
1.	 INTRODUCTION
A data set containing values on a single phenomenon 

observed at consecutive periods is called time-series. 
The most popular time series model is Auto-Regressive 
Integrated Moving Average (ARIMA) when the data 
under consideration is linear. However, when the linear 
time-series under study is disturbed by some external 
event known as intervention then the forecasting 
performance of ARIMA model may be affected. It can 
be improved by employing appropriate techniques such 
as ARIMA-Intervention modeling. There are three 
kinds of interventions viz. step, pulse and ramp. Step 
intervention occurs at a particular period of time and 
exists in the subsequent time periods. The effect of step 
intervention may remain constant over time or it may 
increase or decrease over time. In agriculture, such 
type of intervention occurs due to introduction of new 
variety, new economic policy etc. Pulse intervention 
occurs only at particular period of time but the effect of 
these type of intervention may exists for that particular 
time period only or may continue to exist in the 
subsequent time periods. In agriculture, if in specific 

years, a flood or drought or pest/ disease epidemic 
occurs then these may be deemed as pulse intervention. 
Ramp intervention occurs at particular period of time 
and exists in the subsequent time periods with an 
increasing magnitude. The effect of ramp intervention 
will always increase over time. In agriculture one of 
the best example of this type of intervention is the price 
rise of agricultural commodity.

The intervention modeling and analysis are 
used to account for impact of any unprecedented 
events in the time series data. Initially, application of 
intervention models was done to study impact of air 
pollution controls, economic controls on the consumer 
price index (Box and Tiao, 1975). A good account on 
intervention modeling is given in Box et  al. (1994), 
Madsen (2008), Yaffee and McGee (2000) etc. Shao 
(1997) applied Intervention model to quantify the 
impact of sales promotional data. Bianchi et  al. 
(1998) analyzed existing and improved methods for 
forecasting incoming calls to telemarketing centers for 
the purposes of planning and budgeting. They found that 
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ARIMA models with intervention analysis performed 
better for the time series studied. Girard (2000) used 
ARIMA model with intervention in order to analyse 
the epidemiological situation of whooping-cough 
in England and Wales for the period of 1940-1990. 
Mcleod and Vingilis (2005) employed power function 
in intervention analysis to determine the probability 
that a proposed intervention analysis application will 
detect a meaningful change. Ismail et al. (2009) studied 
monthly data of five star hotels’ occupancy in Bali city 
in the aftermath of occurrence of bombing in October, 
2002 and have shown that intervention model is more 
appropriate for forecasting when compared to the 
conventional ARIMA model. Lam et al. (2009) used a 
time series intervention ARIMA model to measure the 
intervention effects and the asymptotic change in the 
simulation results of the business process reengineering 
that is based on the activity model analysis. Brakel and 
Roles (2010) employed Intervention model to study 
survey redesign. Ray et al. (2014) employed ARIMA 
Intervention model for modeling and forecasting 
cotton yield of India considering the introduction of Bt 
cotton as unprecedented technology. Ray et al. (2017) 
proposed a new technology forecasting tool viz. time 
series intervention model based trend impact analysis 
for envisioning crop yield scenarios.

As the data for intervention analysis for different 
types of situations may not be possible to collect or 
may not be available, the purpose of this article is 
only generating various types of intervention data and 
compares the performance of ARIMA-Intervention 
models with the conventional ARIMA models in these 
situations.

The rest of the article is organized in different 
sections. In section 2, overview of ARIMA, ARIMA-
Intervention, simulation algorithm, statistics for 
evaluating the forecasting performance and power 
computation are given. Then in section 3, the 
comparison between ARIMA and ARIMA-Intervention 
has been numerically illustrated. Lastly, conclusions 
are given in section 4.

