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SUMMARY
Present work is an attempt to use non-sensitive auxiliary variable and scrambled response techniques (SRT) to estimate population mean of a 

sensitive variable. A class of estimator is proposed to estimate the population mean of a sensitive variable in sampling over two successive waves. 
Various members of the proposed class of estimators has been discussed. The proposed class of estimator has been analysed theoretically as well as 
empirically. It has been compared with modified general successive sampling estimator and with some of members of its own class. Simulation study 
has also been discussed. A case study of drug usage by students in a college on two successive waves has also been carried out. 
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1.	 Introduction

Analysis of sensitive issues like negligence 
of governmental rules, number of abortion before 
marriage, bribing for some entrance exam, sexual 
indulgence during teenage, status of extramarital 
relationship, employing child labourers, child-sexual 
abuse, voluntary prostitution, commencement of 
crime, honour killing, drug intake etc., usually lead to 
over or under reporting of the true facts due to social 
or moral inclinations and stigma. Thus a significant 
deviation occurs in the results owing to socially 
desirable answers which do not comply to real scenario 
subsisting in the society.

There are two approaches to estimate population 
proportion or population mean of a quantitative 
sensitive variable. First approach is to reduce the 
stigma involved in answering such sensitive questions 
by providing certain privacy through a randomized 
response device following certain randomized 
response rule (Randomized Response Model). Warner 

(1965) was the first to provide such a randomizing 
model and later on extensive literature have been 
added by Horvitz et al. (1967), Greenberg et al. (1971), 
Christofides (2003, 2005), Kim and Elam (2007), Wu 
et  al. (2008),Yan et  al. (2009), Arnab (2011), Diana 
and Perri (2011), Arnab et  al. (2012), Singh and 
Sedory (2012) and Sihm and Gupta (2015) etc. 

All these authors have focused on estimation of 
population mean or proportion of sensitive characters 
using some randomised response models.

This approach becomes practically next to 
impossible when it comes to observe a very large sample 
since lifestyle has drastically changed and people are 
living a very fast life with certain time constraints so 
complete refusal to response is also encountered due 
to time consuming procedure involved in randomised 
response model. In such situations, second approach 
known as Scrambled Response Technique (SRT) 
which was introduced by Warner (1971) but was left 
for exploration and very first attempts were made 
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of study, the present article endeavours to propose 
a class of estimator to estimate population mean 
of a sensitive variable and properties of proposed 
estimators including the optimum rotation rates have 
been derived up to first order of approximations. 
Discussion has been made regarding the distribution 
of scrambling variable. Also an empirical study has 
been worked out for the proposed class of estimator 
on two successive waves by means of a case study of 
drug usage by undergraduate students in a college. 
Simulation studies are rationalized to show the 
feasibility of proposed estimators. 

2.	 Survey Design and Analysis

2.1	 Formulation	

Let 1 2 NU , U ,  . . . ,  U  be the finite population of 
N  units, which has been sampled over two successive 
waves. It is assumed that size of the population 
remains unchanged but values of units change over 
two successive waves. The sensitive variable under 
study be denoted by ( )x y  on the first (second) 
waves respectively. It is assumed that information on 
non-sensitive auxiliary variable z,  stable in nature 
over the successive waves with completely known 
population mean Z,  is readily available on both the 
successive waves and positively correlated to x
and y  respectively. Simple random sample (without 
replacement) of n  units is taken at the first wave. A 
random sub-sample of m nλ=  units is retained for 
use at the second wave. Now at the current wave, 
a simple random sample (without replacement) of 

( )u n m nµ= − =  units are drawn afresh from the 
remaining ( )N n−  units of the population so that the 
sample size on the second wave remains the same. 
Let ( )and 1µ λ µ λ+ =  are the fractions of fresh and 
matched samples respectively at the second (current) 
successive wave. Let 1 2S  and   S  be two scrambling 
variables and the scrambled response for the sensitive 
variable ( )x y  are perturbed to ( )hg  respectively 
on first(second) waves. The following notations are 
considered here after:

1 2X,  Y,  G,  H,  Z,  S ,  S :Population means of the variables 
1 2x,  y,  g,  h,  z,  S ,  S  respectively.

u m m nh ,  h ,  g ,  g :Sample mean of the variables based 
on sample sizes shown in suffices.

u,  m, nz z  z :Sample mean of the non-sensitive 
auxiliary variable based on sample 
sizes shown in suffice.

by Pollock and Bek (1976) and Eichhorn and Hayre 
(1983), works as saviour. This technique reduces the 
impossibility of conducting a survey having large 
sample size with a sensitive issue to be addressed. 
In this technique to estimate the population mean of 
sensitive variable the respondent is asked to answer 
freely about the stigmatizing character by adding or 
multiplying a corrective scrambling factor to his/her 
response hiding real response from the interviewer. In 
this line a rich literature is available from Saha (2007), 
Koyuncu et  al. (2014) and Hussain and Al-Zhrani 
(2016) etc. Mukherjee (2016) highlighted important 
issues related to sensitive estimation theory.

