
1.	 INTRODUCTION
Among the extreme events, droughts are the 

most widespread and slowly developing atmospheric 
hazards which remain for a long duration, affecting 
natural resources, environment, and people. 
Furthermore, it corresponds to the failure of spatial 
and temporal precipitation and water availability and 
therefore consequent impact on agriculture, ecosystem 
and socioeconomic activities of human beings. The 
global land surface in extreme drought is predicted to 
increase from 1-3 per cent for the present day to 30 
per cent by the 2090s (IPCC, 2012). More intense 
droughts and increased precipitation variability lead to 
increased stressed condition, agriculture and economic 
activities. The frequency of severe and widespread 
multi-year droughts has increased in India during the 
recent decades due to the erratic summer monsoon and 
increase in air temperature and thereby creating huge 
damage to crops and society (Mishra et al., 2014).

There are several methods that have been used in the 
past as drought assessment tools such as measurement 
of lack of rainfall, shortage of stream flow, reduced 
levels of water storage, and drought Indices (DIs). Of 
these, DIs were widely used for drought assessment. 
Out of few indicessuch as standardized precipitation 
index (SPI), China Z index (CZI), Deciles, Percent 
Normal (PN) and Rainfall anamoly index (RAI), the 
Standardized precipitation index (SPI) is considered as 
one of the most used drought indices around the globe. 

Historically little attention has been given to 
drought forecasting aspect which is very important from 
the point of view of drought preparedness and early 
warning as mentioned earlier. In addition, in drought-
prone regions, another drought event is likely to occur 
before the region fully recovers from the previous 
event. However, early indication of drought conditions 
could reduce future impacts and lessen the need for 
government intervention in the future. Therefore, the 
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utilization of drought forecasting tool like ARIMA and 
ANN can be used for drought preparedness. 

2.	 MATERIALS AND METHODS
The monthly rainfall data of Ballari has been 

collected from Dept. of economics and statistics, Multi 
storey building, Bangalore. The study area is situated 
at an elevation of 580 msl (15°15’ N latitude and 
76°93’ E longitude) this region falls in the southern 
part of karnataka, which is the 9th  largest state in 
India, covering an area of 191976 sq.km, but has the 
2nd  largest arid zone after the state of Rajasthan in 
India. (Alam et al., 2016).

3.	 Standardized Precipitation 
Index
The Standardized Precipitation Index (SPI) is one 

of the most widely used drought index (Hayes et al., 
1999; Deo, 2011) developed by McKee et al. (1993). To 
calculate the SPI values, first the long-term precipitation 
record is fitted to a probability distribution. Sonmez 
et  al. (2005) used the gamma distribution to rainfall 
data as it fits well to rainfall data, because of variety 
of reasons. The first advantage of gamma distribution 
is that it is bounded on the left at zero. Secondly, the 
gamma distribution is positively skewed. The current 
study also used the gamma distribution to fit the long-
term rainfall record; gamma distribution is defined by 
its probability density function of Equation (1)

 for x, α, β>0� (1)

where, α and β are the shape and scale parameters 
respectively; 

x is the rainfall amount; and Γ(α) is the gamma 
function.

The maximum likelihood method was used to 
estimate the optimal values of α and β parameters using 
Equations (2) and (3) respectively. 

α � (2)

� (3)

� (4)

 = Mean rainfall
ln = Natural log

n = total months
The resulting parameters were then used to derive 

the cumulative probability for non-zero rainfalls using 
Equation (1).

� (5)
Which can be expressed by Equation (6)

� (6)

where, t = x /β
Since the gamma function is undefined for x = 0 and 

the rainfall time series data may contain zero values, 
the cumulative probability of zero and non-zero values, 
H(x) was calculated using Equation (7).

H(x) = q + (1-q) F(x; α, β)� (7)
Where, q is the probability of zero rainfall. If m is 

the number of zeros present in a rainfall time series, 
then q is estimated by m/n.

