
1.	 INTRODUCTION
Experiments are usually conducted to compare 

all possible pair of treatments. Comparing newly 
developed variety (s)/genotype (s) with ruling one (or 
control/check) is an additional part in many areas of 
scientific experimentation. In such situations, the 
interest is mainly in a sub-set of all possible paired 
comparisons. Cox (1958) suggested augmenting an 
incomplete block design in test treatments with one or 
more replications of the control in each block to obtain 
appropriate design. Bechhofer and Tamhane (1981) 
developed the theory of incomplete block designs for 
comparing several treatments with a control. Their 
developments led to the concept of Balanced Treatment 
Incomplete Block (BTIB) designs. Further, Majumdar 

& Notz (1983) developed certain types of optimal BTIB 
designs. Later, Kiefer & Wynn (1981), Wilkinson et al. 
(1983) and Gill & Shukla (1985) studied efficiency of 
such designs with correlated observation. Generally, 
these BTIB designs are not variance or efficiency 
balanced.

In 1985, Das & Ghosh, introduced the concept of 
‘General Efficiency Balanced’ (GEB) designs which 
are developed through method of reinforcement by 
Kageyama & Mukerjee (1986) are similar to R- type 
BTIB designs under certain conditions. Literature 
survey reveals that the study on block designs for test 
vs. control treatments was mostly confined to block 
designs where the plots in a block were uncorrelated. 
But, in agricultural experiments, the presence of 
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correlation in the form of neighbour effects among the 
adjacent plots is a well established fact. Even though, 
the experimentations with correlated observations 
are rarely used in field trials because of its analysis 
procedure and no clear cut structure on information 
matrices (like C). Therefore, the present study aims 
to construct and examine the characteristics of BTIB 
designs having correlated observations along with 
efficiency values (Canonical, A and D). 

2.	 DEFINITION and MODELS OF BLOCK 
DESIGNS with CORRELATED 
OBSERVATIONS

2.1	 Balanced Treatment Incomplete Block (BTIB)
Bechhofer and Tamhane (1981) defined that BTIB 

designs are the incomplete block designs in which each 
test treatment with the control appears λ0 times and any 
pair of test treatment appears together λ1 times in the 
same block. 

In the form of notations, BTIB design with v+1 
treatments (0, 1, 2, …, v) by the relation 1 0 0

b
j j ijn n λ=Σ =  

for i=1, 2, …v and *1 1
b
j ij i jn n λ=Σ =  for i≠i*, i=1, 2, …v, 

where nij be the elements of incidence matrix of the 
BTIB design.

2.2	 Model and important results of block designs 
with correlated observations
Let us assume a class of BIB designs (D) with v 

treatments and b blocks of sizes k (<v). Fixed effects 
additive model is considered for analyzing a first 
order neighbour balanced (NN1) block design having 
correlated observations in linear blocks as given below:

Y= μ1 + Xτ + Zβ + ε� (2.1)
Where, Y is a vector of observations of order 

(n × 1), μ is a general mean, 1 is a vector of ones of 
order (n × 1), X is incidence matrix of observations 
versus treatments having order (n × v), τ is a vector 
of treatment effects of order (v × 1), Z is incidence 
matrix of observations versus blocks of order (n × 
b), β is vector of block effects having order (b × 1) 
and ε is a vector of random errorsof order (n × 1). 
According to Gill and Shukla (1985), ε be the error 
terms independently and normally distributed with 
mean zero & variance & covariance matrix be V, such 
that  [Ib is an identity matrix of 
order b, ⊗  denotes the kronecker product and Wk is 
the correlation matrix of k observations within a block 

(Majumder et al. 2015, Patil et al. 2016 & Manjunatha 
et al.,  2017].

� (2.2)
Where, ρ (-1≤ ρ ≤ +1) is the correlation coefficient 

between of neighbouring plots in a block. 
The information matrix (C) for estimating the 

treatment effects having correlated observations 
estimated by generalized least squares is

� (2.3)
The C matrix (2.3) for estimating the treatments 

effect in a block design is symmetric, non-negative 
definite with zero row and column sums.

3.	 NN1 BIB DESIGNS FOR CORRELATED 
OBSERVATIONS

3.1	 Results on Neighbour Balanced BIB designs for 
correlated observations
Assuming the model (2.1) for a BIB design (D) 

with v, b, r, k and λ, the following relationships among 
the quantities can be defined.