Moreover, these above said issues have been 
addressed through a single time survey in the literature 
available on sensitive variable analysis; instead these 
issues are required to be monitored continuously 
over time, since doing so will reflect the change of 
social scenario related to the sensitive issues as well 
as changed level of sensitivity of issue with respect 
to time. For example, any government of a county 
may be interested to record the mean number of rape 
cases in the country at starting of their ruling period. 
After recording them one time the government may 
be interested to decrease these for ensuring the better 
society. For this government can make strict laws 
against the rapist, more awareness of such laws can 
be spread amongst the females, it may also increase 
the level of security for females at work place and 
so on. After such precautious measures government 
may wish to see the changed level of the society by 
recoding the mean number of rape cases at the end of 
their ruling tenure. In order to monitor such a variable 
more than once, statistical tool generally recommended 
in literature is successive or rotation sampling. Jessen 
(1942) started the theory of rotation sampling by 
utilising all the information collected from previous 
wave. His pioneer work in this line has been followed 
by Patterson (1950),Sen(1973), Feng and Zou (1997), 
Singh and Priyanka (2008), Bandyopadhyay and Singh 
(2014), Priyanka and Mittal (2014, 2015a, 2015b), 
Priyanka et al. (2015) and many others.

None of the above works in successive sampling 
analyses sensitive issues which change over time. Very 
few attempts namely Arnab and Singh (2013) and 
Yu et al. (2014) are found which dealt with sensitive 
issues on successive waves while using randomized 
response technique. Hence, motivated with this scope 
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,   ,   ,   ,   ,   yx xz yz hg hz xzρ ρ ρ ρ ρ ρ :Correlation coefficient between the 
variables shown in suffices.

x y zC ,  C ,  C : Coefficient of variation of variables 
shown in suffices.

2 2 2
x y zS ,  S ,  S :Population mean squared of

x,  y  and   z  respectively.

1 2

2 2 2 2 2,   ,   ,   ,   x y z S Sσ σ σ σ σ :Population variances 
1 2x,  y,  z,  S  and  S  respectively

2.2	 Scrambled Response Model

In accordance with the sensitive issues, the original 
sensitive variables are perturbed using scrambling 
variables which are termed as scrambled response 
technique. Motivated by the literature which are 
available in this line proposed by eminent researchers, 
we intended to discuss a model where the sensitive 
variable ( )x y  are perturbed to ( )hg  respectively on 
first(second) waves as: 

2
1

Sg =  x S  + 
x

 
  

 on first wave� (1)

and

2
1

Sh =  y S  + 
y

 
 
 

 on second wave� (2)

The scrambling variable 1 2S ,  S  may follow any 
distribution. The values of relevant parameters under 
the above scrambled response model are computed as:

2

1

G - SX  = 
S

 on first wave� (3)

and

2

1

H - SY  = 
S

 on second wave� (4)

such that:
( )

( ) ( )

( )

1 1 2

1 1 2 1 1 2

1 1 2

2 2 2 2
1

 
2 2 2 2 2 2 2 2 2 2 2 2

1 1

1

2 2 2 2 2 2
1

   
 ,

      

 ,
   

yx y x S S S
hg

y S S S x S S S

yz y
hz

y S S S

S XY

S Y S X

S

S Y

ρ σ σ σ σ σ
ρ

σ σ σ σ σ σ σ σ

ρ σ
ρ

σ σ σ σ

+ + +
=

+ + + + + +

=
+ + +

( )1 1 2

1

2 2 2 2 2 2
1

  .
   

xz x
gz

x S S S

S

S X

ρ σρ
σ σ σ σ

=
+ + +

The renowned scrambled response model by 
Pollock and Bek (1976) and Eichhorn and Hayre 
(1983) becomes special cases of the above model 
for different choices of scrambling variables. These 
particular cases are discussed below:

Case 1: Taking 1S  = 1 in equation (1) and 
equation (2), the additive scrambled response model 
proposed by Pollock and Bek (1976) is obtained as 

A 2 A 2g = x + S   and  h = y + S .  Various parameters 
related to additive model are given as 

( ) ( ) 2A A
X  = G - S � (5)

and

( ) ( ) 2A A
Y  = H - S � (6)

such that 

2

2 2 2

2

2

2

2 2 2 2 2 2

2 2
2

22 2
2

 
,  ,   

      

,      and
  

yx y x S yz y
hg hz

y S x S y S

y Sxz x
gz h

x S

C
Y S

ρ σ σ σ ρ σ
ρ ρ

σ σ σ σ σ σ

σ σρ σρ
σ σ

+
= =

+ + +

+
= =

+  + 

2

2 2
x S2

g 2

2

 + 
C =

X + S

σ σ

  
.

Case 2: Taking 2S  = 0  in equation (1) and 
equation (2), the multiplicative model proposed by 
Pollock and Bek (1976) and elaborated in detail 
by Eichhorn and Hayre (1983) is obtained as 

M 1 M 1g = x S    and    h = y S  with

( ) ( )M
M

1

G
X  = 

S � (7)

and

( ) ( )M
M

1

H
Y  = 

S � (8)

such that 
( )

( ) ( )

( )

1 1

1 1 1 1

1 1

2 2 2
1

2 2 2 2 2 2 2 2 2 2
1 1

1

2 2 2 2 2
1

  
,

  

 ,
 

S yx y x S
hg

y S S x S S

yz y
hz

y S S

C C S

S Y S X

S C

S Y

σ ρ σ
ρ

σ σ σ σ σ σ

ρ
ρ

σ σ σ

+ +
=

+ + + +

=
+ +

( )
( )

( )

1 1

1 1

1 1

1

2 2 2 2 2
1

2 2 2 2 2
12

2

1

2 2 2 2 2
12

2

1

,
 

 
 and

 

 

 

xz x
gz

x S S

y S S

h

x S S

g

S C

S X

S Y
C

Y S

S X
C

X S

ρρ
σ σ σ

σ σ σ

σ σ σ

=
+ +
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=

  
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2.1 Remark. The scrambling variables S1 
and S2 are such that ( ) ( )1 1 2 2E S =S ,  E S  = S ,

( ) ( )
1 2

2 2
1 2,  .S SV S V Sσ σ= =

2.2 Remark. ( ) ( )A M
Y  and Y  denote population 

mean of sensitive variable y  under additive model 
and multiplicative model respectively.

