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SUMMARY
Latin hypercube designs (LHDs) are commonly used in designing computer experiments. In recent years, several methods of constructing 

orthogonal Latin hypercube designs have been proposed in the literature. In this article, two new series of second order orthogonal Latin hypercube 
designs for six factors have been given.
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1. INTRODUCTION

Latin hypercube designs (LHDs), proposed
by McKay et al., 1979, are widely adopted in the 
designing of computer experiments with quantitative 
factors because they spread the design points 
uniformly in any one-dimensional projection. An 
LHD with n runs and m factors is denoted by a 
matrix , where  is 
the jth factor, and each factor includes n uniformly 
spaced levels {1, 2, ..., n}. Often it is convenient to 
present the levels of the factors in an LHD in its 
centered form. To be specific,the levels belong to the set 

An LHD when represented in its centered form is 
called an orthogonal LHD if the inner product of any 
two distinct columns is zero. Henceforth, we denote an 
orthogonal Latin hypercube design with n runs and m 
factors as an OLH (n, m). As discussed in Sun et al., 
2009, an OLH ensures that the parameter estimates of 
the first order polynomial model

(1)

are uncorrelated. Recently, considerable attention is 
being given to the parameter estimation of second 

order polynomial model

(2)

When model (2) is used along with an OLH, it is 
desirable that the OLH should ensure that there is no 
correlation between parameter estimates of first and 
second order effects. This requires that the OLH should 
have the additional properties that (a) the entry-wise 
square of each column is orthogonal to all columns in 
the design and (b) the entry-wise product of any two 
distinct columns is orthogonal to all columns in the 
design. Such an OLH is called as second order OLH. 
Clearly, a second order OLH is always an OLH but 
an OLH may not be a second order OLH. Henceforth, 
unless we mention the words “second order”, an OLH 
will simply refer to first order OLH. Several workers 
have given a number of methods of construction of 
OLHs for different n and m. The values of n and m for 
which second order OLHs are available in literature are 
given in the following list.

1.	 and 

and  [Ye, 1998]
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Let 
be any 16t real numbers such that none of them is 0 
where t is a positive integer. Consider the matrix  with 

Then, the D  is a OM2(16t,6) and each column of 
the matrix D contains each of the numbers 

Lemma 1 is very useful to construct OM2(16t,6).
We give an example of constructing an OM2(16,6).

Example 1: Let t = 1 in Lemma 1 and set 

Then the matrix 

(4)

is an OM2(16,6).

2. n = 2k+1, m = k +1+      and n = 2k+1 + 1,

m = k +1 +      , k ≤ 11 (Cioppa & Lucas,
2007) 

3. and

4. 
[Sun et al., 2010] 

5. 
and Sarkar, 2014] 

6. [Parui et al., 
2016] 

7. n = 0, 1 mod 8, m ≤ 4 and n = 0, 1 mod 16,
m ≤ 8 [Evangelaras and Koutras, 2017]
where  k ≥ 1  is an integer.

Lin et al. (2010), Georgiou and Efthimiou (2014), 
Mandal et al. (2016), Dey and Sarkar (2017) and 
Sun and Tang (2017) provided several interesting 
construction methods for OLHs.

In spite of the above works for constructing 
OLH designs, there are many run sizes for which a 
construction method of OLH, particularly for second 
order OLHs, does not exist. For example, the above 
methods do not allow construction of second 
order OLHs for n = 56,57 runs for any m. In this 
article, we give two new series of second order 
OLHs up to six factors with n = 16r + q with r being 
a positive integer and q = 8 or 9. 

