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SUMMARY
The analysis of spatio-temporal data has been an increasingly demanding area of methodological and applied statistical research. These data are very 
common in many applications of agriculture. For analysis of spatial time series data Generalized Linear Mixed Models (GLMMs) are most commonly 
used. A special case of GLMM, Linear Mixed Model (LMM) is used to forecast continuous data. A modified version of LMM with spatial effects, 
trend and outliers for spatio-temporal time series data has been considered in this study. A linear trend, a binary method for outliers and a Multivariate 
Conditional Autoregressive (MCAR) model for spatial effects are adopted. A Bayesian method using Gibbs sampling in Markov Chain Monte Carlo 
(MCMC) is used for parameter estimation. The model is applied to forecast rice and wheat yields in India and compared with an LMM with MCAR, 
and a log transformed LMM with MCAR. It has been found that the modified LMM model is the most appropriate, using the Mean Absolute Error 
(MAE) criterion. The model performs well for fitting and validation for both rice and wheat yields. 
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1.	 INTRODUCTION
In recent times the analysis of spatio-temporal data 

has become an important branch of scientific research. 
Spatial time-series data are collected across both time 
and space. Thus, the data analysts should consider 
the correlations across the time and across the areas 
in order to capture the spatio-temporal effect. These 
kinds of data can be found in various fields such as 
agriculture, economics, medicine and the environment. 
The increased computational power helps to deal 
with such data. Annual yields of different agricultural 
crop collected by government in each area are typical 
examples of spatio-temporal data. These data sets 
naturally accommodate spatial as well as time series 
components such as trends, seasonality and outliers. 

The spatio-temporal models are normally 
constructed by combining time series models with 
spatial models. Such models are usually based on 
Generalized Linear Mixed Models (GLMM). The 
common time series structures are linear trends and 
dummy seasonality, and one of the common spatial 

structures is the Conditional Autoregressive Model 
(CAR). For time series data, Yelland (2010) used a 
Bayesian statistical model to forecast the parts demand 
time series data for Sun Microsystems, Inc.; Box 
et  al. (2007) proposed ARIMA and its component 
models which are the most important and widely used 
techniques in time-series analysis, Tongkhow and 
Kantanantha (2013) proposed a forecasting model 
that can detect trend, seasonality, auto- regression and 
outliers in time series data related to some covariates. 
For spatial data, the spatial effects can be done in a 
number of ways (Wakefield, 2006); one of the common 
approaches is a Conditional Auto- Regressive model 
(CAR) first introduced by Besag (1974); Clayton and 
Keldor (1987) extended the CAR model and proposed 
empirical Bayesian methods building from Poisson 
regression with random intercepts defined with CAR 
spatial correlations. In particular, a CAR model is used 
for univariate spatial data; the data involve a single 
response variable. For multivariate spatial data which 
involve more than one response variables, a MCAR 
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proposed by Carlin and Banerjee (2003) is commonly 
applied. An advantage of an MCAR model is that it can 
handle the correlations between the response variables 
as well as well as the spatial correlations between areas. 
A Bayesian method using the Markov Chain Monte 
Carlo (MCMC) procedure is extensively applied for 
parameter estimation in this complex model. 

For spatial time-series data, Diaconoa et al. (2012) 
used geo-statistical approach to analyze the yearly 
data collected from 100 geo-referenced locations and 
studied the spatial and temporal variability of attributes 
related to the yield and quality of durum wheat 
production; Saengseedam and Kantanantha (2014) 
presented spatial time series models, based on Bayesian 
linear mixed models with CAR spatial effects, for rice 
yields in Thailand. Most models for spatial time series 
data are based on GLMMs. A special case of GLMM, 
LMM is used to forecast when the data are continuous. 
LMMs are usually used when responses are correlated 
data which may be due to repeated measurements on 
each subject over time (West et al., 2014). The LMMs 
allow fixed effects and spatial effects to be included. 
Saengseedam and Kantanantha (2017) proposed a LMM 
with spatial effects, trend, seasonality and outliers for 
spatio-temporal time series data and applied this model 
to forecast rice and cassava yield in Thailand.