The cumulative probability was then transformed 
into a standardized normal distribution so that the SPI 
mean and variance were zero and one respectively 
with the help of equation 8 and 9. Following Mishra 
and Desai (2006), the current study employed the 
approximate transformations provided by Abramowitz 
and Stegun (1965) to transform the cumulative 
probability distribution into a standardized normal 
distribution, which are given in Equations (8) and (9):

, 

When � (8)

for 0 <H(x) ≤ 0.5

, 

When � (9)

for 0.5 <H(x) ≤ 1
Where, Co = 2.515517, C1 = 0.802853, 

C2 = 0.010328, d1 = 1.432788, d2 = 0.189269 and 
d3 = 0.001308.
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In this study, SPI was calculated on a different 
time scales. The SPI threshold ranges that are used 
to define drought conditions are presented in Table 1 
(McKee et al., 1993). For example a 3-month timescale 
(SPI3 February) SPI at the end of February compares 
the December–January–February precipitation total 
in that particular year with the December–February 
precipitation totals of all the years on record for that 
location.
Table 1. Drought classification based on SPI (McKee et al., 1993)

Drought classes SPI

≥ 2.0 Extremely wet (EW)

1.50 to 1.99 Severe wet (SW)

1.0 to 1.49 Moderately wet (MW)

0.99 to -0.99 Near normal (N)

-1.0 to -1.49 Moderate drought (MD)

-1.50 to -1.99 Severe drought (SD)

≤-2.0 Extreme drought (ED)

4.	 MAGNITUDE AND DURATION OF 
STRONGEST, LONGEST AND INTENSE 
DROUGHT
Yevjevich (1967) proposed the use of ‘run theory’ 

to define the drought characteristics, as shown in Fig. 
1. A run is defined as a portion of time series of drought 
parameter Xt, in which all values are either below or 
above the selected truncation level of Xo; accordingly 
it is called either a negative run or a positive run. The 
truncation level has been defined as mean of the series 
over a long period of time. The knowledge of the 
components of a drought event is very important for 
the mathematical analysis of drought.

(a)	 Most intense drought (Ie)
(b)	 Drought initiation time (Ti).
(c)	 Drought termination time (Te)
(d)	 Drought duration (Dd)
The magnitude and duration of drought events were 

detected using a runs theory, which will help to detect 
the strongest (S), longest (D) and intense (I) droughts. 
The strongest drought event is the one which is having 
a higher drought magnitude when its event values are 
summed up. The longest drought is the one in which 
duration of drought is high and the intense drought is 
one which is having a least index value compared to 
other drought events over the study period.

5.	 PREDICTION OF DROUGHT USING 
ARIMA AND ANN MODELS
Drought is a global phenomenon that occurs 

virtually in all landscapes. Due to the random nature 
of contributing factors, occurrence and severity of 
droughts can be treated as stochastic in nature. Early 
indication of possible drought can help to set out 
drought mitigation strategies and measures in advance. 
Therefore drought forecasting plays an important role 
in the planning and management of water resource 
systems. One of the basic deficiencies in mitigating the 
effects of drought is the inability to forecast drought 
conditions reasonably well in advance by either few 
months or seasons (Mishra and Desai, 2006).

5.1	 ARIMA models 
Autoregressive (AR) models can be effectively 

coupled with moving average (MA) models to produce 
a general and useful class of time series models named 
Auto Regressive Moving Average (ARMA) models. In 
an ARMA model the current value of the time series is 
expressed as a linear aggregate of ‘p’ previous values 
and a weighted sum of q previous deviations (original 
value minus fitted value of previous data) plus a random 
component.

However, an ARIMA model can be used when the 
data are stationary. This class of models can be extended 
to non-stationary series by allowing differencing of 
data series. These models are called Auto Regressive 
Integrated Moving Average (ARIMA) models. 
 Box and Jenkins (1976) provides a new generation of 
forecasting tools, known as the ARIMA methodology, 

