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SUMMARY
We provide a result which elegantly helps us identify influential observations in a data matrix based on the eigenstructure of a specific matrix 

which measures the effect of one or more influential observations. The theorem suggests that the corresponding statistic is easily computable. We 
illustrate its usefulness in data cleaning prior to modeling using a classical data of Graybill and Iyer and provide its implementation using a short SAS 
code. This approach is especially useful for large data, where model-free approach to identification of influential observations is a natural choice. 
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1.	 Introduction

In an article with almost the same title as this one, 
Wang and Nyquist (1991) explored what happens to 
the eigenstructure of the matrix X'(−i)X(−i), compared to 
that of X' X when an (row) observation is deleted from 
the n × p data matrix X. They attempted to develop 
a relationship between the two sets of eigenvalues 
and provided an approximation for the eigenvalues of 
X'(−i)‌X(−i). They also showed that the eigenvalues of the 
two matrices follow certain interlacing inequalities, 
albeit under certain conditions. This was used to 
assess the impact on multicollinearity and determine 
the influence of a particular observation. 

In this note, we address the same problem but 
with a different suggestion about the eigenstructure 
of a different matrix which is a function of the above 
two matrices. It turns out that this approach greatly 
simplifies the problem and provides a more elegant 
and more easily computed statistic. This is done 
through Theorem 1. Before we state it, we must set up 
the notations and motivate the problem.

2.	 The Formulation and the Result

For a given data matrix X; let A = X' X and let B 
= X'1X1 be the p × p matrix where X1 is obtained by 
discarding (without loss of generality) last r rows of 
data matrix X. Also, we will assume that r ≤ p and that 
both A as well as B are of rank p.

How do we measure the collective influence of the 
r discarded data points? An appropriate approach will 
be to assess how different B is from A. If the data points 
were not influential then we expect B to resemble A in 
some meaningful sense - in our discussion in terms of 
their respective eigenstructures. In order to measure 
this distance between the two matrices, let U be the 
upper triangular square root matrix of B such that 
B = U' U and define,

G = UA–1U':� (1)

Clearly, if A and B are close to each other then G 
must resemble Ip; the identity matrix of order p × p; 
and eigenvalues of G must be close to 1. The following 
theorem shows that the eigenstructure of G is pretty 
simple.
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Theorem 1. Let d1 ≥ d2 ≥ ... ≥ dp be the ordered 
eigenvalues of G. Then dj = 1 for j = 1,2, .., (p − r). 

Proof. Let X = 1

2

x
x

 
 
 

, where the order of X1 is 

(n−r)×p and the r×p matrix X2 contains the last r row 
observations of X. Then for A and B defined earlier, it 
is easily seen that, 

A−1	 = (B + X'2X2)
−1

	 = B−1 − B−1X'2 (Ir + X2B
−1X'2)

−1X2B
−1 

Thus from (1),

G = U[B−1 − B−1X'2 (Ir + X2B
−1X'2)

−1 X2B
−1]U' 

= Ip − Z 

where, 

Z	 = U' −1X'2(Ir + X2(X'1X1)
−1X'2)

−1X2U
−1 

	 = U' −1X'2(Ir + X2(U
−1U' −1)X'2)

−1X2U
−1 

	 = W'(Ir + WW )−1W, 

and where r × p matrix W = X2U
−1 is of rank r. Thus, 

the above matrix Z has the last (p − r) eigenvalues 
as 0. Consequently, G = Ip − Z has the first (p − r) 
eigenvalues as 1. 

The above theorem clearly indicates that the effect 
of deleting r observations is concentrated only on last 
r eigenvalues of G. This effect can be measured by 
some appropriate and meaningful function of these 
eigenvalues such as 

i p r= − +∑  or 
1

p
ii p r

δ
= − +∏  or the 

smallest eigenvalue dp. Of special practical interest is 
the case of r = 1, that is, when deleting one observation 
at a time to assess if the particular observation is 
influential. - the case considered by Wang and Nyquist 
(1991). The following theorem for this special case 
indicates that in this special case, this measure can be 
computed rather easily. 

