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SUMMARY
Genomic prediction has been used for breeding of animals and plants with complex quantitative traits by predicting Genomic Estimated Breeding 
Values (GEBVs) of target population. The accuracy of genomic prediction depends on various factors including sampling population, genetic 
architecture of target species, statistical models, etc. There are large numbers of statistical models for genomic prediction available in the literature. 
These models perform differently due to different genetic architecture of the datasets. In this article, performances of linear least squared regression, 
BLUP, LASSO, ridge regression, SpAM, HSIC LASSO, SVM, ANN along with our newly developed integrated model framework have been 
evaluated in wheat dataset containing 599 wheat lines and 1279 SNP markers. In general, the performances of SVM, ridge regression and integrated 
model framework were found to be superior for genomic prediction. This study will help researcher in selection of appropriate statistical method to 
predict phenotypic values.
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1.	 INTRODUCTION
Genomic prediction or genomic selection (GS) 

is an emerging field of genomic-assisted breeding 
methodology where whole genome marker data is used 
to predict genomic estimated breeding value (GEBV). 
The aim of this method is to increase genetic gain by 
shortening breeding cycles and increasing accuracy 
of prediction of GEBV. There are several statistical 
models available in literature for genomic prediction, 
viz. least squared regression (LSR), best linear unbiased 
prediction (BLUP) (Henderson, 1975), least absolute 
shrinkage and selection operator (LASSO) (Tibshirani, 
1996), ridge regression (Hoerl and Kennard, 1970), 
Sparse Additive Models (SpAM) (Ravikumar et  al., 
2009), Hilbert-Schmidt Independence Criterion 
LASSO (HSIC LASSO) (Gretton et  al., 2005 and 
Yamada et al., 2014), support vector machine (SVM) 
(Vapnik, 1995), artificial neural network (ANN) (Bain, 
1873 and James, 1890). Another statistical model 
framework has been developed in our previous study 
by combining one additive model, i.e. SpAM and one 
non-additive model, i.e. HSIC LASSO. The newly 

developed model can be mentioned as integrated model 
framework (Guha Majumdar et al., 2019). The accuracy 
of prediction of different models varies on the basis 
of the underlying statistical methods. All the models 
differ among themselves due to assumption about 
the distribution, variance among the genetic markers 
used etc. In our present study, we have compared the 
performance of all the above mentioned models for 
genomic prediction in case of wheat. These models are 
described briefly below.

1.1	 Linear Least-Squares Regression
In GS, the main goal is to predict the individual’s 

breeding value by modeling the relationship between 
the individual’s genotype and phenotype. The Linear 
least-square regression is the simplest model, which 
can be written as 

where,  individual,  marker 
position/segment,  is the phenotypic value for 
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individual ,  is the overall mean,  is an element 
of the incidence matrix corresponding to marker j, 
individual ,  is a random effect associated with 
marker , and  is a random residual which follows 

.
The basic problem in using this model is that, it 

does not work well, if the available number of markers 
(explanatory variables) is greater than the number 
of individual available (observations). In order to 
overcome this problem Meuwissen et  al. (2001) 
adopted a stepwise procedure of least squares regression 
for GS. First, least squares regression analysis was 
performed on each segment (marker) separately using 
above model. Then the likelihood of every segment 
was plotted against the position of the segment which 
helped in identifying the segments having significant 
effects. Finally, segments having significant effects 
were used simultaneously by the model to estimate 
their individual effects. But this approach also has 
some drawbacks, like it does not fully take advantage 
of the whole genome marker information as markers 
with a significant effect are included in the final model.