1. Drought with the highest severity.

2. Drought with the longest duration.

3. Drought with the highest intensity.

Fig. 1. Drought parameters using run theory for a given threshold level, X0
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which emphasizes on analyzing the stochastic 
properties of time series on their own rather than 
constructing single or simultaneous equation models. 
ARIMA models allow each variable to be stated by 
its own lagged values and stochastic error terms. The 
general non-seasonal ARIMA model is AR to order ‘p’ 
and MA to order ‘q’ and operates on dth difference of 
the time series Zt; thus a model of the ARIMA family 
is classified by three parameters (p, d, q) that can have 
zero or positive integral values (Mishra and Desai, 
2006)

The general ARIMA model may be written as

� (10)

Where θ (B) are polynomials of order p and q, 
respectively. Non-seasonal AR operator of order p is 
written as

� (11)

and non-seasonal MA operator of order q is written 
as  

� (12)

The development and application of ARIMA 
model majorly includes model identification, 
parameter estimation, diagnosis check and forecasting 
using selected models. The meteorological drought 
at different timescale were forecasted over different 
lead times (1, 2, 3, 4, 5 and 6 months) using optimal 
networks. For instance, a 1-month lead time prediction 
means that during January 2017, the prediction for 
February 2017 is computed. The RMSE and MAE 
were estimated between the observed and forecasted. 
The quantitative evaluation of the different model 
performance was carried out using root mean square 
error (RMSE) and mean absolute error (MAE) over 
different lead time for all SPI series

5.2	 Artificial Neural Network (ANN)
An Artificial Neural Network (ANN) is an 

information processing system that resembles the 
structure and operation of the brain (Maier et  al., 
2010). The ANN modeling approach was developed in 
the 1940s by McCulloch and Pitts (1943) and gradually 
progressed with advances in calibration methodologies. 
Given sufficient data and complexity, ANN can be 
designed to model any relationship between a series 

of independent and dependent variables – inputs and 
outputs to the network respectively (Hornik et  al., 
1990). One of the advantages of the ANN technique 
is that there is no need for the modeller to fully define 
the intermediate relationships (i.e., physical processes) 
between inputs and outputs (Morid et al., 2002). This 
feature makes ANNs particularly suitable for the 
analysis of complex processes, like drought forecasting, 
where the relationships of a large number of input 
variables with the output need to be explored (Morid 
et al., 2007). Because of this advantage, in recent years, 
the ANN modeling approach has been used in many 
research fields including drought forecasting (Morid 
et al., 2007).

An ANN model was fitted to the SPI time series 
at different timescales. Although many types of neural 
network models have been proposed, the most popular 
one for time series forecasting is the feed forward 
network model. Fig. 2 shows a typical three-layer feed 
forward model used for forecasting. The input nodes 
are the previously lagged observations, while the output 
provides the forecast of a future value. Hidden nodes 
with appropriate nonlinear transfer functions are used 
to process the information received by the input nodes. 
In this study Direct multistep neural network approach 
was applied for forecasting the SPI series for 6 months 
ahead (Mishra et al. 2007).

Fig. 2. Feed forward neural network for univariate time series

Direct multistep neural network approach 
(DMSNN): This model is based on multiple outputs, 
when several nodes are included in the output layer, 
and each output node represents one time step to be 
forecasted Fig. 3. This study includes six output nodes, 
indicating a one-to-six-month lead time. When an 
ANN is used for forecasting time series, input nodes 
are reconnected to a number of past observed values 
to identify the processes at future time steps. The 
activation function determines the relation between 
input and outputs of a node and a network. In the 
present work, a popularly used sigmoid function was 
employed.



153Rahul Patil et al. / Journal of the Indian Society of Agricultural Statistics 74(2) 2020  149–157

Fig. 3. Direct multi-step Neural Network approach

5.3	 Comparison of ANN and ARIMA
The results of ANN and ARIMA models were 

compared. The quantitative evaluation of the different 
model performance was performed using root mean 
square error (RMSE) and mean absolute error (MAE) 
over different lead time and timescale.

