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SUMMARY
A method of identifying subset of outliers in presence of masking has been developed for incomplete Multi-Response design. Design is composed 

of two sets of experimental units. Different numbers of response variables are observed from these two sets. A Conditional Cook’s Statistics in block 
design for incomplete multiresponse experiments has been developed for identification of outliers in presence of masking. The developed statistic has 
been illustrated with a real life data set. It has been shown that outliers in presence of masking can distort the overall conclusion from an experiment.
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1. INTRODUCTION

In statistics, there are many ways to obtain a
data. Among them, conducting an experiment is 
one way to obtain the data. For obtaining a coherent 
analysis, it is necessary to detect an outlier(s) present 
in the data. The main reason for the importance of 
detection of outlier(s) is that potentially they have 
strong influence on the overall conclusion from an 
experiment. Therefore, it is important to detect and 
handle the outlier(s) efficiently. Outlier(s) in multi-
response experiments whether complete or incomplete 
is/ are also likely to occur for many reasons. In any 
experiment, if an experimental plot is heavily infested 
with pests, disease, rodent and/or weeds then all the 
responses observed from that plot may be outlier(s). 
Again, if the data set contains multiple outliers or 
influential observation, which is more common in 
case of data sets, the problem of identifying such 
observations becomes more difficult due to masking 
effect. Masking occurs when one outlier is undetected 
because of the presence of other outliers. Cook (1977) 
introduced the well known Cook’s distance for the 
identification of influential observations in linear 
regression. Cook and Weisberg (1982), Atkinson 

(1985) and Chatterjee and Hadi (1988) suggested a 
number of influential measures which are usually 
pay attention to detecting individually influential 
observation. Davies and Gather (1993), Hadi and 
Simonoff (1993) and Hadi (1994) developed some test 
procedure for detection of multiple outliers that are 
free from masking effect. A significant work in terms 
of identification of influential subsets in presence 
of masking in linear regression has been done by 
Pena and Yohi (1995). Lawrance (1995) suggested a 
conditional cook’s distance to measure the influence 
of observations conditional on the prior removal of 
other cases. This masking   problem has been dealt 
with in great detail in linear regression but may not get 
much attention in the context of experimental design. 
Bhar and Gupta (2001) developed a Cook-statistics for 
identification of outliers in design experiments when 
our interest is in estimation of some set of treatment 
contrast. Bhar et. al. (2013) proposed a method to 
identify outliers in presence of masking in a designed 
experiment. They formed a influential matrix in which 
elements of this matrix are derived from Cook-distance. 
In the present investigation, we developed a method to 
identify outliers in incomplete multiresponse design in 
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presence of masking when interest is in the estimation 
of treatment contrast.

2. INCOMPLETE MULTIRESPONSE DESIGN

Consider an experimental design in which p
(= p1+p2) responses are observed from n=(n1+n2) 
experimental units. Let the p1(<p) response variables 
are observed from n1 experimental units and p2(<p)
response variables are observed from all 1 2( )n n n+ =  
experimental units. Thus, there are n2 experimental 
units from where only p2 observations are recorded. 
For first p1 response variables, model can be written as

1 1 ,i i= +Y X β ξ  i=1, 2, … , p1, � (1)

where iy  is a 1 1n ×  vector of observations on the ith 
response variable, 1X  is a matrix of  known functions 
of the setting of coded variables, 1β  is a 1 1m ×  vector 
of unknown parameters and iξ  is a 1 1n ×  vector of 
random errors associated with the ith response variable 
(i=1, 2, … , p1, ).

Model for p2 response variables from n1 
experimental units can be written as

1 1j j= +Y X β ξ , j = p1 + 1, p1 + 2, … , p1 + p2,� (2)

where jy  is a 1 1n ×  vector of observations on 
the jth response variable, 1X  is a matrix of  known 
functions of the setting of coded variables, 1β  is 
a 1 1m ×  vector of unknown parameters and jξ  is a 

1 1n ×  vector of random errors associated with the jth 
response variable (j=p1+1, p1+2, … , p1 + p2,).