2.3 Remark. In order to acquire suitable estimator 
of sensitive population mean at current wave in two 
wave successive sampling, an appropriate estimator 
of population mean of coded response variable H  
need to be investigated and substituted in equation 
(4). Hence, next section is devoted to investigation of 
suitable estimator for H .	

2.3	 The Proposed Class of estimator on Successive 
waves

In this section, a class of estimator have 
been proposed as a convex linear combination of 
two different classes of estimators based on two 
independent sample of sizes u  and  m  respectively 
on second(current) wave.

2.3.1 �Class of Estimator based on fresh sample on 
the second wave

For defining the estimator based on fresh sample 
at second wave, the following estimators based on 
sample of size u  can be used to estimate population 
mean of coded response variable: 

u
u1 u

u

u2 u
u

u
u3 u

u u

u
u4 u

u u

u
u5 u

u u
u6 u

u

u

Z - z
T  =  h exp ,

Z + z

ZT  =  h ,
z

Z - zZT  =  h exp ,
z Z + z

Z - z ZT  =  h exp exp ,
Z + z z

z
T  =  h exp ,

Z

z Z - z
T  =  h exp exp ,

Z Z + z

T

 
  

 
  

   
      

   
      

 
  

  
      

u
7 u

u8 u
u

z
 =  h ,

Z

ZT  =  h exp ,  etc.,
z

 
  

 
  

Following the estimation procedure acquired by 
Srivastava (1971), a class of estimator for population 
mean of coded response variable based on fresh 
sample is defined as:

( ) u
u u u

z
T = h F a  ;  where,  a = 

Z
 
   � (9)

where, ( )uF a  is a parametric function, such 
that ( )uF 1  = 1  and the first and second order partial 
derivatives of F  with respect to ' 'a  exists and are 
known constants at a given point a = 1.

2.3.2 �Class of Estimators Based on the matched 
sample at current wave

Based on sample of size ' 'm  at current(second) 
wave, one may think of ratio type, exponential type 
and ramification of these estimators as:

*
* n

m1 m *
m

* m
m m

m

* m
m m

m

* n
n n

n

n m
m2 m

m m

n n
m3 m

m

gT  =   h exp      
g

Z - zwhere, h = h exp ,  
Z + z

Z - zg = g exp  and 
Z + z

Z - zg  =  g exp ,
Z + z

g Z - zT  =  h exp ,
g Z + z

g Z - zT  = h exp
g Z

 
  

 
  

 
  

 
  

   
      

 
   n

,
 + z

 
  

n n m n
m4 m

m n m n

n m n m n
m5 m

n m n m n

n m n
m6 m

n m n

n
m7 m

m

g z  - z Z - zT = h exp exp ,
g z  + z Z + z

g -g z  - z Z - zT = h exp exp exp ,
g +g z  + z Z + z

g -g Z - zT = h exp exp ,
g +g Z + z

gT = h ex
g

     
          

     
          

   
      

 
  

n m n

n m n

n n n
m8 m

m m

z  - z Z - zp exp ,
z  + z Z + z

g z   zT = h exp exp ,
g z Z 

etc.,

   
      

     
         
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Motivated by the above estimation techniques 
and following Srivastava (1971), a class of estimators 
has been proposed for population mean of a coded 
response variable on current (second) wave based on 
the matched sample of size m as

( )m m mT = h  F b, c, d � (10)

where m m n

n n

g z zb = ,  c = ,  d = 
g z Z

. Where  ( )mF .  is a  

parametric function, such that it follows similar 
conditions as considered for ( )uF a  given in section 
2.3.1.

2.3.3 Combined Class of Estimator

By considering convex linear combination of the 
estimators based on sample size u and m, the final 
estimator of the population mean of coded response 
variable H  is obtained as 

( )u mT =  T + 1 -  Tφ φ � (11)

where [ ]  0, 1φ ∈  is a scalar quantity to be chosen 
suitably.

2.4 Remark. From section 2.3.1 and section 2.3.2, 
the estimators can be combined to be a  member of the 
final class of estimator T  defined in equation (11) as

( )
{ } { }

k k u i k m jT  =  T + 1 -  T ;  

where i, j ,k   1, 2, 3, ... .

φ φ

∈

3.	 Analysis of the proposed Class of 
Estimators

3.1	 Bias and Mean Squared Error

The properties of the proposed class of estimators 
are derived under the following large sample 
approximations :

( ) ( ) ( )
( ) ( )

u 0 m 1 m 2

n 3 u 4

h = H  1 + e ,  h = H  1 + e ,  g = G  1 + e ,  

g = G  1 + e ,  z = Z  1 + e , 

( ) ( )m 5 n 6 z = Z  1 + e ,  z = Z  1 + e ,  

such that

( )j jE e  = 0 ; |e | < 1,   

where,  j = 1, 2, 3, 4, 5 and 6.

