
1.	 INTRODUCTION
Commonly used ARIMA model assumes that the 

distant time series observation are independent of each 
other or nearly so. In terms of autocorrelation that means 
autocorrelation function decay rapidly in exponential 
rate toward zero (Box et al. 2007). But in some practical 
cases it has been seen that the observations in distant 
past are correlated. The correlation may be small but 
it may significantly affect the forecasting accuracy. 
To know this type of long range dependency ACF of 
observations is plotted over various lags. The later type 
of time series is said to possess long memory property. 
Autocorrelation function of most of the stationary 
(ARMA) time series process decays exponentially and 
in such cases autocorrelation can be approximately 
expressed as , where  whereas 
for long memory process it decays at much slower 
hyperbolic rate and in this case autocorrelation 
coefficient can be expressed as , as  
tends to infinity. Here  is autocorrelation at lag ,  
and  are the long memory parameter and any constant 
respectively. For modeling of long memory time 

series Autoregressive Fractionally Integrated Moving 
Average (ARFIMA) model is used (Paul, 2014).

Sometimes besides the study or original time 
series, date on some auxiliary or exogenous variables 
are available or can easily be made available which 
may be significantly correlated with the original time 
series. These exogenous variables have significant 
influence on study variable and should be incorporated 
in the existing time series model for improving the 
model performance and forecasting accuracy (Paul 
et  al. 2014). In this paper exogenous variable is 
included in the existing ARFIMA model resulting in the 
formulation of Autoregressive Fractionally Integrated 
Moving Average Model with Exogenous variable 
(ARFIMAX) model.

Another important consideration during forecasting 
of a time series is that the heteroscedasticity present in 
the data set. Linear models doesn’t have the capacity to 
define the varying pattern in the conditional variances 
existing in the data. To cope with this situation, Engle 
(1982) have proposed the Autoregressive Conditional 
Heteroscedastic (ARCH) model by taking care of 
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significant autocorrelations present in the squared 
residual series. But the ARCH models provide 
reasonable forecasts only with a large number of 
parameters. To overcome the estimation of large 
number of parameter, a more generalized version of 
this model, Generalized ARCH (GARCH) models have 
been developed (Bollerslev, 1986). This model has 
been used extensively for modelling and forecasting of 
volatile agricultural data sets (Paul, et al. 2014, Lama, 
et al. 2015)

In this paper ARFIMA-GARCH and ARFIMAX-
GARCH model are studied along with their parameter 
estimation technique. These models are applied on 
real data set by taking onion minimum market price. 
Comparative study of the models is also studied using 
RMSE and RMAPE criterion.

2.	 MODELS DESCRIPTION

2.1	 ARFIMA model
The ARFIMA model of order , denoted 

by ARFIMA  for the stationary process 
 with mean  and variance  can 

be represented as (Granger and Joyeux, 1980)

� (1)

Here  is an i.i.d random variable having zero 
mean and constant variance . L is the lag operator, 

 is the fractional difference operator known as long 
memory parameter which can take any fractional value 
between -0.5 to 0.5 (Hosking, 1981),  and  
are the finite Autoregressive (AR) and Moving Average 
(MA) polynomials of order  and  respectively and 
represented by 

�(2)

� (3)

 can be expanded using binomial series 
expansion in the following way 

� (4)

where  is represented as 

The model has total  parameters 
 and .  

The parameters are restricted in  dimensional 
space.

2.2	 ARFIMAX model
	 ARFIMAX model with k exogenous 

variables is given below. Let  is a 
stationary process with mean  and variance  and 

 be the k exogenous variable. Then 
by following Degiannakis (Degiannakis, 2008) the 
ARFIMAX with k exogenous variable can be written 
as

� (5)

Where  is the vector of  coefficients 
corresponding to k exogenous variables and rest 
notations are same as of ARFIMA model. The 
model has total of  parameters 

,  
and . For the present study daily 
market prices of commodities are taken as study or 
original time series and daily market arrival of the 
commodity a the exogenous variable. Market arrival 
generally affects the market price of commodities in 
opposite direction.

2.3	 Parameter estimates of ARFIMA and 
ARFIMAX model
The parameters of the model are estimated using 

maximum likelihood estimation (MLE) technique 
whereby likelihood function based on observed sample 
observations is maximized. The exact likelihood 
function based on n observations  
for the ARFIMA model is given by

� (6)
where  is the vector of 

dimension  and  is the variance 
covariance matrix of . Similarly the likelihood 
function of ARFIMAX model based on the  
observations on study variable y,  
and on each  exogenous variable  is 
given by:
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� (7)
Where  be a vector of 

 parameters, X is  matrix of 
covariates,  and  is the 
variance covariance matrix of the sample observations.