2.	 MATERIALS AND METHODS

2.1	 ARIMA model 
An ARIMA model is given by: 

( ) ( )∆ =φ θ εd
t tB y B  � (1)

where

2
1 2( ) 1= − − − −φ φ φ φ

p
pB B B B  (Autoregressive 

component)
2

1 2( ) 1= − − − −θ θ θ θ

q
pB B B B  (Moving 

average component) 
ε t =white noise error term
d= differencing term

(1 )∆ = −d d
t ty B y

B=Backshift operator i.e. −=a
t t aB y y , where ‘a’ is 

the time lag
ARIMA methodology is carried out in three stages, 

viz., identification, estimation and diagnostic checking. 
Parameters of ARIMA model are tentatively selected 
at the identification stage and at the estimation stage, 
parameters are estimated using iterative least square 
techniques. The adequacy of the selected model is then 
tested at the diagnostic checking stage. If the model is 
found to be inadequate, the three stages are repeated 
until satisfactory ARIMA model is selected for the 
time-series under consideration. 

2.2	 Intervention model
The intervention model can be represented as 

follows:
( ) 

1 ( )
= +

−
ω
δ

b
t t t

By B I N
B

� (2)

where, ty  is the dependent (time series) variable, 
It is the indicator variable coded according to the type 
of intervention, 1( ) 1 ...= + + +δ δ δ r

rB B B  i.e. slope 
parameter, 0 1( ) ...= + + +ω ω ω ω s

sB B B  i.e. impact 
parameter, b is delay parameter; Nt is the noise series, 
which represents the background observed series ty  
but without intervention effects i.e. Nt is nothing but the 

ty  given in the ARIMA model equ. 1. The parameters 
of Intervention model are represented graphically in 
Fig. 1.

Fig. 1. Graphical representation of intervention model
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In general, the values an intervention variable 
can take depends on the type of intervention. For step 
intervention

0
1

′≠
= ∀ ′≥

t
t T

I t
t T � (3)

with ′T  is time of intervention when it first 
occurred.

For pulse intervention 

0
1t

t T
I t

t T
′≠

= ∀ ′=
� (4)

For ramp

0
t

t T
I t

t T t T
′<

= ∀ ′ ′− ≥
� (5)

As with ARIMA model, fitting the intervention 
model consists of the usual three stages i.e. identification, 
estimation, diagnostic checking.

2.3	 Algorithm for simulating data for various 
intervention situations
For simulation of ARIMA-Intervention process,the 

first step is to simulate ARIMA process. The ARIMA 
process has been simulated as given in Dunne (1992) 
which is as follows-

Simulation of Moving Average (MA) process:
A MA (q) model can be written as follows: 

1
−

=

= −∑ε θ ε
q

t t i t j
j

y � (6) 

Firstly, generation of 1 2, ,...,ε ε εn  which are 
normally distributed and uncorrelated i.e. 2(0, )εε σt N  
are generated and averaged in an appropriate manner. 
For instance, 2 1 1 3 1 2 1 1, ,... −− − −ε θ ε ε θ ε ε θ εn n  is MA(1) 
series. Similarly, MA(2) or higher order MA process 
can be generated.

Simulation of Auto Regressive (AR) process:
An AR (p) model can be written as follows:

1
−

=

= +∑φ ε ε
p

t i t i t
i

y � (7) 

AR series simulation begins with a single element 
of a white noise sequence and generates the AR series 
term by term. For instance, an AR(1) process can be 
generated as ( )1 2 1 1 3 1 2 1 1, , ,...+ + +ε ε φ ε ε φ ε φ ε

Subsequently, 

1 1−= +φ εt t ty y � (8) 

Similarly, AR (2) or higher order AR processes can 
be generated.

Simulation of Auto Regressive Moving Average 
(ARMA) process:

An ARMA (p. q) model can be written as follows:

1 1

p q

t i t i t i t j
i j

y yφ ε θ ε− −
= =

− = −∑ ∑ � (9) 

It can be considered as an AR (p) process which is 
then subjected to averaging in accordance with the MA 
(q) process, for simulating ARMA process.