3.1.1 Bias and Mean Squared Error of Tu

The expressions of bias and mean squared error of 
the class of estimators Tu are derived as 

( )u u uT = h  F a

Using ( )uF 1 =1  and expanding ( )uF a  about the 
point a = 1 in second order Taylor series, we have

( ) ( )2
u u 1 2T = h 1 + a - 1 P  + a - 1 P + . . . 

 
2

0 4 1 4 2 0 4 1=H 1 + e + e P  + e P + e e P + . . .   � (12)
2

u u
1 2 2

a a

F F1P =  and   P = 
a 2 a

∂ ∂
∂ ∂ .

3.1 Theorem. Bias of the class of estimator Tu to 
the first order approximations for large N, are obtained 
as

( ) [ ]1 2
1      u hz h hB T P P S C
u

ρ= + � (13)

Proof. Retaining terms in equation (12) up to first 
order of approximations, we have,

( ) 2
u 0 4 1 4 2 0 4 1T - H  = H  e + e P  + e P + e e P  

Taking Expectations on both sides in the above 
equation and assuming N → ∞  we get bias of uT  up 
to first order approximation as 

( ) 2
1 2

1       u h h hz zB T S C P HC P
u

ρ = + 

3.2 Theorem. Mean squared error of the class of 
estimator uT  to the first order approximations and for 
large N,  are obtained as

( ) 2 2
 .

1 1  u h z hopt
M T S

u
ρ = −  � (14)

Proof. Retaining terms in equation (12) up to first 
order of approximations, we have,

( ) [ ]( )22
u 0 4 1T  -  H  = H  e + e  P

Taking Expectations on both sides in the above 
equation assuming N → ∞  and optimizing with 
respect to P1, we get the optimum mean squared error 
of Tu up to first order approximation as in equation (14). 
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3.1.2 Bias and Mean Squared Error of Tm

( )m m mT  = h  F  b, c, d 

Expanding ( )mF  b, c, d  about the point 
( )Q  =  1, 1, 1  in first order Taylor’s series and using 

( )mF  1, 1, 1   =  1 , we get 

( ) ( ) ( ) ( )
( ) ( ) ( )( )
( )( ) ( )( )

2
m m 1 2 3 11

2 2
22 33 12

13 23

T = h 1 + b - 1  Q  + c - 1  Q  + d - 1  Q  + b - 1 Q  + 

c - 1 Q  + d - 1  Q b - 1 c - 1  Q  +

b - 1 d - 1 Q  + c - 1 d - 1 Q  + . . . 




+



( ) ( )
( ) ( ) ( )
( ) ( )( )
( )( ) ( )( )

2 22 2
6 3 2 3 2 3 3 11 5 6 5 6 6 22

2 2 2
6 33 2 3 2 3 3 5 6 5 6 6 12

2 2
2 3 2 3 3 6 13 5 6 5 6 6 6 2

2 2
5 52 3 2 3 3 1 6 6 6 2

 -   -     -   -    

  -   -     -  -

  1   -   -     -  -   

e Q e e e e e Q e e e e e Q

e Q e e e e e e e e e e Q

e e e e e e Q e e e e e e Q

H e e e e e Q e e e e e Q


+ + + + +

+ + + +

− − + + − − +

= + + + + +

3 . . .+ 

� (15)

where, 

( ) m m m
1 2 3

Q Q Q

2 2 2
m m m

11 22 332 2 2
Q Q Q

2 2 2
m m m

12 13 23
Q Q Q

F F FQ 1, 1, 1 , Q = , Q = , Q  = ,
b c d

F F F1 1 1Q =  , Q = , Q  = ,
2 b 2 c 2 d

F F F1 1 1Q =  , Q = , Q  = 
2 b c 2 b d 2 dc

∂ ∂ ∂≡
∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

3.3 Theorem. Bias of the class of estimator mT  to 
the first order approximations are derived as

( ) ( )  12  1   2

  3  

1 1         

1    

m g z h g h z

h z h h

B T Q Q Q
m n

Q S C
n

ρ ρ ρ

ρ

 = − + +  
 +     

� (16)

Proof.

( ) ( ) ( )
( ) ( ) ( )
( ) ( )( )
( )( )

m

2 22 2
6 3 2 3 2 3 3 11 5 6 5 6 6 22

2 2 2
6 33 2 3 2 3 3 5 6 5 6 6 12

2
2 3 2 3 3 6 13 5 6 

2 2
5 52 3 2 3 3 1 6 6 6 2T - H  

e Q + e  - e  - e e  + e Q  + e  - e  - e e  + e Q +

e Q +  e  - e  - e e  + e e  - e -e e e Q +

 e  - e  - e e  + e e Q + e  - e

=  H e  - e  - e e  + e Q + e  - e - e e + e Q +


+

( )( )2
5 6 6 6 23- e e + e e  Q +. . .

Taking expectations on both sides in the above 
equation and assuming N → ∞  we get bias of mT  up 
to first order approximation as

( ) ( )12 1 2

3

1 1  

1

m gz g z hg g h hz h z

hz h z

B T H C C Q C C Q C C Q
m n

C C Q
n

ρ ρ ρ

ρ

 = − + + +  
 

    

3.4 Theorem.Mean squared error of the class of 
estimators mT  to the first order of approximations is 
obtained as 

( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( )

2 2* * * * * *
1 2 1 2 1 2.