Theorem 2. Consider the matrix G when X2 = x' is 
the nth row of matrix X. Then the smallest eigenvalue 
of G is given by 

dp = 1 − x' (X' X)−1x.� (2) 

Proof. In view of Theorem 1, it follows that only 
one of the eigenvalues of G matrix is not equal to 1 
and thus 

dp = tr(G) − (p − 1). 

But, 

tr(G) = tr[U(X' X)−1U' ] 

	    = tr[(X' X)−1U' U] 

	    = tr[(X' X)−1B] = tr[(X' X)−1(X' X − xx' )] 

	    = tr(Ip) − x' (X' X)−1x. 

Thus, dp = tr(G) − p +1=1 − x' (X' X)−1x. 

Therefore, the influence of an observation can 
be measured by x' (X' X)−1x. However, while the 
mathematical expression is identical in appearance, 
this should not be confused with what Cook and 
Weisberg (1982) call leverage or potential. Specifically, 
our data matrix may not be the model matrix in that 
the model matrix will usually contain a constant 
column corresponding to intercept and may further 
contain columns corresponding to other terms such as 
polynomial or cross-products. Leverage is computed 
for a given model and hence in this case, the matrix 
X must be replaced by the augmented matrix [X : X*] 
where X* contains the columns corresponding to 
polynomial, cross products, intercepts or other similar 
terms, which are integral part of the model assumed. 
Our object of interest here is the matrix of raw data 
X without any consideration of model. Thus, to make 
the conceptual distinction between the two clearer, we 
may alternatively term our x' (X' X)−1x as Emphasis of 
the observation x, while leverage is defined as [x' : x' *]
([X : X*]' [X : X*])−1[x'  : x' *] , with [x'  : x' *] defined 
similarly. More explicitly, the leverage is a function 
of data as well as assumed model, while emphasis 
is defined as an exclusive function of data matrix of 
explanatory variables. 

Clearly, smaller the value of dp, larger is the 
emphasis, x' (X' X)−1x. Khattree (2015) explores, 
among other things, the use of G matrix in various 
applications of identification of influential observations 
and in a variety of data sets. 

In the general context of deleting r observations, 
it is appropriate to use a meaningful function of last r 
eigenvalues of the G matrix. One such measure could 
be based on tr(G) = dp−r+1 + dp−r+2 + ... + dp + (p − r). Also 
tr(G) can be expressed as tr(G) = tr[X1(X' X)−1X'1] = 
p – tr[X2(X' X)−1X'2]. Thus, a measure of influence in 
this case is simply tr[X2(X' X)−1X'2]. We may as well 
term the matrix [X2(X' X)−1X'2] as the emphasis matrix. 
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The determinant of G is another such measure. 
However, being a product of eigenvalues which are 
less than 1, its value becomes very small as r increases. 
Alternatively, one may argue that in the ideal situation 
of absolutely no influence, all eigenvalues and hence 
(equivalently) the smallest one must equal 1. Thus the 
smallest eigenvalue or its departure from unity can be 
taken as an appropriate index of collective influence. 
However, this quantity essentially measures influence 
only in the direction of only one principal axis. 

3.	 An Illustration: Mountain Data

We take an example of Graybill and Iyer (1994, 
Table 5.6.1 page 400) where seven variables (X1 = 
length at birth, X2; X3 = mother and father’s heights 
at age 18, X4; X5 = maternal grandmother and 
grandfather’s heights at age 18, X6; X7 = paternal 
grandmother and grandfather’s heights at age 18) are 
measured for 20 individuals who had lived in mountain 
isolation for several generations. Graybill and Iyer 
were interested in modeling the person’s height at age 
18 as a function of these variables. Our interest here is 
in finding influential observations through the changes 
in the eigenstructure of the X' X matrix where X is a 
20 × 7 matrix consisting of 20 observations on seven 

Table 1. Raw Data And Measure of Influence When One Observation Is Deleted

Sr. No. Deleted Obs. x1 x2 x3 x4 x5 x6 x7 Smallest Evalue (I1 = I2 = I3)