Simulation of Auto Regressive Integrated 
Moving Average (ARIMA) process:

An ARIMA (p, d, q) process ′ty  which follows 
the property that ′= ∆d

t ty y  where ∆  is the difference 
operator (i.e. 1−′ ′ ′∆ = −t t ty y y ) is a stationary ARMA 
(p, q) process. Hence, ARIMA (p, d, q) process can 
be simulated by starting with an ARMA (p. q) series 
and applying the inverse of difference operator d times. 
For instance, ARIMA (p, 1, q) process ′ty . Then, ty  
is an ARMA (p, q) process as discussed above giving

1 2, ,... ny y y . The ARIMA series can be generated from 
the ARMA series by taking partial sums. i.e.

1 1 2 1 2
1

, ,...,
=

′ ′ ′= = + =∑
n

n i
i

y y y y y y y

Proposed ARIMA-Intervention process simulation:

Let 1 2, ,..., ,...′′ ′ ′ ′T ny y y y  be the simulated values of 
ARIMA model
a)	 Let at time point ′=t T , an intervention has 

occurred.
b)	 Let the intervention variable be It .
c)	 The post intervention observations with impact 

parameter ω can be generated as, say 

	 1 1 2 2, ,...′ ′ ′= + = + = +ω ω ωt t n n tz y I z y I z y I

d)	 Now the slope parameter δ  can be introduced by 
setting: 

	 1 1 2 1 2, , ,...+ + + + += = + = +δ δt t t t t t t tk z k k z k k z

e)	 The delay parameter b can be introduced by 
replacing ′T  with ′T +b.
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This algorithm is adopted to generate intervention 
models for various orders with step, pulse and ramp 
functions.

2.4	 Forecasting Performance 
Forecasting performance of the model has been 

judged by computing Mean Absolute Percent Error 
(MAPE) and Mean Squared Error (MSE). The model 
with less MAPE and MSE is favored for forecasting 
purposes. The MAPE and MSE is computed as

1

1 ˆ / 100
=

= − ×∑
n

t t t
t

MAPE y y y
n

� (10)

( )
2

1

1 ˆ
=

= −∑
n

t t
t

MSE y y
n

� (11)

where n is the total number of forecast values. ty  is 
the actual value at period t and ˆty  is the corresponding 
forecast value. 

2.5	 Power computation
In its simplest form, intervention analysis itself 

may be regarded as a generalization of the two samples 
problem (corresponding to pre and post intervention 
periods) to the case where the error or noise term is 
autocorrelated rather than independent. Moreover, in 
many intervention analysis applications, time series 
data may be expensive or otherwise difficult to collect. 
In such cases, ‘power functions’ are helpful, because 
they can be used to determine the probability that a 
proposed intervention analysis application will detect a 
meaningful change. Power is the statistical term used for 
the probability that a test will reject the null hypothesis 
of no change at a given level of significance for a 
prescribed change. McLeod and Vingilis (2005) have 
suggested power computation methods for use with 
time series analyses for certain cases of intervention 
analysis. 

According to them, the impact parameter ω is tested 
through Z-test. The null hypothesis is that there is no 
impact or change due to intervention and the alternative 
hypothesis is that there is change due to intervention. 
The test statistic is given by- 

ˆˆ ˆ/= ωω σZ � (12) 

where ˆˆωσ  is the ARIMA-intervention model error 
variance.

The power of the test i.e. rejecting of null hypothesis 
when alternative hypothesis is true is computed by

ˆ ˆ1 /2 1 /2ˆ ˆ ˆˆ ˆ( ) ( / ) 1 ( / )− −= Φ − − + −Φ −α ω α ωπ ω ω σ ω σZ Z
� (13) 

where (.)Φ  is the cumulative distribution function 
of standard normal variate.

In this study, a SAS IML code has been developed 
for simulation which is given in Appendix.