Accurate and reliable forecasting of crop yield is 
essential for crop production, marketing, storage, and 
transportation decisions and also helps in managing 
the risk associated with these activities (Lee, 1999; 
Potgieter et  al., 2005). Foodgrain production 
forecasting is central to make food policy decisions. 
Almost all major food security programmes, such as 
imports, strategic food reserves, granting of licenses to 
public firms to import and export, local procurement by 
the government and donors, emergency food assistance 
and distribution of stored grains rely on crop forecasts 
for strategic planning. The availability of yield forecast 
information of different crops over different locations 
is highly sought after by industry and government 
agencies to use as an objective tool to assist in decision-
making.

Rice is the staple food for more than half of the 
total population and its importance in the country 
cannot be negated. India is not only leading consumer 
of rice crop but also it is the second largest producer 
in the world (112.91MT), lagging only behind China 
according to the annual report by Public Investigation 

Bureau of 2017-18. Next to rice, wheat is the most 
important food-grain of India and is the staple food 
of millions of Indians, particularly in the northern and 
north-western parts of the country. The production of 
wheat in the country has increased significantly from 
75.81 MT in 2006-07 to an all-time record high of 
99.70 MT in 2017-18. Therefore, in rainfall-dependent 
and highly variable agriculture systems, forecasting of 
rice and wheat yields is important from consumer as 
well as producer point of view. In the present study, the 
modified LMM is applied to forecast the rice and wheat 
yields in India over different states.

2.	 METHODOLOGY

2.1	 Linear Models (LMs) and Linear Mixed Models 
(LMMs)
Linear model for the observation  with mean 

 is defined as

� (1)

where  are fixed unknown constants and 
.

A variant of LMs is where parameters in an LM 
are treated not as constants but as (realizations of) 
random variables. Model (1) under the assumption 
that  are fixed unknown constants; 
and , is called as Linear Mixed Model 
(LMM).

2.2	 Generalized Linear Models (GLMs) and 
Generalized Linear Mixed Models (GLMMs)
LMs and LMMs are extended to Generalized 

Linear Models (GLMs) and Generalized Linear Mixed 
Model (GLMMs). The essence of this generalization 
is of two-fold: 1. the data are not necessarily assumed 
to be normally distributed and 2. that the mean is not 
taken as a linear combination of parameters but that 
function of mean. 

Generalized linear models (GLMs) represent a 
class of fixed effects regression models for several types 
of dependent variables (i.e., continuous, dichotomous, 
counts). Common GLMs include linear regression, 
logistic regression, and Poisson regression. There are 
three specifications in a GLM. First, the linear predictor, 
denoted as , of a GLM is of the form

� (2)
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where  is the vector of regressors for unit i with 
fixed effects . Then, a link function g(·) is specified 
which converts the expected value  of the outcome 
variable  (i.e.,  = E[ ]) to the linear predictor  , 
g( ) = . 

Fixed effects models are based on the assumption 
that all observations are independent of each other. 
But this assumption is not appropriate for analysis of 
several types of correlated data structures, in particular, 
for clustered and/or longitudinal data. For analysis of 
such multi-level data, random cluster and/or subject 
effects can be added into the regression model to 
account for the correlation of the data and the resulting 
model is called as Generalized Linear Mixed Models 
(GLMMs). 

Let i denote the level-2 units (e.g., subjects) and 
let j denote the level-1 units (e.g., nested observations). 
Assume there are  subjects (level-2 
units) and  repeated observations 
(level-1 units) nested within each subject. A random-
intercept model, which is the simplest mixed model, 
augments the linear predictor with a single random 
effect for subject i,

�  (3)
where  is the random effect (one for each subject) 

distributed as N(0, ). 

2.3	 Linear Mixed Models for Time -Series Data
Linear mixed models for time- series data can be 

expressed as:

� (4)
where  is the ith response at time t,  is the 

regressor variables associated with the fixed effects,  
is the parameter vector of fixed effects,  corresponds 
to the predictor variables with random effects, 

 is the random effects for the ith cluster 
where  is the positive definite matrix, and  is the 
random errors.