Let ei be the number of blocks in which treatment 
i occurs at an end plot, eLi be the number of blocks for 
which treatment i occurs at a left end plot and eRi be 
the number of blocks for which treatment i occurs at a 
right end plot. 

Here, ei = eLi + eRi.
Let g (j, r) be the treatment number of the rth plot 

in the jth block and Ai is the set of blocks in which 
treatment i occurs. 

eii’= # { j: j Є (Ai ∩Ai’), g(j,1) = i or g (j,k) = i} + # 
{ j: j Є (Ai ∩Ai’), g (j, 1) = i’ or g (j,k) = i’},

i.e. eii’ is the number of blocks in (Ai ∩Ai’), in which 
either i or i’ occurs at an end and that blocks contain i’ 
or i and a block will be counted twice when both i and 
i’ are at the two end plots. 

Now, Nii’ = # { j: g(j,r) = i or g (j,s) = i’, |r – s| = 1}; 
i.e. Nii’ is the number of times i & i’ are neighbour 

in a block and iiθ ′  is the number of times when both i 
and i’ treatments are at end plots in a block.
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Provided, ( )( ) 2 - 2i i ii ie r k e′ ′≠ = +∑  , 

( )
2 -

i i
Nii ir e

′ ≠ ′ =∑  ,
( )  i i ii ieθ′ ′≠ =∑

When the neighbor effect exists among the adjacent 
treatments as neighbors belonging to same block, the 
model (2.1) is practical. 

Lemma 3.1: Assuming the above correlated 
structure and parameters of the BIB design in 
D, the elements of the C matrix of design D are

( -1)  2 ( - 3 - 2 )  (2 3 )
2 ( -1)

i
ii

r k r k eC
k k
ρ ρ ρ ρ

ρ
+ + +

=
+

 and

( ) ( )2 2- (1 2 )    2 2( -1) -  
2 ( -1)

ii ii ii ii ii
ii

e kN e k N
C

k k
λ ρ ρ ρ θ

ρ
′ ′ ′ ′ ′

′
+ + + + +

=
+

(i (≠i’) = 1, 2, …,v)
Proof: It is straight forward, if it proceed with the 

model 2.1, the C matrix as 2.3. It is also examined 
that the C matrix is completely symmetric with row or 
column sums as zero. 

Theorem 3.1: The BIB design will be neighbour 
balanced (NN1) BIB design with correlated 
observations in linear blocks if any of the following 
conditions are satisfied for any particular ρ.

C1.	All eii’’s, Nii’’s and θii’’s are individually 
constant for all i’ (i’ = (≠i) 1, 2, .., v).

C2. The quantities (eii’ + k Nii’) and (2eii’ + 2(k-1)
Nii’ - θii’) are individually constant for 

	 all i’ (i’ = (≠i) 1, 2, .., v).
Proof: Considering the lemma 3.1, the proof is 

straight forward.
3.2 Construction of NN1 BIB designs in linear 

blocks with correlated observations
Let us consider a First Order Neighbour Balanced 

(NN1) μ-resolvable BIB design D (Sahu & Majumder, 
2012) having p initial blocks with parameters v, b = pv, 
r = pk, k, λ = r(k-1)/(v-1), μ = k, m = v, t = p with λ1 = 
2p(k-1)/(v-1), where λ1 is an integer and it appears any 
pair of treatments as 1st order neighbors with eLi = eRi 
and ei = 2eLi = 2eRi ∀  i (= 1,2,..,v). In D, all eii’’s, Nii’’s 
and θii’’s are individually constant for all i’ (i’ = (≠i) 1, 
2, .., v), eii’ = 4λ/k; Nii’ = 2λ/k and θii’ = 2p/(v-1) and 
also ei = 2p ∀  i (= 1,2,..,v).