1.2	 Best Linear Unbiased Prediction (BLUP)
The BLUP theory and the mixed model formulation 

were first described by Henderson (1949), and BLUP 
was recommended as a method of GS by Meuwissen 
et  al. (2001). The random effects model of BLUP 
(Henderson, 1975)can be written as

where,  is the  vector of phenotypic data, 
 is the  overall mean vector,  is the th 

column of the design matrix,  is the genetic effect 
associated with the th marker, and  is the number of 
markers.  is the intercept which is fixed, and  is 
the random effects with , , 

 and . The intercept  
can be replaced by  to include all the fixed effects 
if other covariates are also available. Then, the model 
can be written as

where  is a  vector of unknown fixed 
effects, where, the first element is considered as the 
population mean, and  is the incidence matrix which 
relates  to . The above equation is usually known as 
mixed model or mixed effects model. The fixed effect 
vector  is estimated by BLUE, whereas, BLUP is the 
predictor of the random effects.

Henderson (1953) proposed that ( ) can be 
obtained by maximizing the joint likelihood of ( ) 
given by:

A set of linear equations [Henderson’s Mixed Model 
Equations (MME)] can be obtained by maximizing the 
likelihood  with respect to ,  and equating it 
to zero:

where,  and . The BLUE 
of  and the BLUP of  can be obtained by solving 
the MME. The assumption of Henderson’s derivation 
is that  and  are normally distributed and maximizes 
the joint likelihood of  over the unknowns  and 

. 

1.3	 Least Absolute Shrinkage and Selection 
Operator (LASSO)
The LASSO technique (Tibshirani, 1996) is 

being used for efficient feature selection based on the 
assumption of linear dependency between input features 
and output values. In case of LASSO, optimization 
problem is given as

where,  is a regression coefficient 
vector,  denotes the regression coefficient of the k-th 
feature,  and  are the  and -norms, and 
λ > 0 is the regularization parameter. The -regularizer 
in LASSO tends to produce a sparse solution, which 
means that the regression coefficients of non-significant 
features become zero.
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LASSO is specifically suitable, when the number 
of features is larger than the number of training 
samples (Tibshirani, 1996). So, by using LASSO we 
can overcome the limitations of linear least-square 
regression method. However, this method performs 
well for additive effect data only.

1.4	 Ridge Regression
In case of multi-collinear marker data, the 

performance of variable selection methods is generally 
very poor. In order to address this problem, we can 
use penalized regression model i.e. ridge regression of 
Hoerl and Kennard 1970. Ridge regression minimizes 
the penalized sum of squares:

where,  is the penalty parameter, and the 
estimate of the regression coefficient is given by: 

.
where,  is a  identity matrix. The penalty 

parameter  can be calculated by several different 
methods, for example, by plotting  as a function of 

 and choosing the smallest  that results in a stable 
estimate of . Hoerl et  al. (1975) have proposed 
another way to choose  using an automated procedure. 
The estimate of  is given by: 

where,  is the number of parameters in the model 
except the intercept,  is the residual mean square 
obtained by linear least squares estimation, and  is 
the vector of least squares estimates of regression 
coefficients.

Ridge regression estimator of  is biased and 
this increase in bias is compensated by the decrease 
in variance. As a result, we get an estimator  with 
smallest MSE. Another advantage of ridge regression 
is that it can be used when available markers are more 
than the sample size to overcome the  problem.

Meuwissen et al. (2001) employed ridge regression 
in GS. It was assumed that the marker effects 
were random, and they were drawn from a normal 
distribution with , whereas, additive 
genetic variance among individuals is expressed as 

 = ‌ , where,  represents additive genetic 
variance among individuals and  is the number 
of marker loci (Habier et  al. 2007). This method is 
suitable for data with additive effects, i.e. for linear 
features only.

1.5	 Sparse Additive Models (SpAM)
High dimensional feature selection can be 

performed with sparse additive models (SpAM) 
(Ravikumar et  al., 2009). The SpAM optimization 
model can be defined as

where,  are 

regression coefficient vectors,  
is Gram matrix and ,  
is kernel function,  is a coefficient for 

 and λ > 0 is a 
regularization parameter. SpAM is considered as a 
convex method which can be efficiently optimized by 
the back-fitting algorithm.