2.4	 Conditional Autoregressive (CAR) model 
A key assumption in GLM models is that each 

response variable is independent from all others, after 
accounting for the covariate effects. When the response 
variables are collected in space, it is very common 
for the residuals resulting from a regression or GLM 
analysis to show spatial autocorrelation. Instead of 

assuming independence, spatial statistical models 
directly account for spatial autocorrelation through 
modelling the covariance matrix Σ of the residuals as 
a function of the locations where the response variable, 
contained in the vector y, were collected. For example, 
when the observations are point-referenced (i.e., 
each y was collected at a location with known GPS 
coordinates), geo-statistical methods are often used 
(Turner et al., 1991). For a real data such as quadrats 
or pre-specified spatial polygons, one could use a geo-
statistical model, such as the exponential covariance 
model, but this requires specifying a point to represent 
each areal unit, for example the centroid of each areal 
unit. While this is possible, another class of spatial 
covariance models has been developed specifically 
to take advantage of the characteristics of areal data, 
the autoregressive spatial models. In these models, a 
network of connections between neighboring areal 
units (like- city, states etc.) is specified, and spatial 
dependence is specified through a model that conditions 
on observations at neighboring locations. 

Let  is the observed number of cases of a certain 
disease in region i,  and modeled by a 
spatial Poisson regression of the form

� (5)

where ’s are independent and 
 . The ’s are explanatory 

variables, representing region-level spatial covariates, 
 captures region-wide heterogeneity via the normal 

prior , where the precision  controls 
the magnitude of .

Finally, the  are the parameters that make this 
a truly spatial model by capturing regional clustering. 
While common geo-statistical (e.g. exponential, 
spherical, Gaussian, etc.) models could be used as 
priors here, the most common approach is to adopt a 
conditionally autoregressive (CAR) prior of the form

where  
is the of “neighbours” (adjacent regions) of region 
i, and , the average of the 
neighbouring values. This model corresponds to a 
multivariate normal distribution  
with a less-than-full-rank covariance matrix.

It is more convenient to deal with matrix notations. 
Let, for brevity, consider a vector  
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of  components that follows a multivariate Gaussian 
distribution with mean 0 and  as the inverse of the 
dispersion matrix, so that  is  and positive 
definite. The density for  is given by

� (6)

For such a distribution, it is of interest to look at the 
conditional distribution of a particular component given 
the remaining components. In terms of the elements of 
the matrix , it is well-known from normal 
theory that  has the full conditional distribution

� (7)

which is a  distribution. 

Suppose that the full conditional distribution of 
is specified as  so that

� (8)

when compared with (7), this reveals that  

and . Now, form a matrix  with  and 

, and another matrix  (so 

that ). Then  is related to  and 
 as 

�  (9)
where  is the identity matrix. Thus the joint 

distribution of  is . 

2.5	 Multivariate Conditional Autoregressive 
(MCAR) Model
Let  where  is  

with each  being an n-dimensional vector. Consider 
a multivariate Gaussian distribution for  of the form

� (10)

Here  is a  symmetric positive definite 
matrix. In fact it is easier to visualize  as a  
block matrix with  blocks . Analogous to the 
univariate situation, it follows that the full conditional 
distribution.

2.6	 Extension of an LMM for spatio-temporal data

2.6.1. Adding spatial effects
Model (4) can be further adjusted and extended 

to include spatial random effects for spatio-temporal 
time series data. For a univariate, a conditional 
autoregressive (CAR) model is a common approach to 
explain the spatial correlation. For a multivariate, the 
CAR is modified to be MCAR model; therefore, Model 
(4) with an MCAR has the following form,

� (11)

where  is the response at area i of the product k 
at time t,  is a random effect representing the baseline 
of product k,  is a random effect of representing the 
baseline of product k and time t,  is a random error, 
and  follows MCAR model whose details are as 
follows.