1 17 21.3 66.1 65.4 64.8 68.4 66.4 70.8 0.37140

2 1 19.7 60.5 70.3 65.7 69.3 65.7 67.3 0.43952

3 5 19.7 65.1 65.1 65.5 65.5 61.8 70.9 0.48553

4 12 18.3 63.1 65.2 65.4 66.6 61.7 64.0 0.49003

5 16 19.6 63.5 65.2 63.9 70.0 64.2 64.5 0.54089

6 7 19.8 64.3 67.9 62.4 71.4 63.4 69.4 0.63094

7 6 19.6 65.2 71.1 63.5 66.2 67.3 68.6 0.65730

8 11 18.9 63.3 70.4 63.7 68.2 66.2 68.5 0.66288

9 18 20.1 64.8 70.2 65.3 65.5 63.7 66.9 0.67606

10 10 19.9 63.4 70.3 65.9 69.0 63.7 65.1 0.68173

11 4 19.4 63.4 71.9 60.7 68.0 64.9 67.1 0.68612

12 3 19.4 65.4 65.8 66.2 68.8 64.0 69.4 0.69890

13 13 20.3 64.9 68.8 65.2 70.2 62.4 67.0 0.70645

14 8 19.7 65.3 68.8 61.5 66.0 62.4 67.7 0.71042

15 19 20.2 62.6 68.6 63.7 69.8 66.7 68.0 0.72217

16 14 19.7 63.5 70.3 63.1 64.4 65.1 67.0 0.72642

17 2 19.6 64.9 70.4 62.6 69.6 64.6 66.4 0.75913

18 20 19.2 62.2 67.3 63.6 70.9 63.6 66.7 0.76900

19 9 19.7 64.5 68.7 63.9 68.8 62.3 68.8 0.78393

20 15 19.9 62.0 65.5 64.1 67.7 62.1 66.5 0.80120

variables specified above. Data are given as part of 
Table 1. The column titled ”Deleted Obs.” indicates 
the observation number of the original data as given 
by these authors, which we deleted in the analysis 
that follows. We calculate three measures based on G 
matrix, namely,

I1 = [tr(G) − (p − r)]/r,

I2 = [det(G)]
1
r , 

and 

I3 = smallest eigenvalue of G = dp. 

By definition, for complete data, when r = 0, 
I1 = I2 = I3 = 1, as all eigenvalues are equal to 1. All 
three measures are between 0 and 1. Table 1 presents 
the smallest eigenvalue when r = 1 observations are 
deleted. Clearly the above three measures are all 
identical in this case. Five smallest values correspond 
to observation numbers 17, 1, 5, 12, 16 (in that order). 
Changes in the values of this eigenvalue thereafter are 
gradual without any appreciable jump. In Table 2 we 
present the above measures when two observations 
are deleted simultaneously. Only the first eight cases 
corresponding smallest eight values of I1 out of 
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Table 2. Various Measures of Influence When Two  
Observations Are Deleted