Model for p2 response variables from n2 
experimental units can be written as

2 2k k= +Y X β ξ , k = p1 + 1, p1+ 2, … , p1 + p2,�(3)

where ky  is a 2 1n ×  vector of observations on 
the kth response variable, 2X  is a 2 2n m×  matrix of 
known functions of the setting of coded variables, 2β
is a 2 1m ×  vector of unknown parameters and kξ  is a 

2 1n ×  vector of random errors associated with the kth 
response variable (k = p1+1, p1+2, … , p1 + p2). 

Now combining and roll down the models (1), (2) 
and (3) we have

= +Y Xβ ξ , (4)

where 

[ ]
1 1 21 2 1 1 1 2

* * **
1 2 2 1 2

    

 

p p p p p+ + +
′ =  

′ = = 

Y y y y y y y

Y Y Y Y Y

 

�(5)

*
1Y  is ( )1 1 1n p ×  vector of observations on 

p1 response variables, *
2Y  is ( )1 2 1n p ×  vector of

observations on p2 response variables corresponding to 
first n1 experimental units and **

2Y  is  ( )2 2 1n p ×  vector 
of observations on p2 response variables for remaining 
n2 experimental units. Combining *

1Y and *
2Y , we get 

1Y  a n1p vector of observations on p response variables 
and **

2 2=Y Y . So Y is a (n1p1 + n1p2+ n2p2) x1 vector of 
the observations on all (p1 + p2) response variables and 
ξ  is a (n1p1 + n1p2+ n2p2) x1 vector of errors.

The design matrix X can be written as 

1

2
2

2

1
1

1
2

2

p
p

p
p

p

 ⊗
⊗   

= ⊗ =   ⊗  ⊗  

I X 0 0
I X 0

X 0 I X 0
0 I X

0 0 I X

(6)

In the same way, the parameter vector β  can be 
written as

(

) (   ) (

)1 2 2

* *
1 2 1 21

  p p p
′ ′   = ⊗ ⊗ ⊗ =   1 1 1β β β β β β

(7)

where ( ) ( )1 2

*
1 1 1  p p

′ = ⊗ ⊗ 1 1β β β  is a 1 1m p×  
vector of parameters for p response variables on n1 
experimental units and *

2β  is a 2 2 1m p ×  vector of 
parameters for p2 response variables on n2 experimental 
units. Similarly ξ  is partitioned as 

1 1 2

* *
1 2 1 2  p p p+

′ ′   = =   ξ ξ ξ ξ ξ ξ ξ 

(8)

where *
1ξ  is a 1 1n p ×  vector of errors for first p 

response variables on n1 experimental units, *
2ξ  is a 

2 2 1n p ×  vector of errors for p2 response variables on 
n2 experimental units. 

From the partitioned vectors and matrices from 
(5) to (7), it is clear that the design D is a incomplete 
multiresponse design having two sets S1 and S2 i.e. 
design D is composed of two sub design D1 and D2. 
Sub design D1 consists of n1 experimental units from 
which all p responses are observed where as D2 is a 

′

() ()
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sub design of n2 experimental units from which only 
p2 response variables are observed. Assuming that 
design D remains connected after deletion of any t 
observations, Kumar and Bhar (2017) have shown that 
the difference between the estimate of all contrasts of 
treatment effects for the whole design D can be written 
as  

0 0
1 1( )

ˆ ˆ
t−P Pθ θ = 

( )
( )2

1
* * * * * *

* * 1 11 1 1 1 1 1 1 1 1
1 1 1 1( )

* * 1
* * * * * *2 2 2 2( )

2 22 2 2 2 2 2 2 2 2

( )ˆ ˆ
ˆ ˆ

( )

p
t

t
p

−
+

−
+

 ′ ′′⊗  −
=    − ′ ′   ′⊗  

I P C X U U V U U V YP P
P P I P C X U U V U U V Y

ϕτ τ
τ τ

ϕ

(9)
0
1

ˆP θ  is the least square estimators of 0
1P θ , 

0 * *
1 1 1τ τ

′
 =  θ  is a vector parameters of parameter of

interest  where 1p= ⊗*
1 Iτ τ  and 2 2 2p= ⊗* Iτ τ  . 0

1( )
ˆ

tP θ
is the least square estimators of 0

1( )tP θ  obtained after 
deleting suspected t outlying observations, *

1 1p= ⊗U I U  , 
( )1

*
1 1 2 t=U u u u , iu  is a n1 component vector having 

jth element as 1 (if jth observation is an outlier) and   
rest are zero. i.e., (0,0,...,0,1( ),0,0,...,0) ,th