Let  where 
 and  is the number of areal 

units. The bivariate spatial random effect is defined as 
the conditional distribution,

where  is the collection of all  except 

 and .  and  are 
the averages of the random for area i’s neighbours 
specific to variables  and , respectively.  is a 
scaled conditional precision for (  and ) and  
is a scale parameter.

 is common for all areas ; 
therefore, it controls the conditional precision for each 
pair of variables at the same site averaged over all 
areas. Let  then  which is 

the conditional covariance matrix with  , 

the conditional correlation between  and  , 
. For MCAR, the multivariate joint 

distribution

� (12)

where  is  positive definite and  is the 
Kronecker product.  is a neighborhood 
matrix for areal units, which is defined as

1,
0,ij

if regions i and j are neighbours
w

otherwise


= 




185Dipankar Mitra et al. / Journal of the Indian Society of Agricultural Statistics 73(3) 2019  181–188

And  is a diagonal matrix 
whose (i, i) entry equals to .

2.6.2. Adding trend and outlier components
Model (11) can be extended to include trend, 

seasonal and outlier components. A linear trend and 
seasonal dummy variables are common methods for 
capturing trend and seasonality, respectively. Following 
Tongkhow and Kantanantha (2013) and Yell and (2010) 
binary selection method is applied to capture outliers. 
The LMM for a multivariate time series with a linear 
trend and outliers can be expressed as follows:

� (13)

where  is a linear trend and  is an outlier.

3.	 AN ILLUSTRATION

3.1	 Data description and model specification
The modified LMM with spatial effect, trend and 

outlier is applied to rice and wheat yields (Unit: kgs) 
in 9 states of India (Andhra Pradesh, Assam, Bihar, 
Haryana, Karnataka, Odisha, Punjab, Uttar Pradesh, 
West Bengal) which are shown in Fig 1. Data are 
obtained from the Directorate of Economics and 
Statistics, Ministry of Agriculture and Farmers Welfare, 
GoI (https://eands.dacnet.nic.in website) from the year 
1966 to 2015 (49 years). The data are divided into 
two parts, the first 43 years are used for model fitting 
and the last 6years are used for model validation. The 
neighbourhood relationship among the selected states 
can be shown using the matrix which is given below

where the  element takes 
on value 1 if state  shares a common geographical 
boundary with state , otherwise zero.

Let  be the agricultural yields in state
, product type  for rice and 

 for wheat, and year t, t = 1, . . . , 49. The collected 
data are transformed using a natural logarithmic 

function to make the data more normally distributed 
(Fletcher et al., 2005). The results of Anderson-Darling 
test for normality of both original and logarithmic 
transformed data of rice and wheat yield are shown in 
Table 1 and 2 respectively. The test results indicate that 
the transformed data are more normally distributed for 
both yield data.

where ,  is a product type random 
effect,  is product type and time effect,  is the 
area-product type spatial effect, At is a linear trend, 

 is an outlier and  is a state-product type-time 
random effect. The estimated  is used for predicting 

 and exp ( ) is used for predicting .
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Fig. 1. Selected states of India

3.2	 Model comparison
The performance of the modified LMM is compared 

with the LMM with MCAR, and the model with log 
transformation, using the Mean Absolute Error (MAE) 
criterion. Mathematically, MAE is defined as
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MAE = 

where  is the actual observation for the time  
and  is the forecast value of the series for the same 
time;  denotes the forecast horizon.

3.3	 Results
Gibbs sampling MCMC is used to estimate 

parameter and it is found that MCMC for each 
parameter is converged. MAE values of the modified 
LMM, MCAR model with log transformation and 
MCAR model are listed for both fitting and validation 
dataset in Table 3 and Table 4 for rice and wheat yields 
respectively. Smallest MAE values are marked bold. 
From Table 3 it is clear that in case of rice yield the 
modified LMM has a better performance in 6 out of 
9 states (66.67%) when compared to MCAR, but 
lesser performance when compared to MCAR with log 
transformation in 4 out of 9 states (44.44%) in the fitting 
part. However, in the validation part, the modified 

Table 1. Anderson Darling test for normality of rice yields

States
Original data Transformed data

statistic p-value statistic p-value

AP 0.71 0.061 0.97 0.015

AS 1.04 0.190 0.87 0.024

BR 0.44 >0.250 0.33 0.070

HR 1.58 <0.005 2.69 <0.005

KA 0.69 0.072 0.38 <0.005

OD 0.92 0.046 0.76 0.016

PB 4.88 0.015 0.97 <0.005

UP 1.51 0.015 0.97 <0.005

WB 1.45 0.024 0.86 <0.005

(*AP: Andhra Pradesh, AS: Assam, BR: Bihar, HR: Haryana, KA: 
Karnataka, OD: Odisha, PB: Punjab, UP: Uttar Pradesh, WB: West Bengal)