2.4	 Testing for ARCH Effects (ARCH-LM Test)
After estimating the parameters of ARFIMA and 

ARFIMAX model, residuals are further checked for 
presence of ARCH effect. Autoregressive Conditional 
Heteroscedastic- Lagrange Multiplier(ARCH-LM)
test is employed for this purpose (Engle, 1982). Let 

 the residual series obtained from the ARFIMA or 
ARFIMAX model. The Lagrange Multiplier (LM) 
test for squared series {ɛt

2} may be used to check for 
conditional heteroscedasticity. The test is equivalent to 
usual F-statistic for testing  
in the linear regression

 , 
� (8)

where  denotes the error term,  is the 
prespecified positive integer, and  is the sample size. 
Let SSR0 = ‌ , where  
is sample mean of {ɛt

2}, and SSR1= , where 
 is the least square residual of the above regression 

model. Then, under H0 the ARCH-LM test statistic is

� (9)

This test statistic is asymptotically distributed as 
chi-square distribution with  degrees of freedom. The 
H0 is rejected if , where  is the upper 

 point of the chi square distribution.

2.5	 GARCH model
The process  is said to have ARCH ( ) if the 

conditional distribution of  provided with the 
available information up to , ( ) is denoted as

1| ~ (0, )t t tN hε ψ −  and � (10)

where  is independently and identically 
distributed with zero mean and constant variance. The 
conditional variance is represented by, 

� (11)

Where  for all of  and  
are required to be satisfied to ensure non-negativity 
and finite unconditional variance of stationary  
series. In Generalized ARCH (GARCH) model, the 
conditional variance is also a linear function of its own 
lags. The GARCH  process has the following 
form provided the conditions,  and 

 for all  and  (Bollerslev, 1986).

� (12)

The GARCH  process is said to be weakly 
stationary iff

� (13)

The conditional variance  in GARCH model 
(Engle, 1982) has the property that unconditional 
autocorrelation function of 2

tε  if exists, decay 
slowly toward zero. Hence, a GARCH  is 
more parsimonious model of conditional variance as 
compared to higher order ARCH ( ).

2.6	 Estimation of Parameters of GARCH model
Similar to ARFIMA and ARFIMAX models, 

method of maximum likelihood estimation is used for 
estimating the parameters of the ARCH or GARCH 
model. The log likelihood function of a sample of T 
observations, apart from constant, is 

� (14)

Where  
and  is the 
vector of parameters of the GARCH model.
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3.	 AN ILLUSTRATION
For the present study the daily minimum market 

price (rupees per quintal) data of onion of Lasalgaon 
market of Maharashtra, India for the period of Jan, 2012 
to Oct, 2019 has taken from National Horticultural 
Research and Development Foundation (http://nhrdf.
org/en-us/) along with daily market arrival (quintal). 
The data set consists of 1773 data points from where 
last 35 observations are used for model validation 
purpose. Time plots for the series under study are 
plotted and shown in Fig. 1 and Fig. 2. The descriptive 
statistics of the data series is also given in Table 1. 
For checking the stationarity ADF (Dickey and Fuller, 
1979) and PP (Phillips and Perron, 1988) test has been 
employed on both original as well as return series 
and the results (Table 2) indicate that return series are 
stationary. The correlation between minimum price and 
arrival data are calculated and it is found to be -0.3534 
(  value <0.001) and that for return series 0.0777  
(  ‌value 0.001) indicating that both the correlations are 
statistically significant. 

The long range dependency of the return series is 
visualized by plotting ACF (Fig. 3)and PACF (Fig. 4) 
of the data series. Long memory parameter is tested by 
GPH (Geweke and Porter-Hudak, 1983) and Sperio 
(Reisen, 1994) test for both the original series and 
return series (Table 3).

After confirming the presence of long memory in 
the return series ARFIMA and ARFIMAX model with 
market arrival as exogenous variable are fitted using 
maximum likelihood estimation (MLE) of parameter 
approach. Residuals obtained from the fitted models 
are then tested for ARCH effects using usual Ljung 
Box test (Ljung and Box, 1978) on squared residuals 
and ARCH-LM test (Table 4). After knowing the 
presence of ARCH effects in residuals of the both 
the model, GARCH model is fitted by MLE. The 
parameter estimates along with their standard errors 
and significant  values of ARFIMA-GARCH and 
ARFIMAX-GARCH models are given in Table 5 and 
6 respectively. Model comparison criterions AIC, BIC 
and log likelihood values are also given in table 5 and 6. 
The residuals obtained from the ARFIMA‑GARCH and 
ARFIMAX-GARCH are checked for possible presence 
of autocorrelation by Ljung Box test, ACF plot (Fig. 5) 
and PACF plot (Fig.  6) The obtained results indicate 
the independent and identicalness of the residual. In 

sample forecasting for validation set is carried out for 
both the model and RMSE and RMAPE values are 
obtained and given in Table 7.