6.	 RESULTS AND DISCUSSION

6.1	 Historical drought events at Ballari station
The historical drought events were observed at 

different timescales for Ballari station during study 
period 1965-2017 and are presented in Table 1. The 
results show that the most severe drought captured 
by SPI during study period were 1985 with SPI 
values of -1.9, -1.95, -2.68, -1.99, -2.12 and -2.54 
for SPI1_‌Aug, SPI3_‌Sept, SPI6_Oct, SPI9_Nov, 
SPI12_Dec and SPI24_Dec respectively. In addition, 
few more historical drought years observed were 
during 1971 (-1.62 SPI1_‌June, -1.81 SPI1_July, -1.33 
SPI3_‌Sept, -1.15 SPI9_‌Nov, -1.27 SPI12_‌Dec and -1.1 
SPI24_‌Dec), 1972 (-2.11 SPI1_‌Aug, -1.0 SPI9_‌Nov, 
-1.06 SPI12_‌Dec and -1.68 SPI24_‌Dec), 1976 (-1.2 
SPI1_‌July, -1.68 SPI3_Sept, -2.97 SPI6_‌Oct, -2.88 
SPI9_‌Nov, -3.03 SPI12_‌Dec), 2003 (‑1.73 SPI1_‌June, 
-2.31 SPI3_‌Sept, -1.8 SPI6_Oct, -2 SPI9_Nov, -2.14 
SPI12_Dec and -2.24 SPI24_‌Dec) and 2004 (-1.28 
SPI1_Aug, -1.19 SPI3_‌Sept, -1.10 SPI6_Oct, -1.11 
SPI12_Dec and -2.33 SPI24_‌Dec).

6.2	 Magnitude and duration of longest, strongest 
and intense drought events at Ballari using SPI 
at different timescale
The drought magnitude and severity was analysed 

and estimated at different timescales of 1, 3, 6, 9, 12 
and 24 months for Ballari station and are presented in a 
Table 2. The results show that longest drought months 
under SPI_1 was found to be during 1985 (Aug-Oct) and 
2016 (Aug-Oct) with a duration of 3 months and severe 
event with a magnitude of -4.59 for 1985 (Aug-Oct) was 
recorded. Furthermore, the most intense drought month 
was observed during 2003 (Sept) with an intensity of 
-2.21. All along, for the other timescales of 3, 6, 9, 
12 and 24 months the longest drought event recorded 
were during 1976 (May-Dec), 1976-77 (May-Mar), 
1985-86 (Apr-May), 1984-86 (Oct-Aug) and 2003-05  
(Jun-Jun) with a duration of 8, 11, 14, 23 and 
25. On the other hand, the most intense months 
were 2003 (Jun), 2003 (Sep), 2003 (Jul), 1985 
(Sep) and 1985 (Dec) with an intensity of 
 -4.66, -3.72, -3.73, -3.33 and -2.54 for 3, 6, 9, 12 and 
24 months respectively.

7.	 Drought forecasting using 
ARIMA and ANN at different lead 
time for Ballari	station
The development, forecasting, validation and 

comparison of the ARIMA and ANN model was carried 
out for Ballari station at different timescale 

7.1	 Development of ARIMA model
The autocorrelation test was carried out in order 

to know whether the data set is autocorrelated or not 
and the results are presented in Table 4. The view over 
the results found that for 3, 6, 9, 12 and 24 timescale 
the Chi‑square and probability for Box test were 254, 
<0.001; 392.87, <0.001); 504.64, <0.001; 558.52, 
<0.001; and 632.28, <0.001. The results revels that 
the dataset at different timescale were observed to 
be Autocorrelated. Once the series is stationary and 
autocorrelated the next step is the development of 
model.

The Models selected for Ballari station at 3, 6, 9, 
12 and 24 timescale based on the lower AIC and BIC 
values are presented in Table 5 are (0, 0, 2), (0, 0, 5), (3, 
0, 4), (1, 0, 0) and (2, 0, 0) with an AIC and BIC values of 
(1387.56 & 1401.06), (1229.79 & 1256.42), (934.76 & 
970.69), (714.76 & 723.85) and (78.40 & 91.88) for 3, 
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Table 2. Drought events according to several times steps for Ballari station

Years SPI1
(Jun)

SPI1
(July)

SPI1
(Aug)

SPI3
(Sept)

SPI6
(Oct)