Table 2. Anderson Darling test for normality of wheat yields

States
Original data Transformed data

statistic p-value statistic p-value

AP 0.89 0.022 1.15 <0.005

AS 2.46 <0.005 4.10 <0.005

BR 0.48 0.226 1.12 0.006

HR 1.23 <0.005 1.46 <0.005

KA 0.14 >0.250 0.90 0.021

OD 0.44 >0.250 0.51 0.095

PB 1.07 0.008 1.38 <0.005

UP 0.97 0.015 1.37 <0.005

WB 0.84 0.03 2.39 <0.005

LMM is superior to the MCAR and MCAR with log 
transformation in all 9 of 9 states (100%). Similarly, 
Table 4 indicates that for wheat yield in the fitting part, 
the modified LMM has a better performance in 5 out 
of 9 states (55.56%) when compared to MCAR, but 
lesser performance when compared to MCAR with log 
transformation in 3 out of 9 states (33.33%). However, 
in the validation part, the modified LMM is superior to 
the MCAR and MCAR with log transformation in all 9 
of 9 states (100%).

Table 3. Performance of the modified LMM model compared  
to MCAR for rice yields 

States Model
MAE (kgs)

Fitting Validation

AP Modified LMM 975.29 733.02

MCAR with log 1,230.25 1,425.72

MCAR 1,714.54 2,055.83

AS Modified LMM 677.33 848.03

MCAR with log 1,726.94 1,331.65

MCAR 2,903.18 1,167.07

BR Modified LMM 1,203.28 225.69

MCAR with log 798.91 634.91

MCAR 831.66 712.70

HR Modified LMM 1,142.12 895.35

MCAR with log 566.18 1,028.94

MCAR 1,504.72 2,055.10

KA Modified LMM 902.79 965.69

MCAR with log 1,959.24 1,290.62

MCAR 2,164.87 3,730.02

OD Modified LMM 2,051.55 726.97

MCAR with log 974.39 1,662.88

MCAR 1,029.12 1,617.60

PB Modified LMM 379.19 601.82

MCAR with log 215.02 1,423.65

MCAR 649.82 2,712.35

UP Modified LMM 872.61 535.83

MCAR with log 523.24 612.37

MCAR 453.55 685.00

WB Modified LMM 354.95 982.24

MCAR with log 673.44 842.85

MCAR 1,068.57 1,723.01

The parameter estimates are shown in Tables 5–6. 
From Table 5, it can be found that there are spatial 
random effects which vary in each state, for example, 
the spatial effect of rice in AP (Spatial [1,1]) is 1.21, 
meaning that it increases rice yield by 1.21 kgs. The 
spatial effect of wheat yield in AP (Spatial [2,1]) is 
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−1.32, meaning that it lessens wheat yield for 1.32kgs. 
The estimated A is 58.17, indicating that if time is 
increased by one year, the amount of crop yield per 
state per year will decrease by 58.17kgs. The estimated 
α1 (342.60) and α2 (413.67) are the baselines of the rice 
and the wheat yields per state per year, respectively, 
when other factors are not considered.

From Table 6, there are outliers which vary in each 
product-state, for example, the outlier of rice of AP 
(O[1,1]) is 0.02, meaning that it? increases rice yield by 
0.02 kgs. The outlier of wheat yield of AP (O[2,1]) is 
0.02, meaning that it increases wheat yield by 0.02 kgs.

4.	 CONCLUSIONS
Forecasting of crop yields of various agricultural 

commodities can be done using spatio-temporal data. 