Illustration 3.1: Let D be a μ-resolvable BIB 
design having parameters v =7, b = 21, r =12, k = 4, λ 
= 6, μ = 4, m =7 and t = 3, the blocks of design D are

1 3 2 6 3 2 6 4 2 6 4 5

2 4 3 0 4 3 0 5 3 0 5 6

3 5 4 1 5 4 1 6 4 1 6 0

4 6 5 2 6 5 2 0 5 2 0 1

5 0 6 3 0 6 3 1 6 3 1 2

6 1 0 4 1 0 4 2 0 4 2 3

0 2 1 5 2 1 5 3 1 5 3 4

The illustration 3.1 shows a μ-resolvable NN1 BIB 
design. Thus each pair of treatments in the design which 
are immediately neighbor to each other is occurring 
3 times i.e., λ1 =3. It is also noted that in the above 
design considering correlated error, the parameters of 
NN1 structure are eii’ = 6, Nii’ = 3, θii’ = 1, eLi = eRi = 3 
and ei = 6, (eii’ + k Nii’) = 18 and (2eii’ + 2(k-1)Nii’ - θii’) 
= 29, ∀  i (= 1,2,..,7).

4.	 R-TYPE BTIB DESIGNS - CORRELATED 
OBSERVATIONS IN LINEAR BLOCKS
As per Bechhofer & Tamhane (1981), a new 

series of BTIB designs with correlated observations 
developed from NN1 BIB designs D (v, b, r, k, λ) which 
is shown (in Lemma 3.1 & Theorem 3.1). 

Let one extra treatment as control is added to last 
plots of a NN1 BIB design D (v, b, r, k & λ). The new 
design D* (v*= v+1, b* = b, r= (r. 1V, r*=b), k*=k+1, 
λ & λ*=r) will be a BTIB design with correlated 
observations.

The developed designs with correlated observations 
are also an incomplete block designs in which each test 
treatment with the control appears λ*0 times and any 
pair of test treatment appears λ*1 together in the same 
block. Formal parametric relations of BTIB designs (in 
section 2) are also applicable for the newly developed 
designs.

In the design D*, the treatments are arranged in 
b*(= b) blocks of equal sizes k*(=k+1). The replication 
vector is r = (r. 1V, r*=b)’ with r*denoting the control/ 
added treatment replication and r denoting the 
replication number of ith test treatment, i=1,2,..., v.

The fixed effects additive model assumed for 
analyzing the newly developed BTIB design with 
correlated observations (D*) will be similar to the 
model 2.1 with v* = v+1 treatments and the correlation 
matrix of (k+1) observation within a block Wk+1 is



246 Manoj Kumar et al. / Journal of the Indian Society of Agricultural Statistics 73(3) 2019  243–249

� (4.1)
Where, ρ (-1≤ ρ ≤ +1) is the correlation between 

the neighbouring plots in a block. 

4.1	 Results on Neighbour Balanced BTIB designs 
for correlated observations
Let one extra treatment as control is added to last 

plots of a NN1 BIB design D (v, b, r, k and λ). The new 
design D*(v*= v+1, b* = b, r = (r. 1V, r*=b), k*=k+1, 
λ and λ*=r) will be a BTIB design with correlated 
observations and must hold following relations.

i
be = ,
v  

,
,

v

i i iii
i =1(¹i)

e =r-e +e (k-1)=r+e (k-2)∑
, when all eii’ 

are equal, ,
i

ii
r+e (k-2)e =

v-1

'

v

i i iii
i=1(¹i)

N = 2(r - 2e )+2e =2(r-e ) ,∑  when all Nii’ are 

equal, 
'

i
ii

2(r-e )N = ;
v-1

' 0;iiθ =  ij' i i ie =r-e +2e =r+e ;

ij' iN = e ;  ij' i=e ;θ  j'e =b

4.1.1 Method of construction of R-Type BTIB designs 
for comparing test and control treatment with 
correlated observations
Theorem 4.1.1: If there exists a First Order 

Neighbour Balanced (NN1) BIB design (D) then there 
will be a R- type BTIB design (D*) with parameters 
v*= v+1, b*= b, , k* = k+1with 
correlated errors. The elements of C- Matrix of D* will 
be 

i
ii

rk + 2r (k-2-2 )+ e (2+3 )C = ;  
1+ k(1+2 )

(i=1,2,…,v);ρ ρ ρ ρ
ρ

∀

( ) ( )2 2
ii ii ii ii ii

ii
- (1+2 )  + e +(k+1)N + 2e +2kN - 

C = ; 
1+ k(1+2 )

 ((i,i'(i i')=1,2,…,v);
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′

≠

λ ρ ρ ρ θ
ρ

∀

( ) ( )* 2 2
ij' ij' ij' ij' ij'

ij'

- (1+2 ) + e +(k+1)N + 2e +2kN -
C = ; 