i j ′=u  
11,2,..., ,j n∀ =  i = 1, 2, …, t1(t1<n1), 

*
2 2 ,p= ⊗U I U

iu  is a n2 component vector having jth element as 
1(if jth observation is an outlier) and rest are zero, 
i.e., (0,0,...,0,1( ),0,0,...,0) ,th

i j ′=u 21,2,...,j n∀ = , 
i = 1, 2, …, t2 (t2 < n2), 1 12 12 12 12( ( ) )−′ ′= −I X X X Xϕ

*
1 11 1 1 11 1 11 1( )− ′= ∑ −V X C Xϕ ϕ ϕ  and * *

1 2/+ +C C  is  
Moore-Penrose inverse of C-matrix for uni-response 
experiment under mean shift model [see Bhar & 
Ojha, 2014].

3.  CONDITIONAL COOK’S STATISTICS
IN BLOCK DESIGN FOR INCOMPLETE
MULTIRESPONSE EXPERIMENTS

To develop a measure for assessing the masking
effect in incomplete multiresponse design, we have 
to calculate conditional cook’s distance to measure 
the influence of observations conditional on the prior 
removal of other. We, therefore, first develop this 
statistic for the case when our interest in estimation 
of some function of treatment effects. If a design D is 
an incomplete multiresponse design having two sets 
S1 and S2 i.e. design D is composed of two sub design 
D1 and D2 then the possible cases of occurrence of two 
outliers are, (i) Two outlier vectors are present in Set S1 
or two outlier vectors are present in of set S2. (ii) Out 

of two outliers, one outlier vector is present in Set S1 
and another is present in set S2. We will develop cook’s 
distance for two cases to measure the masking effect. 

Case–I:  Two outliers occur in set-1 i.e. S1 
consisting of n1 experimental units.

In the mean-shift outlier model, we defined
( )*

1 1 2=U u u .

The difference between the estimates of all 
contrasts of treatment effects for the whole design D 
when two outliers occur in design D1 from 
equation (9) can be written as 

0 0
1 1( )

ˆ ˆ
ij− =P Pθ θ ( ) 1

* * * * * *
1 11 1 1 1 1 1 1 1 1( )p

−
+ ′ ′′⊗ 

 
 

I P C X U U V U U V Y

0

ϕ

(10)
Now 
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u v
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u v
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2 2 2

 − −
 

− −  

∑ ∑
∑ ∑

' * ' ' * '
1 1 1 11 1 11 1 1 1 1 1 11 1 11 111 11
' * ' ' * '

1 1 11 1 11 1 1 1 1 11 1 11 111 11

u ( X C X )u u ( X C X )u

u ( X C X )u u ( X C X )u

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

= ii ij

ji jj

h h
h h
 
 
 

 (say)

Hence,

0 0
1 1( )

ˆ ˆ
ij− =P Pθ θ  

1 2* * *
1 11 1 1 1

2 1

( )1
( )

jj ij
p

ii ji

h h
h h

+
  − 

′⊗    −∆   
 
 

I P C X U Y

0

ω ω
ϕ

ω ω

where 1 =
'
1 1u Vω  and 2 2 2= 'u Vω .