4.	 CONCLUDING REMARKS
In the present study long memory model with 

exogenous variable is investigated with the help of 
onion daily price data of Lasalgaon market. One 
exogenous variable namely daily market arrival is 
incorporated after checking the significant correlation 
with the price series. From the ARCH-LM test it has 
found that the price series has volatility. ARFIMA-
GARCH and ARFIMAX-GARCH is model is fitted 
accordingly to the data set under consideration. Residual 
analysis of the fitted models indicates that residuals 
are uncorrelated. The lower AIC and BIC value and 
increased log likelihood value of the ARFIMAX-
GARCH model as compared to the ARFIMA-GARCH 
model are obtained. These values establish the 
superiority of the ARFIMAX-GARCH model in terms 
of modelling the price series in hand. Further, the lower 
RMSE and RMAPE values in ARFIMAX-GARCH 
model than the competing one indicates its enhanced 
forecasting efficiency. The reduction in RMSE and 
RMAPE values in ARFIMAX-GARCH model is not 
substantial as compared to the ARFIMA-GARCH 
model, this can be attributed mainly to low correlation 
between the market arrival and return price series. But, 
the data series having high correlation with exogenous 
variable is expected to give better results. This study 
has highlighted the importance of adding exogenous 
variable in the model for improving the modelling and 
forecasting efficiency. 
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Fig. 1. Time plot for market arrival series

Fig. 2. Time plot for minimum price series
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Fig. 3. ACF plot for return price series

Fig. 4. PACF plot for return price series
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Table 1. Descriptive Statistics of the data

Statistics Arrival Minimum price

Min 33 50

Max 84250 3100

Mean 15863.51 631.71

St. Deviation 8590.32 513.94

CV(%) 54.15 81.36

Skewness 0.74 1.93

Kurtosis 2.70 4.51

Table 2. Test for stationarity

Series
ADF test PP test

-value  value

Original Series

Arrival -4.807 <0.01 -810.78 <0.01

Minimum price -2.66 0.298 -55.812 <0.01

Return Series

Arrival -10.336 <0.01 -1853.40 <0.01

Minimum Price -11.246 <0.01 -2100.40 <0.01

Fig. 5. ACF plot of ARFIMA-GARCH residuals

Fig. 6. ACF plot of ARFIMAX-GARCH residuals
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Table 3. Long memory test

Test GPH Sperio

Series Std. Error Std. Error

Minimum 
series

0.912* 0.136 0.907* 0.062

Minimum 
return series

0.354** 0.107 0.298** 0.048

* and ** denotes the significance at 5% and 1% level respectively

Table 4. Testing of ARCH effects

Test Ljung Box test on 
squared residuals ARCH-LM test

Model Chi square  value  value  value

ARFIMA 13.607 0.0002 13.634 0.0002

ARFIMAX 16.254 <0.001 16.285 <0.001

Table 5. Parameter estimates of ARFIMA-GARCH model

Parameters Estimate Std. Error p-Value

Mean equation

Constant 0.0459 0.0147 0.002

d 0.2065 0.0668 0.002

MA 1 0.5893 0.0689 <0.001

Variance equation

Constant 0.001 0.0003 <0.001

ARCH(1) 0.1108 0.0136 <0.001

GARCH(1) 0.8882 0.0118 <0.001

Log Likelihood -173.371

AIC 0.2042

BIC 0.2168

Table 6. Parameter estimates of ARFIMAX-GARCH model

Parameters Estimate Std. Error p-Value

Mean equation

Constant 0.0437 0.0147 0.002

d 0.2154 0.0767 0.005

MA 1 0.6143 0.0774 <0.001

Arrival 0.0021 0.0005 <0.001

Variance equation

Constant 0.0015 0.0004 <0.001

ARCH(1) 0.1154 0.0146 <0.001

GARCH(1) 0.8823 0.0130 <0.001

Log Likelihood -161.494

AIC 0.1905

BIC 0.2031

Table 7. RMAPE and RMSE values of the fitted models

Criteria RMAPE RMSE

ARFIMA-GARCH 15.46 256.58

ARFIMAX-GARCH 15.42 256.42