2* * 2
3 3

1 1 2 2 2

1 1   2

 

m gz hg hzopt

hz h

M T Q Q Q Q Q Q
m n

Q Q S
m n

ρ ρ ρ

ρ

 = − + + + + +  
+ + � (17)

Proof.

( ) ( ( ) ( )
( ) ( ) ( )
( ) ( )( )
( )( ) ( )( ) )

2

2 22 2
6 3 2 3 2 3 3 11 5 6 5 6 6 22

2 2 2
6 33 2 3 2 3 3 5 6 5 6 6 12

2
2 2

2 3 2 3 3 6 13 5 6 5 6 6 6 23

2 2
5 52 3 2 3 3 1 6 6 6 2

 

 . . .

    mT H

e Q e e e e e Q e e e e e Q

e Q e e e e e e e e e e Q

e e e e e e Q e e e e e e Q

H e e e e e Q e e e e e Q− = 

+ − − + + − − + +

+ − − + − − + +

− − + + − − + + 

− − + + − − + +

Taking expectations on both sides in the above 
equation and assuming N → ∞  we get mean squared 
error of mT  up to first order approximation as

( ) ( )

( )

2 2
1 2 1 2 1 2.

2 2
3 3

1 1 2 2 2

1 1 2

 

m gz hg hzopt

hz h

M T Q Q Q Q Q Q
m n

Q Q S
m n

ρ ρ ρ

ρ

 = − + + + + +  
+ + 

which is minimized for

( ) ( )
( )

* *
1 1 2 22 2

*
3 3

 ,    
1 1

and   

gzhz hg gzhz hz

gz gz

hz

Q Say Q Q Say Q

Q Say Q

ρ ρ ρ ρ ρ ρ
ρ ρ

ρ

   
   

 
 

− −
= =

− −

= −

Substituting the optimum values of 
* *
2 3

*
1 ,  Q   and  QQ  in the above equation, the optimum 

mean squared error is obtained as in equation (17).

3.1.3 Bias and Mean Squared Error of T

3.5 Theorem. Bias of the class of estimators T to 
the first order of approximations are obtained as

( ) ( ) ( ) ( )u m B T  = B T  + 1 -  B Tφ φ � (18)

where ( )uB T  and ( )mB T  are given in equations 
(13) and (16) respectively.
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Proof. The bias of the class of estimators T is 
given by

( )B T  = E T - H  

( ) ( )( )u m = E T  - H + 1 - T  - H  φ φ  

( ) ( ) ( )u m  = B T  + 1 -  B Tφ φ

Substituting the values of ( )uB T  and ( )mB T from 
the equations (13) and (16) in the above equation, 
we have the expression for the bias of the class of 
estimators T given in equation (18).

3.6 Theorem. Mean squared error of the class 
of estimators T  to first order of approximations are 
obtained as

( ) ( ) ( ) ( )22
u m opt.opt.

 M T  = M T  + 1 -  M Tφ φ � (19)

when ( )u opt.
M T  and ( )m opt.

M T  are given in 
equations (14) and (17) respectively.

Proof. The Mean squared error of the class of 
estimators T is given by

( ) 2
T  = E T - H M   

( ) ( )( ) 2

u m = E T  - H + 1 - T  - Hφ φ  

( ) ( ) ( ) ( ) ( )22
u m u m= M T + 1 – M T 2 1 – cov T , Tφ φ φ φ+

 As Tu and Tm are based on two non-overlapping 
samples of sizes u and m respectively. So 

( )u mcov T , T 0.=  By substituting the optimum values 
of Tu and Tm from the equations (14) and (17) in the 
above equation, we obtain the expression for the 
mean squared error of the class of estimators T as in 
equation (19).

3.2	 Minimum Mean Squared Error of the Proposed 
class of Estimator T

 It can be seen that the mean squared error of the 
class of estimators T is a function of unknown constant 
φ  therefore, it is minimized with respect to φ  and 
subsequently the optimum value of φ  is obtained as 

( )
( ) ( )

m opt.
opt.

u m opt.opt.

M T
= 

M T + M T
φ � (20)

Substituting the value of opt.φ  from equation (20) 
in equation (19), we get the optimum mean squared 
error of the class of estimator T as

( )
( ) ( )
( ) ( )

u m opt.opt.
opt.

u m opt.opt.

M T × M T
M T = 

M T + M T
� (21)

Further, substituting the values ( )u opt.
M T  and 

( )m opt.
M T  from equations (14) and equation (17) in 
equation(21), the simplified values of ( )opt.M T  is 
derived as

( )
2

1 2
2.

3 3 1

h
opt

SJ JM T
K J K n

µ
µ µ

 −
=  − −  

� (22)

where,

( ) ( )
2 2 2

1 2 1 2 1 2 1 2

2
3 3 3 2 1 1 3 2 1 2 3

3 2 3 1

1 ,  1 2 2 2 ,   

2 1 , ,       
    -  .

hz gz hg hz

hz

K K Q Q Q Q Q Q

K Q Q K J K K J K K K and
J K K K

ρ ρ ρ ρ

ρ

= − = + + + + +

= + − − = = +
= +

3.3	 Optimum rotation rate for the proposed class 
estimator

 Since the mean squared error of the proposed 
class of estimator ( )opt.M T  is the function of µ , which 
is the rotation rates or the fractions of sample to be 
drawn afresh at current wave. To estimate population 
mean with maximum precision and minimum cost, the 
mean squared error of the estimator T is derived in 
equation (22) have been optimized with respect to µ . 
Hence, optimum fraction of sample to be drawn afresh 
say ˆ fµ  have been obtained for the estimator ( )opt.M T
and are given as 

[ ]

2 2
2 2 1 3 2 2 1 3

1 1

ˆ min ,   

ˆsuch that  0,  1

f

f

I I I I I I I I
I I

µ

µ

 + − − − =  
  

∈ � (23)

1 1 3 2 2 3 3 1 1 3 2I  =  J K ,  I =  J K  and  I =  K J  + J J .