3.	 ILLUSTRATION
Simulated setup	
To investigate the performance of ARIMA-

Intervention model as compared to conventional 
ARIMA model eleven different situations have been 
considered. For this, time series datasets have been 
generated each with sample size 50 with 37th time point 
as the intervention point. In the simulation process, the 
autoregressive and moving average parameters were 
fixed as 0.71 and 0.11 respectively and differencing 
order as one as in case of all-India cotton yield during 
the period 1961 to 2009 from an earlier study (Ray et al., 
2014). From the same study, the impact parameter ( 0ω ) 
was fixed as 104 but the slope parameter (δ ) instead of 
the value of 0.18 observed for all-India yield δ  values 
were varied as 0, 0.25, 0.5, 0.75 and 0.98 for step and 
pulse intervention types. As slope parameter is not 
necessary in case of ramp intervention, only one model 
for ramp intervention has been simulated. In each 
situation, delay parameter was considered as zero. For 
each dataset, out of 50 observations, last 10 observations 
were kept to judge the forecasting performance and first 
40 observations were used for model fitting. ARIMA-
Intervention model and by conventional ARlMA model 
were used for forecasting by fitting them on each 
datasets. The forecasting performance was judged by 
MAPE as well as MSE. The summary of the simulation 
results are given in Table1.

From fitted step intervention models of the 
simulated datasets, it has been observed that in all the 
situations, the MAPE of ARIMA-Intervention model 
is always less than the ARIMA model though in some 
cases these differences were small. Another important 
aspect which can be observed is that, the confidence 
intervals in case of ARIMA-intervention models 
are narrower as compared to ARIMA models. From 
the fitted pulse intervention model of the simulated 
datasets, it has been observed that in all the situations, 
the MAPE of ARIMA-Intervention model is always less 
than the ARIMA model. Another important aspect that 
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can be observed is that, even if the pulse intervention 
only has effect at a single time period, the forecasting 
performance of the ARIMA model is seriously distorted 
with the actual values not lying between the confidence 
intervals of the forecasted values. Ramp intervention 
also revealed that ARIMA-Intervention model is better 

that ARIMA when there is a significant change due to 
intervention.

Power computation
Power of 11 models considered were computed. 

The results are given in Table-2.

Table 1. Summary of simulation study ( 1 0.71=φ , 1 0.11=θ , d=1, 104=ω ) on forecasting performance of ARIMA Intervention Modeling

Intervention 
type

δ Time 
period t

Simulated ARIMA ARIMA-Intervention

Forecast L95 U95 Forecast L95 U95

Step 0 1 359.83 316.08 257.64 374.52 295.18 258.70 361.67

2 340.74 340.58 267.45 413.70 332.74 281.35 384.14

3 312.56 327.22 233.91 420.53 312.08 244.28 379.87

4 342.81 350.43 247.08 453.78 335.17 263.26 407.09

5 346.16 338.32 220.06 456.58 318.56 235.11 402.01

6 350.93 360.33 233.84 486.82 337.98 250.67 425.29

7 326.73 349.37 210.61 488.14 324.70 228.33 421.08

8 336.64 370.26 224.29 516.24 341.10 240.99 441.20

9 299.87 360.39 203.81 516.97 330.57 222.94 438.19

10 325.37 380.24 217.13 543.35 344.47 233.19 455.74

MAPE 7.80 5.24

MSE 1065.32 656.30

0.25 1 284.39 302.68 248.54 356.82 274.21 227.83 320.59

2 287.23 311.10 245.09 377.10 280.29 228.21 332.38

3 304.90 312.33 227.56 397.11 279.11 210.79 347.44

4 298.89 320.34 227.17 413.51 284.53 211.55 357.51

5 273.29 321.96 215.08 428.84 283.97 199.54 368.40

6 290.10 329.60 215.68 443.52 288.82 200.10 377.53

7 295.93 331.57 206.50 456.64 288.77 191.04 386.51

8 301.46 338.88 207.53 470.23 293.15 191.33 394.97

9 293.87 341.15 200.26 482.05 293.53 184.20 402.86

10 308.67 348.18 201.51 494.84 297.53 184.26 410.81

MAPE 10.91 3.25

MSE 1181.55 138.34

0.5 1 522.20 466.11 378.38 553.83 509.87 450.68 569.06

2 506.36 508.29 391.27 625.32 515.96 456.17 575.75

3 481.49 484.45 338.20 630.70 523.65 449.41 597.90

4 515.12 526.64 361.15 692.13 525.81 449.15 602.47

5 521.92 502.79 315.49 690.10 529.45 444.51 614.38

6 530.19 544.98 342.30 747.67 530.74 442.39 619.08

7 509.58 521.14 300.28 741.99 532.96 438.68 627.23

8 523.15 563.33 329.28 797.37 534.13 436.11 632.16

9 490.11 539.48 289.54 789.42 535.83 432.99 638.67

10 519.41 581.67 320.00 843.34 537.04 430.42 643.67

MAPE 5.24 3.61

MSE 1193.78 526.13
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Step 0.75 1 542.16 481.08 392.32 569.84 525.35 466.25 584.46