SPI9
(Nov)

SPI12
(Dec)

SPI24
(Dec)

1961 -1.81 - - - - - - -

1962 - - - - -1.22 -1.26 - -

1963 -1.57 -1.55 - - - - - -

1965 - -1.81 - - - -1.17 - -

1967 - - -1.59 - - - - -

1968 - - -2.52 - - - - -

1971 -1.62 -1.81 - -1.33 - -1.15 -1.27 -1.1

1972 - - -2.11 - - -1 -1.06 -1.68

1973 - -1.19 - - - - - -

1975 -1.37 - - - - - - -

1976 - -1.2 - -1.68 -2.97 -2.88 -3.03 -

1977 - - - - - - - -1.51

1979 - - -1.55 - - - - -

1980 - - -1.43 -1.11 - - - -

1984 -1.81 - - - -1 -1.27 -1.39 -

1985 - - -1.9 -1.95 -2.68 -1.99 -2.12 -2.54

1986 - - - - - - - -1.45

1987 - -1.74 - - - - - -

1988 -1.32 - - - - - - -

1991 - -1.33 - - - - - -

1994 -1.06 - - -1.58 - -1.23 -1.2 -

1995 - - - - - - - -1.24

1996 - -1.26 - - - - - -

1997 - -1.47 - -2.8 -2.23 -2.02 -1.77 -

2002 - - - -1.63 - - -1 -

2003 -1.73 - - -2.31 -1.8 -2 -2.14 -2.24

2004 - - -1.28 -1.19 -1.1 - -1.11 -2.33

2006 - -1.04 -1.9 - - - - -

2012 -1.39 - - - - - - -

2013 - - -1.24 - - - - -

2016 - - -1.68 - - - - -

Table 3. Magnitude and duration of longest, strongest and intense drought events at Ballari region using SPI at different timescale

Station Longest Strongest Highest

 Year D Year S Year I

Ballari (SPI_1) 1985(Aug-Oct) and 2016 (Aug-Oct) 3 1985(Aug-Oct) -4.59 2003(Sept) -2.21

Ballari(SPI_3) 1976 (May-Dec) 8 1976(May-Dec) -14.55 2003(Jun) -4.66

Ballari(SPI_6) 1976-77(May-Mar) 11 1976-77  (May-Mar) -25.25 2003(Sep) -3.72

Bellary(SPI_9) 1985-86(Apr-May) 14 1985-86  (Apr-May) -25.9 2003(Jul) -3.73

Ballari(SPI_12) 1984-86(Oct-Aug) 23 1984-86  (Oct-Aug) -39.58 1985(Sep) -3.33

Ballari(SPI_24) 2003-05(Jun-Jun) 25 2003-05  (Jun-Jun) -44.54 1985(Dec) -2.54
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6, 9, 12 and 24 respectively. Furthermore the maximum 
likelihood values for selected models were -690.79, 
-608.73, -459.38, -355.43 and -36.20 respectively. The 
parameters estimate for different models are presented 
in Table 6. In addition, the residuals were obtained by 
differencing original series with the fitted series and 
residuals were found to be white noise as presented 
in Table 7 with probability values of 0.63, 0.56, 0.96, 
0.25 and 0.88 for 3, 6, 9, 12 and 24 months timescale 
respectively. The performance of the model during 
development is presented in Table 9 and the results 
show that the RMSE and MAE were observed to be 
low with a value of (0.68 & 0.52), (0.61 & 0.43), (0.48 
& 0.39), (0.41 & 0.20) and (0.25 & 0.17) respectively. 

7.2	 Drought forecasting using ARIMA model
Soon after the development of the models 

forecasting was done at 1-6 month lead time period 
and the results are presented in Table 10. The results 
revel that the performance of the models was found to 
good at 1-2 leads time. Furthermore, for higher lead 
time the results were observed to more erroneous due 
to accumulation on error over increasing lead time. 