2. MEthoDS of coNStRUctIoN

To construct new second order OLH designs
for six factors, we make use of second order 
orthogonal matrices. We shall call an n × m matrix 

 as second order orthogonal if

1.  for all , 

2.  and 

3. 

and

where denote the Hadamard product. 
We denote a second order orthogonal matrix with 

n rows and m columns as OM2(n,m). Now, we 
present a result for constructing an OM2(n,6) with 
n ≡ 0 mod 16.
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Note that an OM2 constructed by Lemma 1 may or 
may not be a second order OLH. With the proper choice 
of the elements ai, bi, ci, di, ei, fi, gi, hi , i = 1,2,....,t 
in Lemma 1, a second order OLH (16t,6) can 
be constructed.

corollary 1: Let D be a OM2(16t,6) as in Lemma 1. 
If each of the columns of the matrix D contains each 
of the elements of £ exactly once, then D is a second 
order OLH(16t,6). 

Now, we have the following main result. 

theorem 1: A second order OLH (n,6) can always 
be constructed for n ≡ 8 mod 16 with n ≥ 24.

Proof.  Let  n = 16r + 8, r = 1,2,... .  Denote  the  n
levels as in £ and arrange them in ascending order. 
Partition the levels into two disjoint sets S1 and S2 
such that S1 contains 24 levels from the center of the 
arrangement and S2 contains rest of the 16(r–1) 
levels. For the 24 levels in S1 a second order 
OLH(24,6) is given Table 1. Denote this second order 
OLH(24,6) as D1. From the 16(r–1)  levels in S2,  
construct an OM2(16t,6) with t = r – 1 following 
Lemma 1 and denote it as D2. Then, it is easy to see 

that  is a second order OLH(16r + 8,6).

We illustrate the method using an example. 

Example 2: Consider construction of second order 
OLH(56,6). Here r = 3 and s = 8. Then set 
£ = S1 + S2  where S1={-23,-21,…,-3,-1,1,3,…,21,23} 
and S2 = {-55,-53,…,-27,-25,25,27,…,53,55}. An 
OM2(32,6) with elements of S2 can be easily 
constructed following Lemma 1 by taking a1 = –55, 
b1 = –53, c1 = –51, d1 = –49, e1 = –47, f1 = –45, 
g1 = --43, h1 = –41, a2 = –39, b2 = –37, c2 = –35, 
d2 = –33, e2 = –31, f2 = –29, g2 = –27, h2 = –25. 
Juxtaposing OM2(32,6) with the second order 
OLH(24,6), we get a second order OLH(56,6). 

theorem 2: A second order OLH (n,6)  can always 
be constructed for n = 9 mod 16 with n ≥ 24.

Proof. Let n = 16r + 9, r = 1,2,... . Denote the n 
levels as in £ and arrange them in ascending order. 
Partition the levels into two disjoint sets S1 and S2 
such that S1 contains 25 levels from the center of the 

arrangement and S2 contains rest of the 16(r – 1)
levels. To obtain a second order OLH(25,6), 
multiply each element of the second order 
OLH(24,6) given in Table 1 by 2 and juxtapose an 
additional row of zeros to the resulting matrix. 
Denote this second order OLH as D1. As earlier, 
construct an OM2(16t,6) with t = r –1 following 
Lemma 1 from the 16r  levels in S2 and denote it as

D2. Then,                is a second order OLH(16r + 9,6). 

Theorem 1 and 2 give two new series of second 
order OLH designs for six factors and none of the 
existing methods can construct these second order 
OLHs.
Lemma 2: There exists no second order OLH  (n,m) if 
n = 4 mode 8 for m ≥ 3. Lemma 1 is due to 
Evangelaras and Koutras, 2017. They also showed that 
no second order OLH exists for (n,m) = {11,4), (13,4), 
(15,5)}. This leads immediately to the following result.

There exists no second order OLH(n,6) for 
n = 11,13,15.

3. CONCLUDING REMARKS

In this article, we have presented two new series of
second order OLH for n = s mod 16, s = 8,9 with 
n ≥ 24. for six factors. Further efforts are rquired to 

Table 1. A second order OLH(24,6)
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obtain second order OLH designs for other values of 
n. The problem of construction of second order OLH
(n,6) for n = 19,21,23,27,29 and 31 requires attention 
of researchers. This will lead to complete solution of 
the construction problem of second order OLHs upto 
six factors.
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