2 532.19 523.53 404.70 642.35 534.38 474.67 594.10

3 513.58 500.19 351.87 648.51 542.52 468.23 616.80

4 553.88 542.64 374.59 710.69 546.00 469.32 622.69

5 567.79 519.30 329.26 709.35 549.77 464.74 634.81

6 583.63 561.75 355.94 767.57 551.64 463.21 640.07

7 571.07 538.42 314.28 762.55 553.89 459.47 648.30

8 593.19 580.86 343.21 818.52 555.32 457.16 653.48

9 569.25 557.53 303.84 811.22 557.01 454.00 660.02

10 608.22 599.98 334.27 865.68 558.34 451.55 665.13

MAPE 4.11 3.22

MSE 836.47 690.22

0.98 1 579.45 508.26 417.58 598.95 553.72 494.80 612.63

2 582.32 550.91 428.64 673.18 568.81 509.26 628.36

3 578.30 528.75 376.53 680.98 578.21 503.88 652.53

4 635.12 571.40 398.49 744.31 584.66 507.95 661.36

5 667.71 549.24 354.00 744.49 588.96 503.73 674.18

6 704.62 591.89 380.12 803.66 596.71 442.62 750.80

7 715.80 569.73 339.36 800.10 644.64 499.96 789.32

8 764.61 612.38 367.85 856.91 646.71 498.30 795.12

9 770.64 590.22 329.42 851.03 648.46 495.12 801.79

10 843.21 632.87 359.47 906.26 740.08 592.97 887.19

MAPE 15.87 9.52

MSE 16061.79 6576.48

Pulse 0 1 209.84 207.36 150.49 264.23 156.59 101.51 211.68

2 190.74 211.27 154.30 268.24 181.31 130.25 232.36

3 162.57 213.85 156.88 270.81 160.77 93.68 227.85

4 192.81 216.34 159.37 273.31 182.12 110.38 253.85

5 196.17 218.83 161.87 275.80 164.69 81.48 247.90

6 200.93 221.33 164.36 278.29 183.16 95.78 270.54

7 176.73 223.82 166.85 280.79 168.40 71.87 264.93

8 186.64 226.31 169.34 283.28 184.39 83.96 284.82

9 149.87 228.80 171.83 285.77 171.93 63.81 280.04

10 175.37 231.29 174.33 288.26 185.80 73.96 297.65

MAPE 20.98 8.84

MSE 1768.87 501.86

0.25 1 210.42 209.40 153.43 265.36 155.34 99.03 211.64

2 190.89 213.55 157.46 269.63 181.61 129.10 234.12

3 162.60 216.20 160.11 272.29 159.08 90.01 228.15

4 192.82 218.76 162.67 274.85 182.54 108.70 256.38

5 196.17 221.30 165.21 277.40 163.24 77.49 248.99

6 200.93 223.85 167.76 279.94 183.87 93.88 273.86

7 176.73 226.40 170.31 282.49 167.27 67.75 266.79

8 186.64 228.95 172.86 285.04 185.39 81.92 288.86

9 149.87 231.50 175.41 287.59 171.13 59.63 282.63

10 175.37 234.05 177.95 290.14 187.07 71.81 302.33

MAPE 22.17 9.07

MSE 1958.12 529.34



239Mrinmoy Ray and Ramasubramanian V. / Journal of the Indian Society of Agricultural Statistics 73(3) 2019  233–242