1+
(i=1,2,…,v an

 k(1+
d j'=v+1) d

2 )
an

λ ρ ρ ρ θ

ρ
∀

* *
j'

j'j'
r k + 2r (k-2-2 )+ e (2+3 )

C = ; 
1+ k(1+2 )

(j'=v+1)
ρ ρ ρ ρ

∀
ρ

Proof: 
Let us add one extra treatment to each block at 

end of NN1 BIB design D (v, b, r, k and λ) with eLi = 
eRi and ei = 2eLi = 2eRi∀ i (= 1,2,..,v) then new design 
D*’s parameters are v*= v+1, b* = b, r = (r.1V, r*=b), 
k*=k+1, λ and λ*=r with the neighboring relations as 
shown in the section 4.1 and it is R- type BTIB design 
having v* (= v+1) treatments and b* (= b) blocks of 
size k* (= k+1). From the model 2.1 & C matrix 2.3, the 
elements of C matrix will be ii (i 1,m = 2, ;, v)C ,∀ = …

ii (i,i'(i i') 1,2, , v);n = C ,′ ∀ ≠ = …

ij' (i 1,2, , v & p = j' v 1) and C ,∀ = … = +

j'j'q = C ,( j’ v 1)= +

� (4.2)
Illustration 4.1.1: Let us add one extra treatment to 

each block of the design of illustration 3.1. The blocks 
of the new design D* are given below:

1 3 2 6 7 3 2 6 4 7 2 6 4 5 7

2 4 3 0 7 4 3 0 5 7 3 0 5 6 7

3 5 4 1 7 5 4 1 6 7 4 1 6 0 7

4 6 5 2 7 6 5 2 0 7 5 2 0 1 7

5 0 6 3 7 0 6 3 1 7 6 3 1 2 7

6 1 0 4 7 1 0 4 2 7 0 4 2 3 7

0 2 1 5 7 2 1 5 3 7 1 5 3 4 7

Here, v*= 8, b* = b = 21, ie =3; '
i

ii
r+e (k-2)e = 3;

v-1
=  

'
i

ii
2(r-e )N = 3;

v-1
=  ii' =0;θ  ij'e 15;ir e= + =  ij' iN = e 3;=  

ij' iN = e 3;=  ij' iN = e 3;=
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4.1.2 �Conditions for R-Type BTIB designs to be 
GEB designs

Kageyama and Mukherjee (1986) had constructed 
Generalized Efficiency Balanced (GEB) designs 
through method of reinforcement of a BIB design with 
parameters (v, b, r, k & λ). They found that if one new 
treatment is added to each block of the BIB design then 
the resultant design will be a GEB design with v+1 
treatments.

We know that the C- matrix of any GEB design for 
(v+t) treatments will be 

,
� (4.3)
where g = vs + tz for any values of ‘θ’ and the 

current study interested only t = 1.
Theorem 4.1.2: The R- type BTIB design D* 

developed in Theorem 4.1.1 will be a GEB design with 
correlated observations for a particular value of ρ if the 
C matrix of D* (4.2) will be expressed in terms of 4.3. 

Proof: The C matrix of D* (in 4.2) rewritten as

v
* '

v2
v

p n(q- )
n -g

(m-n)n I 0
-g n1-g 1C = - n1 p

pn g
0'

  
                 
   





v v '
v

nI 0 n11= - n1 p
0' p pg

      θ         




,

it is examined that elements of C matrix of design 
D* sums in a row or column is zero (4.3), thus, m+(v-1)
n+p = 0 and vp + q = 0.

Here, θ = -g/n, s = n, g = (vn+p) and z = p. 

5.	 OPTIMALITY PROPERTIES OF NEWLY 
DEVELOPED BTIB DESIGNS WITH 
CORRELATED OBSERVATIONS
Let us define Dρ (v* = v+1, b, k+1) to denote a 

class of connected block designs with correlated 
observations having v+1 treatments arranged in b 
blocks of size k+1 for a particular value of ρ.