Table 4. Performance of the modified LMM model compared to 
MCAR for wheat yields

States Model MAE (kgs)

Fitting Validation

AP Modified LMM 1,076.24 653.52

MCAR with log 1,442.84 1,738.01

MCAR 1,714.44 2,165.14

AS Modified LMM 1,781.47 1,049.63

MCAR with log 1,456.53 1,891.78

MCAR 3,123.06 1,380.12

BR Modified LMM 715.49 815.08

MCAR with log 976.25 1,075.33

MCAR 1,521.42 1,015.83

HR Modified LMM 1,045.82 525.05

MCAR with log 553.48 953.56

MCAR 661.64 1070.99

KA Modified LMM 912.79 605.19

MCAR with log 1407.53 1,524.50

MCAR 2,154.77 2,130.02

OD Modified LMM 2,101.59 1,229.07

MCAR with log 1,456.18 1,531.54

MCAR 1,909.92 1,607.66

PB Modified LMM 1,079.89 791.22

MCAR with log 887.83 1,536.77

MCAR 719.53 1,729.55

UP Modified LMM 572.61 836.43

MCAR with log 306.85 1,115.43

MCAR 893.65 1,255.90

WB Modified LMM 1,153.75 684.64

MCAR with log 735.73 718.09

MCAR 928.69 1,029.81

Table 5. Parameter estimates of spatial, trend and product type 
effects for rice and wheat yields

Parameter Mean Standard 
error

95% Credible interval

Lower bound Upper 
bound

Spatial [1,1] 1.21 0.13 0.96 1.46

Spatial [1,2] -0.18 0.12 -0.42 0.06

Spatial [1,3] -1.67 0.12 -1.91 -1.43

Spatial [1,4] -0.50 0.14 -0.77 -0.23

Spatial [1,5] 1.02 0.12 0.78 1.26

Spatial [1,6] -0.65 0.12 -0.89 -0.41

Spatial [1,7] 0.82 0.13 0.57 1.07

Spatial [1,8] -1.25 0.12 -1.49 -1.01

Spatial [1,9] 0.93 0.13 0.68 1.18

Spatial [2,1] -1.32 0.14 -1.92 -1.38

Spatial [2,2] 0.87 0.14 1.14 1.14

Spatial [2,3] -1.35 0.13 -1.10 -1.10

Spatial [2,4] -1.95 0.14 -1.68 -1.68

Spatial [2,5] 0.82 0.14 1.09 1.09

Spatial [2,6] -1.19 0.14 -0.92 -0.92

Spatial [2,7] 0.72 0.13 0.97 0.97

Spatial [2,8] -1.54 0.13 -1.29 -1.29

Spatial [2,9] 1.01 0.12 1.25 1.25

Trend [A] 58.17 0.03 58.23 58.23

Rice [α1] 342.60 2.73 347.95 347.95

Wheat [α2] 413.67 1.97 417.53 417.53

Table 6. Parameter estimates of outlier effects for rice and  
wheat yields

Parameter Mean Standard error

O[1,1] 0.02 0.12

O[1,2] 0.03 0.13

O[1,3] 0.03 0.12

O[1,4] 0.02 0.16

O[1,5] 0.03 0.18

O[1,6] 0.02 0.12

O[1,7] 0.02 0.13

O[1,8] 0.01 0.16

O[1,9] 0.03 0.15

O[2,1] 0.02 0.17

O[2,2] 0.03 0.17

O[2,3] 0.01 0.14

O[2,4] 0.03 0.18

O[2,5] 0.02 0.16

O[2,6] 0.02 0.12

O[2,7] 0.03 0.14

O[2,8] 0.04 0.16

O[2,9] 0.04 0.17
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These datasets with substantial spatial and temporal 
details raise the issue of development of suitable 
forecasting models. An extension of LMM with spatial 
effects, trends and outliers is used as an appropriate 
model for multivariate spatial time series data. The 
model is applied to forecast the yearly spatio-temporal 
rice and wheat yields data in India. A MCAR model 
is assumed for the spatial effects, a linear trend is 
employed for the temporal effects and a binary method 
is used of the outliers. A Bayesian method using 
Gibbs sampling in MCMC is adopted for parameter 
estimation. Using the MAE criterion, the results show 
that the modified LMM, which considers specific time 
series parameters, such as trends, outliers and also both 
random effect and spatial effect parameters, is the most 
effective in both training as well as validation part for 
both rice and wheat yields compared to MCAR model 
and MCAR with log transformation. The advantage of 
the modified LMM is that it can predict multivariate 
spatio-temporal dataset.
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