Pulse 0.5 1 219.21 189.10 129.32 248.87 164.95 108.38 221.51

2 195.43 202.96 127.77 278.16 187.04 134.56 239.51

3 164.91 193.52 97.82 289.22 161.94 92.84 231.04

4 193.98 206.45 100.20 312.70 183.74 110.02 257.45

5 196.75 197.91 76.53 319.29 163.76 78.12 249.39

6 201.22 209.97 79.93 340.01 183.57 93.79 273.35

7 176.88 202.26 59.80 344.73 167.01 67.73 266.29

8 186.72 213.52 63.46 363.59 184.55 81.38 287.72

9 149.91 206.59 45.80 367.37 170.61 59.46 281.77

10 175.39 217.11 49.43 384.78 186.01 71.13 300.89

MAPE 13.66 8.82

MSE 833.08 517.15

0.75 1 257.30 232.13 173.79 290.47 208.96 156.94 260.97

2 226.34 249.64 176.54 322.74 225.72 173.31 278.14

3 189.26 238.84 145.65 332.03 198.53 129.40 267.65

4 212.84 255.28 151.98 358.57 214.64 141.14 288.14

5 211.18 245.51 127.39 363.63 193.35 107.98 278.71

6 212.19 260.95 134.53 387.37 208.29 118.92 297.67

7 185.18 252.15 113.54 390.75 191.48 92.71 290.25

8 192.98 266.66 120.78 412.55 205.05 102.46 307.64

9 154.62 258.75 102.35 415.15 191.70 81.27 302.13

10 178.94 272.41 109.41 435.41 203.85 89.72 317.98

MAPE 29.94 8.26

MSE 3848.53 494.02

0.98 1 332.01 295.46 237.38 353.53 286.23 238.86 333.60

2 306.81 318.14 245.54 390.74 311.73 259.24 364.22

3 272.83 305.51 212.87 398.16 292.87 223.61 362.13

4 297.56 326.95 224.35 429.54 314.47 240.97 387.97

5 295.68 315.53 198.12 432.93 299.17 213.82 384.52

6 295.47 335.80 210.24 461.37 317.52 228.23 406.81

7 266.54 325.50 187.76 463.25 305.19 206.57 403.81

8 271.96 344.69 199.79 489.59 320.84 218.43 423.26

9 230.93 335.44 180.02 490.86 310.97 200.80 421.15

10 252.38 353.62 191.72 515.53 324.38 210.51 438.25

MAPE 19.11 13.27

MSE 3535.44 1877.94

Ramp 0 1 959.84 908.01 798.47 1017.55 930.40 873.03 987.77

2 1090.74 1035.25 851.77 1218.74 1112.00 1037.00 1187.00

3 1212.57 1162.49 902.04 1422.95 1262.00 1168.00 1356.00

4 1392.81 1289.73 947.17 1632.30 1443.00 1338.00 1549.00

5 1546.17 1416.98 986.82 1847.14 1594.00 1474.00 1714.00

6 1700.93 1544.22 1021.02 2067.42 1774.00 1645.00 1903.00

7 1826.73 1671.46 1049.94 2292.98 1926.00 1785.00 2067.00

8 1986.64 1798.70 1073.77 2523.63 2106.00 1957.00 2255.00

9 2099.87 1925.94 1092.70 2759.17 2258.00 2098.00 2417.00

10 2275.37 2053.18 1106.93 2999.43 2437.00 2270.00 2603.00

MAPE 7.56 4.61

MSE 19919.73 8913.87
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Table 2. Power for computation for fixed ω  and varying δ

δ / 104=ω
Power

Step Pulse Ramp

0.00 0.67703 0.60615 0.84177

0.25 0.68994 0.62885 -

0.50 0.74112 0.68994 -

0.75 0.75077 0.72676 -

0.98 0.79642 0.76045 -

It can be concluded from the above table that for 
a fixed value of impact parameter, the power of the 
test was high for ramp followed by step and then pulse 
intervention. For fixed value of impact parameter, 
when the slope parameters were increased, the power 
of the test to detect significant change also increased 
in both step and pulse types of interventions. As the 
intervention is symmetric in nature because power 

depends only on the magnitude of model parameters 
i.e. positive and negative parameters with same value 
will have same power. The graphical representation of 
the above result is given subsequently.