Substituting the optimum value of ˆ fµ  in equation 
(22), we have the optimum value of the mean squared 
error of the class of estimators T with respect to φ  as 
well as µ  as,

( )
•

2
1 2

2
3 3 1

ˆ
.

ˆ ˆ
f h

opt
f f

J J S
M T

K J K n
µ

µ µ∗

−  
=  − −   � (24)

4.	 Some Estimators

The general successive sampling estimator 
proposed by Jessen (1942) when modified to work 
for sensitive population mean estimation given by TJ 
when no additional non-sensitive auxiliary variable is 
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used at any occasion and a member of its own class, 
T1 when non-sensitive auxiliary information is used 
have been listed with their properties to be used for 
comparison purpose of final estimator. They are given 
as 

( ) ( )*
J J u J m n mT  = h + 1 h +K g gφ φ  − − 

and

( )1 1 u1 1 m1 T  = T  + 1 - T ;φ φ

where, 
*

*u n
u1 u m1 m *

u m

Z - z gT  = h  exp ,  T  =  h
Z + z g

   
     

where,

* *m m
m m m m

m m

Z - z Z - zh = h exp ,  g = g exp ,
Z + z Z + z

   
      

 and 

* n
n n

n

Z - zg  =  g  exp 
Z + z

 
  

 { } [ ]J 1,  0, 1φ φ ∈  are unknown 

constants and *K  is suitably chosen.

The minimum mean squared error of TJ and T1 are 
respectively given as

( )
•

2 2
1
2 2
1

ˆ1
ˆ1

hg h
J opt

hg

S
M T

n
µ ρ
µ ρ∗

 −  
=    −    � (25)

and

( )
•

2
11 2 12

1 2
13 2 2 13 11

ˆ
.

ˆ ˆ
h

opt

SJ JM T
K J K n

µ
µ µ∗

 −
=  − −  

� (26)

where,

[ ]

2 2
hg hg

1 2 2
hg hg

1

1 + 1 -   1 - 1 -   
ˆ  = min ,  

ˆsuch that    0, 1

ρ ρ
µ

ρ ρ

µ

  
 
  

∈ � (27)

and

[ ]

2 2
12 12 11 13 12 12 11 13

2
11 11

2

I + I  - I I I  - I  - I Iˆ  = min ,  
I I

ˆsuch that   0, 1

µ

µ

  
 
  

∈ � (28)

where,

( )

11 12 13

11 11 13 12 12 13 13 11 11 13 12 11 1 13

12 11 12 13 13 12 13 11

5 5, 2 2 , 2 2 ,
4 4

,   ,   ,   ,
  and  .

hz hg hg hzK K K

I J K I J K I K J J J J K K
J K K K J K K K

ρ ρ ρ ρ= − = − = − − −

= = = + =

= + = + −

5.	 �Estimators for sensitive 
population mean at current wave

Substituting the population mean of coded 
response variable H  in equation (4) by its estimators 

J 1T ,  T   and  T  respectively, the corresponding 
estimators for sensitive population mean at current 
wave J 1

ˆ ˆ ˆY ,  Y   and  Y  have been obtained and 
presented in Table 1. The estimators J 1

ˆ ˆ ˆY ,  Y   and  Y
are biased, so the mean squared error of sensitive 
population mean estimators J 1

ˆ ˆ ˆY ,  Y   and  Y  have 
been computed and are presented in Table 1.

6.	 Efficiency Comparison

In order to compare the proposed class of 
estimators Ŷ , with respect to the estimators JŶ  and 

1Ŷ  respectively, their percent relative efficiencies 
have been computed and are presented below

( )
( )

( )
( )

J 1

1 2

ˆ ˆM  Y M  Y
E = ×100  and  E = ×100

ˆ ˆM  Y M  Y 

   
      
   
      

� (29)

6.1 Remark. The two scrambling variables S1 
and S2 used to perturb the true response through the 
scrambled response model may follow any distribution. 
In this paper for the considered model on two wave 
successive sampling, following Pollock and Bek 
(1976) and Eichhorn and Hayre (1983), we consider 
scrambling variable S1 and S2  to follow normal 
distribution such that ( ) ( )1 2S ~ N 1,0.6  and S ~ N 0,1

7.	 Numerical Demonstration

To judge the performance of the proposed class 
of estimators, the following numerical illustrations has 

Table 1. Sensitive population mean estimator and  
their Mean squared error (MSE)

S.No. Estimators MSE

1 ( ) J 2
J

1

T  - S
Ŷ  = 

S ( ) ( )J opt
J 2

1

M TˆM Y  =  
S

•
∗ 

  

2 ( ) 1 2
1

1

T  - SŶ  = 
S ( ) ( )1 opt

1 2
1

M TˆM Y  =  
S

•

∗ 
  

3 ( ) 2

1

T  - SŶ  = 
S ( ) ( )opt

2
1

M TˆM Y  =  
S

•

∗ 
  
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been worked out for a completely known population 
with population parameters as follows:

Population - I
2 6 2 6

2 6

51,   20,   4.3451 10 ,   4.1604 10 ,   

4.2152 10 ,   1923.3,   1947.8,   1923.3,    
0.7,   0.7,   0.7.

x y

z

yx xz yz

N n S S

S X Y Z
ρ ρ ρ

= = = × = ×

= × = = =
= = =

The optimum values of ˆ ' sµ  for J 1
ˆ ˆ ˆY,  Y ,  Y  and 

percent relative efficiencies 1 2E  and  E  have been 
computed for the above data and are presented in 
Table 2.