7.3	 Drought forecast using ANN model
The best fit models at different timescales were 

selected based on the least RMSE value in the training stage 
and the selected models are (7-4-6), (13-7-6), (19-10-6),    
(25-13-6) and (25-13-6) for 3, 6, 9, 12 and 24 months 
timescale. The performance of the model during 
development is presented in Table 9 and the results show 
that the RMSE and MAE were observed to be low with 
a value of (0.68 & 0.52), (0.61 & 0.43), (0.48 & 0.39), 
(0.41 & 0.20) and (0.25 & 0.17) respectively. Soon after 
model selection drought forecasting was carried out at 
3, 6, 9, 12 and 24 timescale for Ballari station at 1-6 
lead time and the results are presented in Table 10. The 
results reveal that the RMSE and MAE for SPI_3 at  
1 month lead time were 0.48 and 0.37 respectively and 
for 6 month lead time the values were 1.69 and 1.32 
respectively. A glance over the results clearly explains 
that as the lead time increases the RMSE and MAE 
value increases leading to an addition of errors. The 
forecasted values of SPI6 time series for one month 
lead time are presented in Table 11. 

7.4	 Comparison of forecast results 
The forecasting ability of different ARIMA and 

ANN models was carried out at 3, 6, 9, 12 and 24 

months timescale and the results are evaluated in terms 
of RMSE and MAE and are presented in Table 10. The 
results reveal that for 1 month ahead forecast the RMSE 
and MAE for different timescale were (0.91 & 0.73), 
(0.69 & 0.60), (0.65 & 0.50), (0.59 & 0.45) and (0.13 
& 0.04) for ARIMA model and (0.48 & 0.37), (0.53 
& 0.41), (0.50 & 0.390), (0.35 & 0.28) and (0.19 and 
0.16) for 3, 6, 9, 12 and 24 respectively. An inspection 

Table 4. Autocorrelation test for different time scales of  
Ballari station

Time scales Chi-Square Lag order P-value

SPI_3 254.41 1 <0.001

SPI_6 392.87 1 <0.001

SPI_9 504.64 1 <0.001

SPI_12 558.52 1 <0.001

SPI_24 632.28 1 <0.001

Table 5. Log likelihood AIC and BIC values of ARIMA model for 
different time scales of Ballari station

Time 
Scales

Model Log-
Likelihood

AIC BIC

SPI_3 (0, 0, 2) -690.79 1387.56 1401.06

SPI_6 (0, 0, 5) -608.73 1229.79 1256.42

SPI_9 (3, 0, 4) -459.38 934.76 970.69

SPI_12 (1, 0, 0) -355.43 714.87 723.85

SPI_24 (2, 0, 0) -36.20 78.40 91.88

Table 6. Parameter estimation of ARIMA by maximum likelihood 
method for different time scales of Ballari station

Time 
scales Model Parameters Estimate S.E. Z 

value P-value

SPI_3 (0, 0, 2) MA1 0.71 0.03 21.14 <0.001

MA2 0.56 0.03 16.80 <0.001

SPI_6 (0, 0, 5) MA1 0.74 0.03 20.61 <0.001

MA2 0.63 0.04 15.08 <0.001

MA3 0.55 0.04 12.12 <0.001

MA4 0.49 0.04 11.54 <0.001

MA5 0.43 0.03 11.67 <0.001

SPI_9 (3, 0, 4) AR1 -0.74 0.07 -10.39 <0.001

AR2 0.67 0.04 14.40 <0.001

AR3 0.58 0.06 9.05 <0.001

MA1 0.97 0.07 20.37 <0.001

MA2 0.69 0.11 6.198 <0.001

MA3 0.09 0.09 0.99 0.31

MA4 0.141 0.05 2.76 0.005

SPI_12 (1, 0, 0) AR1 0.90 0.016 56.22 <0.001

SPI_24 (2, 0, 0) AR1 0.88 0.03 22.91 <0.001

AR2 0.07 0.03 1.96 0.04
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Table 7. Auto correlation check for residuals of ARIMA model at 
different timescales of Ballari station