The difference between the estimates of all 
contrasts of treatment effects for the whole design D 
when single outliers ( ith observation)  occur in design 
D1 (set S1) can be written as

0 0
1 1( )

ˆ ˆ
i−P Pθ θ  =  ( )* * '

1 11 1 1 1 1 1 1 1( )p

−
+ ′′⊗ 

 
 

1

1I P C X u u V u u V Y

0

ϕ

(11)

or, 0 0
1 1( )

ˆ ˆ
i−P Pθ θ  = 

* * 1
1 11 1 1 1p

iih
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The difference between 0
1( )

ˆ
ijP θ  and 0

1( )
ˆ

iP θ

0 0
1( ) 1( )

ˆ ˆ
ij i−P Pθ θ  = 

* * 1
1 11 1 1

1
p

iih
+ ′⊗ 

 
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Y

0

ω
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1 2* * *

1 11 1 1
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Y

0

ω ω
ϕ
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Hence,

0 0
1( ) 1( )

ˆ ˆ
ij i−P Pθ θ  = 

( )* *
1 11 1 1 ,p
+ ′⊗

 
  

I P C X Y

0

ϕ η
 (12)

where 

2 1 1 2
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h h h h
h

′
  

= − − −   ∆ ∆  
ù ùη ω ω

Now,

( ) 10
1( ) ( )

ˆ( )i iV
−

′=P PC Pθ  = 
1'

1 1( ) 1
'
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i
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'
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* *
1( ) 1 11 .i φ φ φ−= −

'* * * 1 * '
1 1 1 1 1 1 1 11C C X U (U U ) U X

Cook’s distance for jth observation (occur in D1) 
after the deletion of ith observation (occur in D1)  is 
defined as 

0 0 0 1 0 0
1( ) 1( ) 1( ) 1( ) 1( )

( ) 0
1( )

ˆ ˆ ˆ ˆ ˆ( ) [ ( )] ( )
ˆ[ ( )]
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j i

i
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=
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P

θ θ θ θ θ

θ

(13) 

Now substituting the value of 0 0
1( ) 1( )

ˆ ˆ
ij i−P Pθ θ

from (12), we get

( )' ' *
1 1 11 1(i) 11 1 11

( )
2( )( 1)j iC

p p v

φ
+

⊗
=

+ −
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1

Y X C X Yη ϕ η
� (14)

Cook’s distance for single outlier vector (occur 
in D1)

0 0
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i−P Pθ θ  = 

* * 1
1 11 1 1 1p

iih
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Now, * * 1
1 11 1 1p

iih
ω+ ′⊗I P C X uϕ  = * *

1 11 1 1p ϖ+ ′⊗I P C X ϕ  , 

where 1
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iih
ϖ

′
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ω

Hence, Cook’s distance for single outliers (ith 
observation)
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Following Lawrance (1995), the masking factor 
( )j iM  is defined as

( )
( )
' ' *

1 1 11 1(i) 11 1 11
( ) ( ) ' '

1 1 1 11

j i j i iM C C
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η ϕ η

ϕ ϕ

(16)

Similarly, the masking factor ( )j iM  for jth 
observation (occur in D2) after the deletion of ith 
observation (occur in D2)  is defined as 

( )j iM  = 
( )
( )
' ' ' *
2 0 2 21 1(i) 21 1 0 222

' ' ' *
2 02 2 21 2 21 2 02 222
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Y Y
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where 
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0 1 1 1 2* * *

1 1 10 . . . ( ) . . . . . . 0 ,ii ij jj ij
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h h h h
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ii jj ji ijh h h h∆ = − , *

1 1= '
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2 2ω = '
2u V , 

*
2 2 2 2 2 222

,iih = −∑' * '
1 1 1 1u ( X C X )uϕ ϕ ϕ

*
2 2 2 2 2 2 222

,ijh = −∑' * '
1 1 1u ( X C X )uϕ ϕ ϕ

*
2 2 2 2 2 2 222jih = −∑' * '

1 1 1u ( X C X )uϕ ϕ ϕ  and 
*

2 2 2 2 2 2 2 222jjh = −∑' * '
1 1u ( X C X )uϕ ϕ ϕ .

Here, if ( ) 1j iM > , then we conclude that ith 
observation is masked by the jth outlier and both the 
observation are termed as outliers.