Table 2. Percent relative efficiency of Ŷ  with respect to JŶ  and 

1Ŷ  at their respective optimum conditions for Population-I

1µ̂ 2µ̂ fµ̂ 2E

0.6072 0.5536 0.5751 129.7108 103.9351

7.1	 �Case Study: Usage of Drugs (Cigarette, Alcohol, 
Gutkha, Paan Masala etc.) 

Population-II: For practicing the literal feasibility 
of the proposed estimators J 1

ˆ ˆ ˆY, Y and Y , a case study 
has been designed for two waves and data have been 
collected from 315 under graduate students of a 
College (University of Delhi), India through a survey 
conducted on two successive waves. For convenience 
315 random numbers S1 and S2 have been generated 
assuming ( ) ( )1 2S ~ N 1,0.6  and S ~ N 0,1 . Following 
sensitive and non-sensitive variables of the interest 
have been considered:

x : Average monthly expenditure on drug usage in 
July, 2015, by the ith student.

y : Average monthly expenditure on drug usage in 
April, 2016, by the ith student.

z : Average monthly pocket money from all 
sources in July, 2015 of the ith student.

And hence the scrambled response was collected 

from the respondents in the form of 2
1

Sg = x S  + 
x

 
  

and 2
1

Sh = y S  + 
y

 
  

.

Therefore, the optimum rotation rate, percent 
relative efficiencies of the proposed class of estimator 
Ŷ  with respect to JŶ  and 1Ŷ  are obtained and are 
listed in Table 3.

Table 3. Percent relative efficiency of Ŷ  with respect to JŶ  and 

1Ŷ  at their respective optimum conditions for Population-II

1µ̂ 2µ̂ fµ̂ 1E 2E

0.6935 0.6432 0.6562 142.9261 103.0541

8.	 Monte Carlo Simulation Study

Using Monte carlo simulation for the above 
said data (Population-II), the simulation study has 
been carried out by considering 5000 different 
samples. The simulated percent relative efficiencies 

1 2S SE  and E  for the proposed class of estimator when 

compared with respect to the estimator JŶ  and the 

estimator 1Ŷ  respectively have been computed for 

Table 4. Simulation results for Population-II

φ Percent Relative 
Efficiency 

Set I Set II Set III

0.1
1SE 146.1175 144.2562 143.4881

2SE 108.2009 109.8896 109.6529

0.2
1SE 146.1322 144.2804 143.5617

2SE 108.1823 109.8596 109.5713

0.3
1SE 146.1353 144.2709 143.5538

2SE 108.1783 109.8714 109.5800

0.4
1SE 146.1338 143.2810 143.5605

2SE 108.1803 109.8588 109.5726

0.5
1SE 146.1361 144.2714 143.5736

2SE 108.1774 109.8707 109.5581

0.6
1SE 146.1338 144.2607 143.5579

2SE 108.1803 109.8840 109.5755

0.7
1SE 146.1273 144.2708 143.5326

2SE 108.1885 109.8715 109.6036

0.8
1SE 146.262 144.2672 143.5371

2SE 108.1898 109.8760 109.5985

0.9
1SE 146.1213 144.2673 143.5531

2SE 108.1961 109.8564 109.5808
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many combinations of constants for varying φ  which 
are termed as different sets and are given below. The 
simulation results are presented in Table 4.

Set I     :  n = 45,  u = 12,  m = 33,
Set II   :  n = 45,  u = 18,  m = 27      and
Set III  :  n = 45,  u = 27,  m = 18.

9.	 Direct Method

It is quite evident that for assuring the privacy 
of respondents, some cost has to be paid in terms of 
loss in efficiency as compared to direct method of 
questioning.

Hence, in this section, the proposed class of 
estimators Ŷ  have been compared with its respective 
direct estimator DY  i.e., when no scrambling technique 
is used, which is given as

( ) [ ]1 ;   0,1D ud mdY T Tχ χ χ= + − ∈ � (30)

where,

( ) u
ud u u

z
T   = y F a  ;  where,   a  = 

Z
 
   � (31)

( )*
md m mdT   = y  F b ,  c,  d   � (32)

where,

* m m n

n n

x z zb ,  c ,   d
x z Z

= = =  and ( )*
md F b , c, d  is a  

parametric function of ( )*b , c, d , such that 

( )md F 1, 1, 1  = 1  and ( )*
md F b , c, d  satisfies conditions 

similar to those given for ( )uF a .