A disadvantage of SpAM is that it can only deal 
with additive effects. In case of epistatic effects in the 
data SpAM may fail to select significant markers. Also, 
SpAM is computationally expensive procedure.

1.6	 HSIC LASSO
A kernalized non-linear LASSO was proposed 

by Yamada et al. (2014), which isalso called as HSIC 
(Hilbert-Schmidt Independence Criterion, Gretton 
et al., 2005) LASSO. The optimization problem can be 
expressed as

s.t.  ≥ 0, 
where, ‖ · ‖Frob is the Frobenius norm, 

 and  are centered Gram 
matrices,  and Li,  j = L(yi, yj) 
are Gram matrices,  and  are kernel 
functions,  is the centering matrix, 

 is the n-dimensional identity matrix, and  is the 
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n-dimensional vector with all ones. A non-negativity 
constraint is employed in this model so that meaningful 
features are selected. This model differs from the 
original formulation of LASSO as in this case kernel 
functions  and  is different and non-negativity 
constraint is imposed. The first term in this equation 
denotes that we are regressing the output kernel matrix 

 by a linear combination of feature-wise input kernel 
matrices .

1.7	 Support Vector Machine (SVM)
SVM was proposed by Vapnik in 1995. SVM is 

a supervised machine learning technique, originally 
used as a classifier. To train the SVM, training dataset 
is used and the classifier produces maximum margin 
separation between two classes of observations. The 
idea can be used for estimating unknown regression 
function. Maenhout et al. (2007) and Long et al. (2011) 
have implemented SVM regression for GS in plant 
breeding. SVM regression can model the relationship 
between the marker genotypes and the phenotypes with 
a linear as well as nonlinear mapping function.

Let us consider a training sample 
, where   

is avector of genotypic values of the  markers 
for individual , and  is the vector of phenotypic 
value for individual . SVM model describing the 
relationship between the phenotype and the genotype 
of an individual has been described below:

Where  is a constant which reflects the maximum 
error while estimating  and  is a vector of unknown 
weights. The function  can be obtained by 
minimizing the expression

Where  denotes the loss function which may 
be squared loss function, absolute loss function or 
-insensitive loss function measuring the quality of the 
estimation.  is the regularization parameter which is 
responsible for the trade-off between the sparsity and the 
complexity of the model. The norm  of vector  is 
associated with model complexity inversely. A support 
vector  satisfies the equation  by 
definition.

1.8	 Artificial Neural networks (ANN)
Neural network (NN) is a nonparametric statistical 

method which can model relationship between 
genotypes and phenotype with both linear and complex 
nonlinear functions. NN mimics the idea of how 
neurons in the human brain work and interact, and 
conducts computations. NN was first introduced by 
Bain (1873) and James (1890). Every unit in NN is 
analogous to a brain neuron and they connect among 
themselves with several functions which are analogous 
to synapses (Hastie et al. 2009). The NN is composed 
of three types of layers, viz. an input layer, a hidden 
layer and an output layer. This model is known as the 
feed-forward NN. The NN which is used to estimate a 
regression function usually consists of only one output 
layer unit. The hidden layer units are functions of linear 
combinations of the inputs, whereas, the output layer 
units are functions of the hidden layer units. The output 
function of a feed-forward NN can be defined as:

where  is the number of units in the input layer, 
 is the number of output layer units,  is the number 

of hidden layer units,  is the th input,  
is the intercept,  are the output 
layer weights connecting the th hidden layer unit 
to the output layer units,  is the activation function 
modeling the connection between the hidden layer 
and the output layer, and  and  are the 
unknown learning parameters of the hidden layer unit 

 connecting the th neuron in the input 
layer.

In GS, marker genotypes are represented by  
where  is the number of individuals in the analysis. 
We can choose the activation function  as the sigmoid 
or the Gaussian radial basis function. Gianola et  al. 
implemented NNs for GS in 2011.