Case-II. When one outlier occurs in D1 (set S1) 
and other in D2 (set S2)  then in mean shift model, 

( )*
1 1=U u  and *

2 2( )=U u .
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0 0
1 1( )
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The difference between the estimates of all 
contrasts of treatment effects for the whole design D 
when single outliers (ith observation) occur in design 
D1 can be written as
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Cook’s distance for  single outliers (ith observation  
occurs in Design D1 )
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Following Lawrance (1995), the masking factor 
( )j iM  is defined as   
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Similarly, the masking factor ( )j iM  when ith 
observation vector occurs in Design D2 and jth 
observation vector occurs in Design D1
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' *
1 11 1 11 11

' *
2 21 2 21 2

Y X C X Y

Y X C X Y

ϕ ϕ

ϕ ϕ
� (23)

Here, if ( ) 1j iM > , then we conclude that ith 
observation vector is masked by the jth outlier vector 
and both the observation vectors are termed as outliers.

4. ILLUSTRATION

An experiment with 9 treatments was conducted
during the year 2011 in Uttar Pradesh to study the 
effect of integrated nutrient management on growth 
and yield of paddy. The experiment was laid out in 
Resolvable BIBD with 9 treatments (v = 9, b = 12, 
r = 4, k = 3, λ = 1). The data on following 9 characters 
were observed: x1  =  plant height at harvest (cms), 
x2  = dry matter (DM) accumulation at 90 days after 
sowing (DAS), x3 = leaf area index (LAI) at 75 DAS, 
x4 = number of spikes/sq. cm, x5 = number of grains per 
spike, x6 = test weight (gms), x7 = grain yield (q/‍ha), 
x8  =  straw yield (q/ha) and x9  =  harvest index (%). 
Originally the experiment was laid out in Randomized 
Complete Block (RCB) design and for complete multi-
response case. However, for illustration purpose, the 
layout of the experiment was made for a BIBD and for 
incomplete responses by deleting some observations 
appropriately. There are two total 36 experimental 
units, i.e., n = 36 are divided in to two subsets each 
having 18 units. Treatments are distributed in to two 
sets in the following way:

Subset-1 Subset-2

1    2    3
4    5    6
7    8    9

1    2    3
6    4    5
8    9    7

1    4    7
2    5    8
3    6    9

1    2    3
5    6    4
9    7    8

There are 9 response variables. Observations are 
taken for all 9 response variables from 18 experimental 
units and from remaining 18 units only 6 response 
variables are observed. Thus, we get n1 = 18, n2 = 18, 
p = 9, p1 = 3 and p2 = 6. The data corresponding to each 
response variable is given in Table 1.
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In the present example, we have 9 treatments. 
Therefore, there will be 8 treatment contrasts for each 
of the response variables. Let this set of 8 treatment 
contrasts be given by a matrix *P , where *P ={1 -1 0 0 
0 0 0 0 0, 1 0 -1 0 0 0 0 0 0, 1 0 0 -1 0 0 0 0 0, 1 0 0 0 -1 
0 0 0 0, 1 0 0 0 0 -1 0 0 0,  1 0 0 0 0 0 -1 0 0, 1 0 0 0 0 0 
0 -1 0, 1 0 0 0 0 0 0 0 -1}. Combining these sets for all 
response variables, we get *

