 m ' m ' 0 h ' 0 n '1ww '
0 0 0 0 0 0 0 0q '
i ' 0 h ' h ' 0 f ' 0 i '
0 0 0 0 0 0 0 0
p ' 0 n ' n ' 0 i ' 0 p '

 
 
 
 
 
 =  
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3.1 Conditions of robustness
If ρ ≠ 0, we cannot develop the w as a vector. But 

when ρ = 0, w vector can be developed from the matrix 
ww’, where w’ = {k(k+1)}-1/2[k: -f’: 1], (k+1) is the block 
size and f’ is a vector with (0, 1) elements representing 
the incidence of the (v) unaffected treatments in the first 
block which contains the missing treatment. Otherwise 
we can always write C0 = C - ww’. Now we give the 
following result.

Theorem 1: An R-type BTIB designs with 
correlated observations design D is robust as per 
connectedness criterion against the loss of a single 
observation.

Proof: The design D is robust as per connectedness 
criterion against loss of a single observation, if the rank 
of its C-matrix is equal to the rank of the c-matrix of 
the resultant design, i.e., if Rank of C = Rank of C0. 
Following Theorem 1 of Dey (1993), design D is robust 
if f [Iv+1 – Cgww’] is a positive definite, where Iv+1 
is an Identity matrix of order v+1 and Cg is ag-inverse 
of C.

Now in matrix C of design D, 

 and .

Thus, Cgww’ = . Again, 

{X’ [Iv+1 – Cgww’] X} >0 for any non-null vector X. 
Thus [Iv+1 – Cgww’] is positive definite. Hence the 
proof. 

Remark1: The condition for robustness as given in 
Theorem 4 (or Corollary 2) of Dey (1993) for a block 
design is also satisfied for ρ = 0. 

4. EFFICIENCY OF R-TYPE BTIB DESIGNS 
WITH CORRELATED OBSERVATIONS 
FOR A LOSS OF A SINGLE 
OBSERVATION 
The efficiency of an R-type BTIB designs with 

correlated observations for a loss of a single observation 
can be calculated as (Criterion 2 of Dey (1993).

.

Table 1. Robust efficiency values of the BTIB design for different 
values of ρ (-1 to +1).For second design, (k-1=2), so, it limits up 

to E2.

Designs Rho E1 E2 E3

v + 1 = 8, 
b = 21, 

r = 12(21), 
k + 1 = 5, 
λ = 6(12)

-1 0.989 0.999 0.981

-0.9 0.989 0.934 0.980

-0.8 0.990 0.963 0.980

-0.7 0.997 0.970 0.978

-0.6 0.998 0.998 0.998

-0.5 0.987 0.983 0.985

-0.4 0.987 0.983 0.985

-0.3 0.987 0.984 0.984

-0.2 0.986 0.984 0.985

-0.1 0.986 0.985 0.985

0 0.985 0.985 0.985

0.1 0.985 0.986 0.986

0.2 0.984 0.986 0.986

0.3 0.983 0.986 0.987

0.4 0.982 0.986 0.987

0.5 0.980 0.986 0.988

0.6 0.978 0.985 0.988

0.7 0.976 0.984 0.989

0.8 0.972 0.982 0.990

0.9 0.968 0.979 0.990

1 0.961 0.975 0.990

v+1 = 8, b=21, r 
=9(21), k+1 =4, λ 

=3(9)

-1 0.985 0.962

-0.9 0.987 0.964

-0.8 0.995 0.965

-0.7 0.955 0.961

-0.6 0.984 0.975

-0.5 0.981 0.974

-0.4 0.981 0.974

-0.3 0.980 0.975

-0.2 0.980 0.976

-0.1 0.979 0.977

0 0.979 0.979

0.1 0.978 0.980

0.2 0.976 0.982

0.3 0.975 0.983

0.4 0.972 0.985

0.5 0.969 0.988

0.6 0.965 0.990

0.7 0.958 0.993

0.8 0.948 0.997

0.9 0.930 0.997

1 0.897 0.997

Note:E1, E2 and E3 indicates efficiency values for 1st or (k+1)th plot, 2nd or 
kth plot and 3rd or (k-1)th plot, respectively, be missed in a block of Design D.
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This efficiency has been calculated for many 
R-type BTIB designs derivable from BIB designs for 
various values of ρ. For an example, these values are 
given for two designs in Table1. These values were 
calculated for all possible situations of occurrence of 
missing observations as described above. The average 
efficiency E1, E2 and E3 for first design with standard 
error was found to be 0.983(±0.008), 0.981(±0.013) 
and 0.986(±0.004) respectively. The average 
efficiency E1 and E2 for second design was recorded 
as 0.969(±0.022) and 0.979(±0.011) respectively. It 
has been found the efficiency remain very high for 
any value of ρ and under any situation of occurrence 
of missing observation. Thus these designs are robust 
as per efficiency criterion. The efficiencies of designs 
have been calculated by in SAS IML code.

5. CONCLUSIONS
The robustness criteria of BTIB design for missing 

of a single test or control treatment from any block with 
correlated adjacent plots has been discussed as there 
exits correlation in the form of neighbour effects among 
the adjacent plots in agricultural experiments. Also, a 
series of robust BTIB designs have been developed. 
The C matrices of the BTIB design and the residual 
BTIB design after removal of a single plot has also been 
evaluated in case of correlated observations. The robust 
efficiencies of the above designs for different values of 
plot to plot correlation coefficient (ρ) were estimated. 
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