Sr. No. Deleted Obs. Trace I1 Determinant I2 Smallest Evalue I3

1 1 17 0.40546 0.39672 0.32172

2 5 17 0.42846 0.40497 0.28854

3 12 17 0.43071 0.39983 0.27057

4 16 17 0.45614 0.39751 0.23243

5 1 5 0.46253 0.46151 0.43195

6 1 12 0.46477 0.46200 0.41411

7 5 12 0.48778 0.48205 0.41326

8 1 16 0.49020 0.47635 0.37450

Table 3. Various Measures of Influence When Three 
Observations Are Deleted

Sr. No. Deleted Obs. Trace I1 Determinant I2 Smallest Evalue I3

1 1 5 17 0.43215 0.41111 0.27055

2 1 12 17 0.43365 0.40753 0.26118

3 5 12 17 0.44898 0.41290 0.24847

4 1 16 17 0.45060 0.38924 0.17568

5 5 16 17 0.46594 0.39991 0.23234

6 12 16 17 0.46744 0.39432 0.23237

7 1 5 12 0.47169 0.46590 0.40245

8 1 7 17 0.48062 0.46183 0.31652

Table 4. Various Measures of Influence When Four  
Observations Are Deleted

Sr. No. Deleted Obs. Trace I1 Determinant I2 Smallest Evalue I3

1 1 5 12 17 0.44662 0.41546 0.23988

2 1 5 16 17 0.45933 0.39217 0.17364

3 1 12 16 17 0.46046 0.38653 0.17171

4 5 12 16 17 0.47196 0.39673 0.23233

5 1 5 7 17 0.48185 0.45378 0.25792

6 1 7 12 17 0.48297 0.44657 0.23879

7 1 5 6 17 0.48844 0.45701 0.25245

8 1 5 12 16 0.48899 0.43391 0.20803

Table 5. Various Measures of Influence When Five Observations 
Are Deleted

Sr.No. Deleted Obs. Trace I1 Determinant I2 Smallest Evalue I3

1 1 5 12 16 17 0.46547 0.38914 0.16780

2 1 5 7 12 17 0.48348 0.44328 0.21488

3 1 5 6 12 17 0.48875 0.45064 0.23182

4 1 5 11 12 17 0.48987 0.42833 0.17078

5 1 5 12 17 18 0.49251 0.45255 0.23939

6 1 5 10 12 17 0.49364 0.42552 0.15227

7 1 5 7 16 17 0.49365 0.42827 0.17100

8 1 4 5 12 17 0.49452 0.44679 0.22697

20C2 = 190 are presented here. It is evident that two of 
the above five observations are involved in all eight 
scenarios and observation numbers 17 and 1 appear to 
be the most significant players. Although the measures 
I2 and I3 do not organize these eight scenarios in the 
same order, their values are also towards the lower 
spectrum. Similar phenomenon is observed when 
three observations are deleted. Among the lowest eight 
scenarios (with respect to I1); seven consist of three 
observations out of the set of {17; 1; 5; 12; 16}: Again 
influences of observation number 17 and 1 are evident 
as most cases correspond to their deletion as part of it.

The eight scenarios of Table 4 contain all 5C4 = 5 
cases of four observation deletions, when these four 
observations are chosen from the set {17; 1; 5; 12; 
16}: This again confirms what we have seen in Tables 
1-3. Finally, in Table 5, five observation deletions 
are considered and true to our conviction so far, the 
smallest I1 corresponds to the deletion of the above 
set of five and this value is much smaller than other 
values of I1: The value of I2 is among the smaller 
values as well. However, I3 for this set is not small. 
As one expects, I3 being based on a single eigenvalue, 
may not be the most effective measure. After all, it 
represents influence only in a certain principal axis. 
We recommend to use all three measures to assess the 
influence of the subset of observations.

It must be pointed out that Graybill and Iyer’s 
analysis identifies observations with number 5, 
12, 16, 17 as potentially influential but misses out 
the observation number 1, which appears to be the 
second most influential observation after number 17. 
This again reinforces the importance of assessing the 
influence of a subset of observations rather than doing 
that one observation at a time and also the value of the 
methodology described above.

We have included, as an appendix, a short SAS 
code which performs an exhaustive search for the 
sets of most influential five observations. In fact, this 
code was used to generate our Table 5. It must be 
pointed out that even for moderately sized data, the 
number of subsets of observations of size r > 1 can 
be prohibitively large. For example, with n = 20 and 
r = 5; the total number of subsets is 20C5 = 15504. Thus 
instead of an exhaustive search for r > 1; (even though 
our searches for the above example were exhaustive) 
one should first identify and narrow down potential 
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influential observations by calculating their individual 
(r = 1) influence. Clearly, in view of Theorem 2, 
for r  =  1 case, the computations (of emphasis) are 
especially simple.

However, it turns out that computational and 
algorithmic burden can be greatly simplified and 
in view of this simplification, we can develop some 
guidelines as to how we can identify influential 
observations. Specifically, let G be as defined in (1) 
for the last r observations and let us define Gi as the 
matrix in (1) where only ith observation (that is, row) 
from matrix X; i = n – r + 1, . . . , n, say, x'i is deleted. 
Also let the corresponding smallest eigenvalue of Gi 
be dp,i . Accordingly we have,

r · I1 = tr(G) − (p − r) = p − tr[X2(X' X)−1X'2] − (p − r) 

= r − tr[X2(X' X)−1X'2] = r − 1

1

x (X X) x
n

i i i
i n r

' ' −

= − +
∑

= r − , ,
1 1

(1 )
n n

p i p i
i n r i n r

δ δ
= − + = − +

− =∑ ∑ � (3) 

Thus I1 is nothing but the average of smallest 
eigenvalues corresponding to the cases when 
observations are deleted, one at a time. Thus, I1 
is linear in the sense that for two disjoint sets of 
observations A1 and A2 of sizes r1 ans r2 respectively, 

1 2 1 2
1 2 1 1 2 1( ). . .A A A Ar r I r I r I∪+ = + . Of course, the choice 

of last r observations in all the above is taken to mean 
any r observations since the rows of the data can always 
be rearranged. What this means is that I1 can be easily 
and more directly calculated, for the deletion of any 
set of r observations, as the average of corresponding 
smallest eigenvalues and hence I1 values reported in 
Tables 2-5 can be derived directly from Table 1. 