The minimum mean squared error of the class of 
estimator DY  to the first order approximations is given 
as

( )
•

2
1 2

2
3 3 1

ˆ
ˆ ˆ

yd d d
D opt

d d d d d

SJ J
M Y

K J K n
µ

µ µ∗

 −
=  − −  

� (33)

where,

( )

2
1

2 2
2 1 2 1 2 1 2

2
3 3 3 2 1 2

1 ,

1 2 2 2 ,

2 1 ,   ,
1

d yz

d d d d d xz d yx d yz

d d d yz d
yz xz yx

d
xz

K

K Q Q Q Q Q Q

K Q Q K Q

ρ

ρ ρ ρ

ρ
ρ ρ ρ

ρ

= −

= + + + + +

= + − −
−

=
−

( )
1 1 3

2 1 2 3 3 2 3 1

 2 32 ,   ,   

   and   .

,   
1 d d d

d d d d d d d d

yx xz yz
yzd d

xz
J K K

J K K K J K K K

Q Q
ρ ρ ρ

ρ
ρ

=

= + = + −

−
= = −

−

with,

[ ]

2 2
d2 d2 d1 d3 d2 d2 d1 d3

d
d1 d1

d

I + I  - I I I  - I  - I Iˆ  = min ,  
I I

ˆsuch that  0, 1

µ

µ

  
 
  

∈ � (34)

where, 

d1 d1 d3 d2 d2 d3 d3 d1 d1 d3 d2I = J K ,  I = J K   and  I =K J +J J .

In order to judge the scrambling model effect, the 
percent relative efficiency of the proposed class of 
estimator of sensitive population mean Ŷ  with respect 
to its direct method have been obtained as 

( )
•
*D opt

D

M Y
E  =  × 100 

ˆM  Y 

  
 
  

� (35)

The above percent relative efficiency have been 
checked out for population-I as well as Population-II 
and are presented in Table 5. 

Table 5. Percent relative efficiency of DY  with respect to Ŷ  
at their  respective optimum conditions for Population-Iand 

Population-II

Population Dµ̂ DE

I 0.5232 102.7517

II 0.6296 78.7496

10.	 Respondents Privacy Protection

While dealing with the sensitive issues on 
successive waves, there are certain hesitations which 
respondents feel while responding to the interviewer 
and hence they tend to delusive. Therefore to minimize 
this personal bias and falsification, scrambling is 
applied to ensure respondent’s privacy. So following 
Diana and Perri (2011), normalized measure of privacy 
protection on first and second wave are computed 
under the considered model and are given as
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Privacy veil at previous wave under considered 
model for Population-II: 

( ) 2
0 .  

2 2
  

2

  1

2   
             1

1 -  

             0.1839

x g z

x z x g xz xg zg

zg

N x ρ

ρ ρ ρ ρ ρ
ρ

= −

 + −
= −   
= � (36)

Privacy veil at current wave under considered 
model for Population-II: 

( ) 2
0 .  

2 2

2

  1

2   
             1

1

             0.1601

y h z

yz yh yz yh zh

zh

N y ρ

ρ ρ ρ ρ ρ
ρ

= −

 + −
= −  − 
= � (37)

Where x. g zρ  and y. h zρ  are the multiple correlation 
coefficients of regression line  X on G and Z  and Y 
on H and Z respectively. It is studied that value of 

( ) ( )0 0N x  N y    closer to 1, reflects that maximum 
veil of privacy is present for the respondent. On 
the other hand, as the value of ( ) ( )0 0N x  N y    
approaches to 0, this implies that the privacy declines 
and least veil will be provided to the respondent in 
terms of privacy.

11.	 Discussion of Results

1.	 Following observations can be drawn from Table 
1 and Table 2:
(a)	 It can be seen that the proposed class of 

estimators is performing better than JŶ  and  

1Ŷ  for considered Population-I as well as 
Population-II.

(b)	 The optimum fraction of sample to be drawn 
afresh exists for the proposed estimators.

(c)	 It is further observed that 1 2E  > E , this 
implies that the proposed class of estimators 
Ŷ  proves more efficient when compared 

with the estimator JŶ  than with the estimator

1Ŷ  in terms of percent relative efficiency for 
considered Population-I and Population-II.

2.	 From Table 3, it can be observed that, when 
the value of φ  increases the simulated percent 
relative efficiency 

1SE  also increases for the 
considered Set-I,Set-II and Set-III respectively, 
whereas the simulated percent relative efficiency 

2SE  decreases for the considered Set-I, Set-II and 
Set-III. 

3.	 From Table 4, it is clear that the proposed class of 
estimator when compared with the direct method, 
the percent relative efficiency is coming out to 
be less than or equal to 100, this shows that cost 
has to be paid in terms of loss in efficiency for 
scrambling the data.

4.	 Normalized measure of privacy has been calculated 
under the considered model at both waves. 
Although, ( ) ( )0 0N x  N y    are not statistically 
strong value for justifying the privacy provided by 
considered scrambled response technique but are 
built as a simple tool which may provide some veil 
of privacy to the respondent.

12.	 Conclusion

The estimation of sensitive population mean 
in two wave successive sampling is possible. The 
considered scrambled response model together with 
proposed class of estimators for estimating sensitive 
population mean at current wave is fruitful in terms of 

precision when compared to JŶ  and 1Ŷ . It is further 
vindicated that more efficiency is obtained when 

proposed class of estimator is compared with JŶ  

than with 1Ŷ . This shows that the use of non-sensitive 
auxiliary variable together with considered scrambled 
response model is effective in estimating sensitive 
population mean. Therefore, the proposed class of 
estimators for estimating sensitive population mean 
may be recommended for future use in practise. 
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