Now the impact parameter ω  vary from 54-354 
with an interval of 50 without considering the slope 
parameter. Here two cases have been considered for 
power computation. In first case, a sample size of n=40 
was generated with ′T =37 time of intervention and 
m=4 the number of post-intervention observations. In 
another case, a sample size of n=60 was generated with 
′T =37 and m=24. The results are given Table-3.

From Table 3, it can be concluded that as the 
magnitude of the impact parameter ω  increases, the 
power of detecting the change increases. Simultaneously 
it has been observed when the magnitude of impact 
parameter increases the power of detection of change 

Fig. 2. For fixed ω  and varying δ  in step intervention

Fig. 3. For fixed ω  and varying δ  in pulse intervention
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is high even with few post-intervention observations as 
can be seen by comparing the values of power for m=4 
and m=24. The power curve for the above result is in 
Fig 3. 

4.	 CONCLUSIONS
To sum up, it can be inferred that ARIMA-

Intervention always superior than conventional ARIMA 
model whenever there is significant impact due to 
intervention. In addition, using power computations, 
it has been observed that, as the magnitude of the 
impact parameter increases, the power to detect such 
a change also increase. Also, for a fixed value of 
impact parameter, the power of the test was high for 
ramp followed by step and then pulse intervention 
situations. For fixed value of impact parameter, when 
the slope parameters were increased, the power of the 
test to detect significant change also increased in both 
step and pulse types of interventions. When the impact 
value was increased, it was also shown that the power 

of the test is reasonably good even when there are only 
a few post-intervention observations. 
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Appendix
SAS IML code for simulation of data following 

ARIMA-Intervention model with given parameters: 
impact (ω ), slope (δ ) and delay (b) and given AR 
and MA parameters and degree of differencing for 
any type of intervention (step/ pulse/ ramp):
proc iml;
phi={1 0.71}; /*autoregressive parameter*/
theta={1 0.11}; /*moving average parameter*/
n=50; /*total sample size*/
y=armasim(phi, theta, mean,variance,n,seed); /*arma simulation*/
y1=cusum(y);
y2=cusum(y1);
d=1; /*give value of differencing order d from user’s side; here the user has 
given it as 1*/
if d=0 then do;
a=y;
print a;
end;
if d=1 then do;
a=y1+l1;
print a;
end;
if d=2 then do;
a=y2;
print a;
end;
run; /*arima simulated value*/
start intfunc(I,n,t,b,func);
I=j(n,1,.);
if func=1 then do;
y1=j(t+b-1,1,0);
y2=j(1,1,1);

y3=y1//y2;
y4=j(n-t-b,1,0);
I=y3//y4;
print I;
end;
if func=2 then do;
s1=j(t+b-1,1,0);
s2=j(n-t-b+1,1);
I=s1//s2;
print I;
end;
if func=3 then do;
s1=j(t+b-1,1,0);
s2=j(n-t-b+1,1);
s3=cusum(s2);
I=s1//s3;
print I;
end;
finish;
n=50;/*total sample size*/
t=37;/*point of intervention*/
b=0;/*delay parameter*/
func=2;/*func=1(pulse) func=2(step) func=3(ramp)*/
run intfunc(I,n,t,b,func);
w1=150;/*value of impact parameter*/
w2=0;
w3=0;
z1=w1#I;
k1=b+1;
run intfunc(I,n,t,k1,func);
z2=w2#I;
k2=k1+1;
run intfunc(I,n,t,k2,func);
z3=w3#I;
z=z1+z2+z3;
ins=a+z;/*simulated value of intervention model only with impact 
parameter*/
p1=j(t+b,1,0);
%let k=n-t-b;
d=1.05;/*value of slope parameter*/
p2=j(&k,1,0);
do t=1 to &k;
p2[t,]=d##t;
end;
p3=p1//p2;
p=w1#p3;
print p;
insa=ins+p;
run; 
print insa; /* Final simulated value*/