Time scales Chi-Square Lag order P-value

SPI_3 0.22 1 0.63

SPI_6 0.32 1 0.56

SPI_9 0.0019 1 0.96

SPI_12 1.27 1 0.25

SPI_24 0.02 1 0.88

Table 8. ANN models specifications for Ballari station at different 
time scales

Time Scales Models Parameters

SPI_3 7-4-6 37e

SPI_6 13-7-6 106

SPI_9 19-10-6 211

SPI_12 25-13-6 352

SPI_24 25-13-6 352

over the results reveals that the ANN performs better 
than ANN for all timescale except SPI_24. In SPI_24 
the ARIMA performed better compared to ANN it 
may be due to the linearity in the dataset. ARIMA 
models perform better in the linear dataset compared 
to nonlinear one. Furthermore, for both model the 
forecasting ability is restricted to 2 lead times beyond 
which results found to be inaccurate.

8.	 CONCLUSION
Analysis of the computed SPI series shows that the 

study area has experienced the severe droughts during 
1971, 1972, 1976, 1985, 2003 and 2004 followed by 
a moderate drought at regular intervals throughout the 
study area. This study summarises that the region is more 
prone to drought at a regular intervals. The most intense 
drought months were 2003 (Jun), 2003 (Sep), 2003 

Table 9. Performance of different models in training data set different time scales of Ballari station

Criteria SPI_3 SPI_6 SPI_9 SPI_12 SPI_24

 ARIMA ANN ARIMA ANN ARIMA ANN ARIMA ANN ARIMA ANN

RMSE 0.68 0.62 0.61 0.42 0.48 0.22 0.41 0.11 0.25 0.09

MAE 0.52 0.47 0.43 0.3 0.39 0.15 0.2 0.08 0.17 0.06

Table 10. Comparison of different lead time forecast for ARIMA and ANN at different  
timescale interms of RMSE and MAE for Ballari station

Time scale Model Performance measures 

Ballari

Lead time

1 2 3 4 5 6

SPI3 ARIMA (0, 0, 2) RMSE 0.91 1.28 0.48 - - -

MAE 0.73 1.07 0.34 - - -

ANN (7-4-6) RMSE 0.48 1.34 1.6 1.61 1.62 1.69

MAE 0.37 1.12 1.31 1.32 1.32 1.32

SPI6 ARIMA (0, 0, 5) RMSE 0.69 1.05 1.28 1.41 1.52 -

MAE 0.6 0.88 1.09 1.18 1.27 -

ANN (13-7-6) RMSE 0.53 0.99 1.29 1.45 1.53 1.63

MAE 0.41 0.82 1.11 1.25 1.37 1.45

SPI9 ARIMA (3, 0, 4) RMSE 0.65 1.12 1.41 1.58 1.66 1.71

MAE 0.5 0.88 1.15 1.35 1.44 1.49

ANN (19-10-6) RMSE 0.5 0.98 1.3 1.47 1.53 1.5

MAE 0.39 0.79 1.11 1.2 1.36 1.36

SPI12 ARIMA (1, 0, 0) RMSE 0.59 0.99 1.26 1.36 1.34 1.25

MAE 0.45 0.77 0.97 1.08 1.08 1.08

ANN (25-13-6) RMSE 0.35 0.62 0.82 0.97 1.01 1.04

MAE 0.28 0.47 0.67 0.77 0.8 0.84

SPI24 ARIMA (2, 0, 0) RMSE 0.13 0.37 0.47 0.52 0.55 0.55

MAE 0.04 0.3 0.38 0.43 0.44 0.44

ANN (25-13-6) RMSE 0.19 0.42 0.53 0.63 0.73 0.8

MAE 0.16 0.36 0.46 0.54 0.61 0.69

(blank cell indicates forecast values were zero)
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(Jul), 1985 (Sep) and 1985 (Dec) with an intensity of 
 -4.66, -3.72, -3.73, -3.33 and -2.54 for 3, 6, 9, 12 and 
24 months respectively. An overview of the result 
shows that both ARIMA and ANN models have a better 
ability to forecast drought at different scales and also 
up to 2 month lead time. Furthermore, the ANN model 
performed well for all stations compared to ARIMA 
models. ARIMA was observed to forecast well at 
higher timescale 
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