1.9	 Integrated Model Framework
The integrated model framework (Guha Majumdar 

et al., 2019) for estimation of GEBV has been developed 
by combining SpAM and HSIC LASSO and can be 
used to capture both linear and non-linear effect of the 
genetic markers on the phenotypic data. The model can 
be expressed as
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2.2	 Implementation in R

Least squares regression (LSR)
In order to implement least square regression, the lm 

function from the stats package (R Development Core 
Team 2019) in R was used. In first step, simple linear 
regression model was fitted for each of the individual 
markers and most significant 100 markers are selected 
according to their p-values. Then in a final model those 
100 markers were included to simultaneously fit a linear 
regression model. This two-step method was applied as 
there are more number of markers than the number of 
individuals. Finally, phenotypic values were predicted 
from testing dataset with the selected marker data and 
estimated regression coefficient of marker effects.

BLUP
BLUP was implemented by using mixed.solve 

function from rrBLUP package (Endelman, 2011) in 
R. The model was fitted using training data. Then the 
phenotypic value was predicted using testing dataset 
and the predicted coefficients of marker effects from 
the fitted model.

LASSO
The glmnet function of the glmnet package 

(Friedman et  al., 2010) in R was used with default 
parameter values to implement LASSO. The prediction 
was performed with the help of predict function of the 
same package by minimizing cross-validation error. 

Ridge Regression
Ridge regression can also be implemented through 

glmnet function of the glmnet package (Friedman et al., 
2010) in R by setting the value of alpha equal to zero. 
Then the prediction was performed in testing set by 
usingpredict function.

SpAM
The sparse additive model was implemented by 

using samQL function of the SAM package (Zhao et al., 
2014) in R with default parameter values. The predict 
function of the same package was used to perform the 
prediction of phenotypic value in testing dataset.

HSIC LASSO
In-house R function was developed to implement 

HSIC LASSO or kernalized LASSO. The penalized 
function of penalized package (Goeman et  al., 2010) 

where,  is the predicted phenotype of the 

integrated model framework,  is , where  
and  are the error variances of models HSIC LASSO 
and SpAM respectively,  is the predicted phenotype 
from Sparse Additive Models and  is the predicted 
phenotype from HSIC LASSO. The estimation of  
and  can be performed by following refitted cross 
validation approach of Fan et al., 2012.

2.	 MATERIALS AND METHODS

2.1	 Data Description
We have a real dataset of wheat for implementing 

genomic prediction models (Crossa et  al., 2010). 
Genotyping of wheat was done by using 1447 Diversity 
Array Technology markers generated by Triticarte Pty. 
Ltd. (Canberra, Australia; http://www.triticarte.com.
au). This dataset includes 599 lines observed for trait 
grain yield (GY) for four mega environments. For 
the convenience of our study the GY for first mega 
environment has been considered. The final number 
of DArT markers in the dataset after editing was 1279 
which has been used in this study.

After implementation of statistical models 
prediction accuracy (PA) and mean squared error 
(MSE) have been estimated for all the models. PA can be 
defined as the correlation between the actual phenotypic 

 values and the predicted phenotypic  
values (Howard et al., 2014). MSE can be expressed as

Where,  is the predicted value of phenotype,  
is the actual value of phenotype, and  is the number 
of individuals in the dataset. In order to implement 
the statistical models, the statistical software R was 
used. Before implementing the models, the dataset 
has been split into training and testing data. 80% of 
the observation has been chosen randomly for training 
purpose and rest 20% data has been kept as testing data. 
This procedure of splitting was repeated 500 times to 
get 500 training and testing datasets which were used to 
implement all the statistical models.
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has been used to fit this kernelized LASSO model. 
Then predict function of the same package is used to 
predict the phenotypic value of the testing dataset.

SVM
The ksvm function of the kernlab package 

(Karatzoglou et  al., 2004) in R with the default 
parameters was used to perform SVM regression on 
the training dataset. After fitting the model, the predict 
function was used to obtain the predicted phenotypic 
values for the testing set. 