According Theorem 3.1 of Jacroux (1983), the 
design D* as stated in Theorem 4.1.1will be E- 
optimal in the class of block designs with correlated 
observations Dρ (v* = v+s, b, k+1) for a particular ρ 
value and s = 1. Constantine (1983) and Jacroux (1984) 

proved that in the class of binary BTBD (Balanced 
Treatment Block Design) as defined by Bechhofer 
and Tamhane (1981) which is also an SR(1) (Standard 
treatment exactly occurs one time in each block of the 
design) is A optimal among the class of all available 
SR(1) designs. The design D* developed in Theorem 
4.1 is also an binary BTIB as well as SR(1) design with 
correlated errors. It is obvious that the design D* is also 
A- optimal in the class of designs with correlated errors 
Dρ (v* = v+1, b, k+1) for a particular ρ value.

5.1	 Efficiency of R- type BTIB designs with 
correlated observations
The canonical efficiency of a design is calculated 

as the harmonic mean of the (v*-1) non-zero eigen 
roots of the matrix r-δC. Here, in case of C matrix as 
(4.2), (m-n)/r roots with multiplicity (v*-2) and the 
remaining root is . 

The designs will have different A-and D-efficiencies. 
The choice of an appropriate design can thus be based 
on the lower bound of the above efficiency values (A 
and D). These lower bounds are obtained on the lines 
of Cheng and Wu (1981). For a connected block design 
d, let θ1, θ2,.…, θv-1 be the non-zero eigen values of C. 
Now define

v-1
-1

A i
i=1

(d)φ = θ∑  and 
v-1

-1
D i

i=1
(d)φ = θ∏

Then, a design is A- [D-] optimal if it minimizes the 
ØA(d), ØD(d) over Dρ(v* = v+1, b, k+1).The A-efficiency 
{ eA(d) } and D-efficiency { eD(d) } of any design d over 

Dρ(v* = v+1, b, k+1) is defined as  

and  where, dA
* and dD

* are 
the hypothetical A-optimal and D-optimal design over 
Dρ(v* = v+1, b, k+1), respectively. The φA(dA*) and 
φD(dD*) values are calculated following the lines of 
Ponnuswamy and Santharam (1997). Let θ1, θ2,…, θv-1 
be the non-zero eigenvalues of C matrix. The design is 
A (or D) optimal if all θi’s are equal. However, such a 
design for a given set of parameters may not exist. The 
information matrix of the hypothetical A (or D) optimal 
design either dA

* (or dD
*) would have eigenvalue θ = 

(v-1)-1 (θ1+ θ2 +…+ θv-1) with multiplicity (v-1). Thus 
φA(dA*) of a hypothetical design dA* and φD(dD*) 
of a hypothetical design dD* has been computed as 
mentioned above. Following the lines of Cheng and 
Wu (1981), the lower bounds of A-efficiency {eA(d)} 
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and D-efficiency {eD(d)} of any design d over Dρ (v, b, 
k) are given by

 and .

The efficiency values (Canonical, A and D) for 
different values of ρ (0 ≤ ρ ≤ 1) of different BTIB 
designs (D*) with correlated observations having one 
control treatment are presented in Table 1.
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0.7 0.568 0.794 0.500 0.861 0.542

0.8 0.514 0.763 0.439 0.837 0.482

0.9 0.456 0.724 0.377 0.805 0.420

1.0 0.393 0.675 0.315 0.764 0.357

7 21 12 4 6 8 21 12,21 5 6,12

ρ CA Ea EaLB Ed EdLB

0.0 0.913 0.960 0.960 0.977 0.977

0.1 0.893 0.954 0.916 0.974 0.934

0.2 0.872 0.948 0.870 0.970 0.890

0.3 0.848 0.941 0.825 0.965 0.846

0.4 0.823 0.933 0.778 0.960 0.801

0.5 0.796 0.924 0.731 0.954 0.755

0.6 0.767 0.913 0.684 0.947 0.709

0.7 0.736 0.901 0.636 0.939 0.663

0.8 0.702 0.886 0.588 0.929 0.616

0.9 0.666 0.869 0.539 0.917 0.568

1 0.626 0.849 0.490 0.902 0.521

9 36 12 3 3 10 36 12,36 4 3,12

ρ CA Ea EaLB Ed EdLB

0.0 0.830 0.878 0.878 0.921 0.921

0.1 0.780 0.868 0.824 0.913 0.867

0.2 0.730 0.856 0.769 0.904 0.812

0.3 0.678 0.843 0.712 0.894 0.756

0.4 0.626 0.828 0.655 0.883 0.699

0.5 0.573 0.810 0.598 0.869 0.641

0.6 0.519 0.789 0.540 0.852 0.583

0.7 0.464 0.764 0.482 0.832 0.524

0.8 0.409 0.734 0.423 0.807 0.464
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0.9 0.353 0.698 0.364 0.775 0.404