1 9= ⊗P I P , *
2 6= ⊗P I P

Table 1. Data corresponding to each response variable

S.N. Trt. Blk x1 x2 x3 x4 x5 x6 x7 x8 x9

1 1 1 100 708.9 3.2 314.9 32.4 38.1 23.9 38.5 34.3

2 2 1 118.7 714.7 4.1 298.2 35.2 45.7 28.0 31.3 33.3

3 3 1 110.7 730.4 3.1 326.6 34.2 48.5 21.9 32.1 23.4

4 4 2 99.1 769.2 3.6 341.5 36.3 38.6 25.4 40.8 36.3

5 5 2 109.8 750 3.7 324.8 33.3 43.9 23.6 39.1 36.9

6 6 2 100 719.6 3.1 316.5 30.4 40.1 25.4 41.7 38.7

7 7 3 93.8 708.3 3.1 303 31.4 37.7 23.1 37.5 34.1

8 8 3 98.2 719.6 3.3 296.3 30.4 42.9 23.6 40.0 34.2

9 9 3 97.3 705.9 3.1 324.8 34.2 39.2 22.8 37.3 35.1

10 1 4 93.2 701.3 3.1 298.4 31.6 37.7 22.7 46.9 34.1

11 4 4 97.3 711.8 3.4 313.8 32.3 42.9 21.2 45.2 32.4

12 7 4 95.5 730.4 3.3 298.2 35.2 40.1 22.8 44.3 35.1

13 2 5 95.3 714.9 3.1 309.4 42.8 37.8 23.5 38.1 34.2

14 5 5 98.2 750 3.4 307.3 43.8 36.4 23.6 35.6 32.4

15 8 5 95.5 739.2 3.1 313.8 39.1 39.2 21.2 36.5 36.9

16 3 6 92.1 690.4 2.9 293.4 30.4 37.3 22.3 36.8 33.7

17 6 6 97.3 750 3.1 296.3 27.6 40.1 21.0 37.3 34.2

18 9 6 99.1 688.2 3.3 286.2 30.4 43.9 22.8 35.6 32.4

19 1 7 - - - 289.3 30.5 37.3 29.8 36.3 33.6

20 2 7 - - - 286.2 31.4 42.9 28.1 39.1 31.5

21 3 7 - - - 294.5 33.3 39.2 25.4 37.3 32.4

22 6 8 - - - 303.9 31.5 37.7 22.8 37.4 33.8

23 4 8 - - - 307.3 29.5 42.9 23.6 36.5 35.1

24 5 8 - - - 316.5 34.2 44.8 22.8 39.1 36.9

25 8 9 - - - 332.6 35.2 38.3 25.1 40.3 34.4

26 9 9 - - - 334.9 34.2 38.3 24.5 37.3 33.3

27 7 9 - - - 334.9 36.1 42.9 25.4 36.5 34.2

28 1 10 - - - 328.3 34.2 38.2 23. 39.7 34.4

29 2 10 - - - 327.5 38.1 39.2 21. 41.7 35.1

30 3 10 - - - 345 33.3 38.3 21. 39.1 30.6

31 5 11 - - - 333 35.7 38.5 25.9 40.7 34.8

32 6 11 - - - 355 36.1 40.1 21. 37.3 32.4

33 4 11 - - - 336.7 34.2 38.3 24.5 33.9 33.3

34 9 12 - - - 324.6 34.2 37.9 24.5 39.3 34.4

35 7 12 - - - 326.6 33.3 39.2 25.4 39.1 31.5

36 8 12 - - - 324.8 30.4 40.1 21.1 40.8 36.9

and we define 1

2

 
=  
 

P 0
P

0 P
. We denote by θ  the 

vector of treatment effects. Then we want to test the 
significance of the treatment contrast 0 : 0H ′ =P θ  
against 1 : 0H ′ ≠P θ .

Test statistics for testing the null hypothesis is 
given by (Nandi, 2007)
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1ˆ ˆ ˆ( ) [ ( )] ( )TC D −′ ′ ′ ′= P P Pθ θ θ

Test statistics given above is asymptotically 
2χ

distribution with one degree freedom. Therefore, 
reject the null hypothesis at %α  level of significance 

if TC >
2
1 ,1αχ −  and conclude that the treatment effects

are significantly different. The calculated value of TC 
is found to be 14.31. Since this value is greater than 
the tabulated value of 

2χ  at 1 degree of freedom, 
we reject the null hypothesis and conclude that there 
is a significance difference between the treatment 
1 and treatment 2. Similarly, contrasts for other 
treatment comparisons are tested, and it was found 
that all treatment contrasts are statistically significant. 
Thus we conclude that overall treatment effects are 
significantly different. 

We now apply the test-statistic as developed for 
detecting outliers (Kumar and Bhar (2017)), if any. 
We confined ourselves for the occurrence of a single 
outlier vector. Cook-statistics are calculated for all 
possible outlier observation vectors for both the sets. 
A program is written in SAS/IML to calculate these 
values. Calculated Cook-statistics are given in Table 2.