Neural network
The NN model was implemented using the brnn 

function of the brnn package (Rodriguez and Gianola, 
2013) in R. This function uses a two layer NN and maps 
the input information into some basis function. The 
number of neurons was set to be three and the number 
of epochs to train the model was 30. The predict.brnn 
function of the same package was used in the next step 
to predict the phenotype using testing dataset.

Integrated Model Framework
The GSelection package (Guha Majumdar et  al., 

2019) in R was developed by us to implement the 
integrated model framework in GS. To fit the model 
in training data feature.selection function was used. 
The error variances of SpAM and HSIC LASSO model 
were estimated with spam.var.rcv and hsic.var.rcv 
function of the same package. Then the prediction of 
the phenotypic value in testing dataset was performed 
by using genomic.prediction function.

3.	 RESULTS AND DISCUSSION
In this study, various statistical models have been 

implemented in real dataset of wheat for genomic 
prediction. LSR, BLUP, LASSO, Ridge regression, 
SpAM, HSIC LASSO, SVM, ANN, Integrated 
model framework are compared on the basis of their 
performance in genomic prediction of breeding values. 
The results have been shown in Table 1.

Table 1. Statistical comparison of various  
models for genomic prediction

Models Prediction 
Accuracy (PA)

Standard 
Error of PA MSE

LSR 0.0476 0.0142 2.5199

BLUP 0.1941 0.0076 2.0420

LASSO 0.4299 0.0070 1.8036

Ridge 0.5253 0.0058 1.1740

SpAM 0.4941 0.0056 1.4436

HSIC LASSO 0.1490 0.0023 0.0730

SVM 0.5784 0.0053 1.1667

ANN 0.4822 0.0065 1.4194

Integrated Model 
Framework

0.4950 0.0056 1.3211

It is evident from Table 1 that the newly developed 
integrated model has been performed better than LSR, 
BLUP, LASSO, SpAM, HSIC LASSO and ANN in 
terms of prediction accuracy. Only one parametric 
statistical model, i.e. ridge regression and one non-
parametric statistical model i.e. SVM has better 
prediction accuracy than the integrated model. Also 
the mean square error is less in case of SVM and ridge 

Fig. 1. The boxplots of prediction accuracy corresponding to different statistical models
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regression than integrated model. Another observation 
is that the mean square error of HSIC LASSO is very 
less than the other models. This is due to the reason that 
HSIC LASSO is nonlinear parametric model where 
MSE may not be highly desirable criteria for evaluation 
of model performance. The prediction accuracy of 
different models are shown with the help of a boxplot 
in Fig. 1.

It is known from the literature that genetic 
architecture is responsible for the differences of the 
accurate predictions of breeding value among the GS 
methods. Genetic architecture of a population depends 
on the presence of additive and epistatic genetic effects. 
The parametric models assume that the markers are 
independent, i.e. additive in nature. But in practical 
situation, both additive and epistatic effects are present 
in the genetic architecture of the population. Because 
of that reason the parametric models, viz. LSR, BLUP 
do not perform well in genomic prediction. Although, 
ridge regression, which is a biased parametric 
estimator, performs very well in this study. It is also 
observed that the non-parametric models (viz. SVM, 
ANN) and newly developed integrated model perform 
very well in genomic prediction of breeding value. This 
is due to the reason that these models can capture both 
linear (additive) and non-linear (epistatic) effect of the 
markers in the dataset. 

4.	 CONCLUSION
The performances of various statistical models in 

case of genomic prediction have been compared in 
the present study. The study is conducted in the real 
dataset of wheat. So, this article will give a clear idea 
about several statistical models on how they behave 
in practical situation of genomic prediction. This will 
help in choosing the appropriate model for our dataset. 
The superiority of models like ridge regression, SVM, 
integrated model framework has been depicted in the 
above study. The accuracy of these models depends 
on several factors including the trait of interest, extent 
of additive and epistatic effect present in the dataset, 
heritability of the trait etc. The performances of 
these models can be improved further if we consider 
dominance effect and genotype by environment 
interaction in the study.
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