1.0 0.297 0.652 0.304 0.735 0.343

9 36 16 4 6 10 36 16,36 5 6,16

ρ CA Ea EaLB Ed EdLB

0.0 0.887 0.933 0.933 0.959 0.959

0.1 0.847 0.927 0.889 0.955 0.916

0.2 0.806 0.920 0.845 0.950 0.872

0.3 0.764 0.912 0.799 0.945 0.828

0.4 0.722 0.903 0.753 0.939 0.783

0.5 0.679 0.893 0.707 0.932 0.737

0.6 0.636 0.882 0.661 0.923 0.692

0.7 0.592 0.870 0.614 0.914 0.645

0.8 0.548 0.855 0.567 0.903 0.599

0.9 0.503 0.838 0.520 0.890 0.552

1.0 0.458 0.818 0.472 0.875 0.505

11 55 15 3 3 12 55 15,55 4 3,15

ρ CA Ea EaLB Ed EdLB

0.0 0.815 0.857 0.857 0.902 0.902

0.1 0.777 0.847 0.804 0.894 0.849

0.2 0.736 0.835 0.750 0.885 0.794

0.3 0.693 0.822 0.695 0.875 0.739

0.4 0.649 0.807 0.639 0.862 0.683

0.5 0.602 0.790 0.583 0.848 0.626

0.6 0.553 0.769 0.526 0.831 0.569

0.7 0.503 0.745 0.470 0.810 0.511

0.8 0.450 0.716 0.412 0.785 0.452

0.9 0.394 0.681 0.355 0.754 0.393

1.0 0.336 0.637 0.297 0.714 0.333

11 55 20 4 6 12 55 20,55 5 6,20

ρ CA Ea EaLB Ed EdLB

0.0 0.871 0.913 0.913 0.944 0.944

0.1 0.843 0.907 0.870 0.939 0.901

0.2 0.814 0.899 0.826 0.934 0.858

0.3 0.784 0.891 0.781 0.928 0.813

0.4 0.751 0.882 0.736 0.921 0.769

0.5 0.718 0.872 0.691 0.914 0.723

0.6 0.683 0.861 0.645 0.905 0.678

0.7 0.646 0.848 0.599 0.895 0.632

0.8 0.608 0.834 0.553 0.884 0.586

0.9 0.568 0.817 0.507 0.870 0.540

1.0 0.526 0.798 0.460 0.854 0.493

13 78 18 3 3 14 78 18, 78 4 3,18

ρ CA Ea EaLB Ed EdLB

0.0 0.805 0.842 0.842 0.888 0.888

0.1 0.765 0.832 0.789 0.879 0.835

0.2 0.723 0.820 0.736 0.870 0.781

0.3 0.679 0.807 0.682 0.859 0.726

0.4 0.634 0.792 0.627 0.847 0.670

0.5 0.587 0.775 0.572 0.832 0.614

0.6 0.538 0.755 0.517 0.815 0.558

0.7 0.487 0.732 0.461 0.794 0.500

0.8 0.434 0.704 0.405 0.769 0.443

0.9 0.380 0.669 0.349 0.738 0.385

1 0.324 0.627 0.293 0.698 0.326

13 78 24 4 6 14 78 24, 78 4 6,24

ρ CA Ea EaLB Ed EdLB

0.0 0.860 0.898 0.898 0.932 0.932

0.1 0.830 0.891 0.855 0.926 0.889

0.2 0.799 0.884 0.812 0.921 0.845

0.3 0.767 0.876 0.768 0.915 0.801

0.4 0.734 0.867 0.723 0.908 0.757

0.5 0.699 0.857 0.678 0.900 0.712

0.6 0.662 0.846 0.633 0.891 0.667

0.7 0.625 0.833 0.588 0.880 0.622

0.8 0.586 0.819 0.543 0.869 0.576

0.9 0.545 0.802 0.497 0.855 0.530

1 0.504 0.783 0.452 0.839 0.484

Note: CA= Canonical Efficiency, Ea = A Efficiency, Ed = D Efficiency, LB= 
Lower Bound
Note: CA= Canonical Efficiency, Ea = A Efficiency, Ed = D Efficiency, LB= 
Lower Bound