Table 2. Cook-statistics

Set 1 Set 2

Obs. 
No

Cook-
statistic

Obs. 
No

Cook-
statistic

Obs. 
No

Cook-
statistic

Obs. 
No

Cook-
statistic

1 0.69058 10 0.31057 1 0.01165 10 0.01165

2 1.59405 11 2.36571 2 0.00469 11 0.00469

3 0.57604 12 0.59156 3 0.01089 12 0.01089

4 0.68347 13 0.27196 4 0.02396 13 0.01712

5 0.31863 14 0.24163 5 0.00111 14 0.02396

6 0.93688 15 0.17398 6 0.01712 15 0.00111

7 0.41874 16 0.18916 7 0.00162 16 0.0007

8 0.68174 17 0.65519 8 0.0007 17 0.00127

9 1.67455 18 0.2156 9 0.00127 18 0.00162

To determine the cut-off value, we worked out 
the inter-quartile range of this series of Cook-statistic 

values. This range is found to be 0.4790S =  for set 1 
and 0.1180S =  for set 2. Then following Tukey (1977) 
the cut-off value is calculated and it is 7 2 1.6768S× =

for Set 1 and 7 2 0.3880S× =  for Set 2. Only one 
value of Cook-statistic exceeds this cut-off value. This 
is for observation number 11 in Set 1. Therefore, we 
conclude that the observation vector 11 is an outlier. 
This vector pertains to treatment number 4 in block 4. 

We again conduct multivariate treatment contrast 
analysis after deleting this observation number 11 
and calculated TC values. For example, this value 
is found out 9.46 for first contrast. This is again 
greater than calculated value. Thus, this treatments 
contrast remained as significant even after removing 
the outlying observation vector. However, there is 
change in the calculated value. TC value has been 
decreased significantly. Same thing is observed for 
other treatment contrast analysis. In present example, 
though for some treatment contrasts, the significant 
values are changed drastically, there is no change in 
overall conclusion. Thus the observation number 11, 
in spite of being outliers, does not have much influence 
in the conclusion. However, there might be groups of 
outliers that cannot be detected by using single outlier 
detection technique of Cook-statistics.  We now apply 
the method developed in this paper. We calculate the 
conditional Cook-statistic and hence masking factor 
for all possible pairs of observations. For calculating 
the masking factor a program is written in SAS/IML. 
These values are presented in Table 3. 

There are total 36 observations. Hence there would 
be 36

2 630C =  pairs of combinations of observations, 
hence Mj(i) values. In Table 3, we present some 
selected values of this statistic. As discussed earlier, if 
this value of Mj(i) is greater than one, then we say that 
the ith observation is masked by jth observation. We 
find that maximum value of this statistic is 2.60, which 
corresponds to observations no. 11 corresponding to 
treatment no. 4 in the 4th block and observation 1, 

Table 3. Conditional Influence Statistics Mj(i)

S.N. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

J 4 12 16 23 11 32 10 21 22 4 19 13 21 1 26

I 1 1 2 12 8 12 8 28 32 7 5 18 33 11 24

Mj(i) 0.43 0.37 0.09 0.48 0.99 0.64 0.58 0.72 0.47 0.62 0.50 0.27 0.4 2.60 0.11
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which belongs to treatment no. 1 in the 1st block. Thus, 
the observation number 11 has masked the effect of 
observation number 1. The interesting point to be noted 
here is that though the observation number 11 was 
detected as outlier when we applied Cook-statistics 
for detecting a single outlier vector, yet observation 
vector number 1 was not. Its effect was masked by the 
observation number 11.

We re-conduct multivariate treatment contrast 
analysis after deleting these two observations number 
11 and 1 and calculated TC values. The dramatic effect 
to note here that treatment contrast for first and ninth 
treatment became non-significant. Other treatment 
effects remained as significant. Thus, there is change 
in overall conclusion. Now, once observation number 
1 and 11 are detected as outlier vectors, one would be 
interested to know the possible cause for the same. 
First thing, one should check if any error is committed 
during the time of data entry. That possibility is ruled 
out for present example. As, mentioned earlier, in 
field experiments, observations in some of the plots 
or blocks may come out to be abnormal due to uneven 
application of fertilizer and/or irrigation or other 
agronomic practices. The present example pertains to 
paddy crop. We observed two outliers vectors in which 
one outlier vector is masked by second outlier vector. 
This may be due to heavy/less irrigation in some plots.
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