Above simplifies the identification of influential 
observations greatly. As asked by a referee, it 
also helps us come up with a strategy to wisely 
consider various measures to identify the influential 
observations. Clearly r ≤ p. Thus, upon generation of 
Table 1, as the first step, we choose the (at most) p 
observations corresponding to smallest eigenvalues 
using the measure I3 (Which would be identical to 
other measures as well since initially r = 1; Further, in 
view of (2), only one matrix inversion of a p×p matrix 
is required for this calculation). This forms our initial 
candidate set for influence, observations from which 
may now be evaluated using other measures. For 
example, for our Mountain data set, this set consists 

of observation numbers {17,1,5,12,16,7,6}. A total 
of 27 − 1 = 127 values of I1 corresponding to various 
deletion choices should be calculated. As a second 
step, we may choose a certain number of deletion 
possibilities out of these 127, using the measure I1, 
which themselves can directly be calculated using (3). 
As the final step, for these narrowed down choices, I2 
and I3 can now be calculated and looking at all three 
measures simultaneously, a decision about which 
observations are collectively influential can be made. 
This reduction of effort in examining these measures 
makes the task much more efficient and manageable. 
This is especially important when n and/or p are very 
large resulting in a very large number of deletion 
possibilities. 

In Table 6, we illustrate the above approach for our 
candidate set consisting of, for the sake of brevity, only 
four observations namely, {17,1,5,12} corresponding 
the lowest values of I3 (Doing so for a set of p = 7 
observations will result in 27 − 1 = 127 possibilities, 
which are too cumbersome to present/interpret in a 
table and too distracting for the main discussion with 
little extra gain in insight; However, calculations 
similar to those done in Tables 1-5 for r = p = 7 deleted 
observations (table not shown here) show that in the 
twelve most suspect sets of seven influential points, 
these four always appear). A total of 24 − 1 = 15 
deletion possibilities are then explored by computing 
I1 and I2. Table 6 is arranged in the ordered values of 
I1 from smallest to largest. In fact, same was also done 
by using I2 as well and it resulted in more or less the 
same order with rankings occasionally interchanged 
by one place but with very insignificant differences 
between the actual values. The observations numbered 
as 17 and 1 seem to stand out from the remaining as 
influential. We may remark that we do observe certain 
other choices which give smaller values of I3 but as we 
pointed out earlier, it represents influence only in the 
direction of a certain principal axis and hence should 
not be overemphasized in interpretations. 

One of the referees asked if there is a way to 
define a minimum cut-off point for the smallest 
eigenvalues. Since the approach is exploratory in 
nature with no distributional assumptions made 
whatsoever, the answer, at least in strict sense, is no. 
However, as pointed out earlier, for r = 1 the emphasis 
measure x' (X' X)−1x = 1 − dp is similar in expression 
(although not in interpretation) to the leverage 
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value. Thus, following the conventional wisdom 
(Kutner, Nachtsheim and Neter (2004), p. 398) we 
recommend that for r = 1 the smallest eigenvalue 

less than 21 p
n

 −    should be viewed as an indication 

of possible influence. For our data, this value is 0.30. 
Another recommendation especially for small datasets 
(such as ours) is to view moderate influence if dp is 
between 0.5 and 0.8 and strong influence if dp is less 
than 0.5 (In fact, this was our another rationale for 
choosing {17,1,5,12} as our initial candidate set in the 
previous paragraph). Of course, as illustrated earlier, 
the existence of gap between values is another feature 
one should observe in identifying the influence (and 
we do observe such a gap after candidate set {17,1} 
for our analysis. See Table 6). 

Often for large datasets, data cleaning and 
processing is an essential step before any modeling 
issue is undertaken. This step must necessarily be 
free from any distributional or model assumptions. 
Our approach provides an efficient and effective way 
to do so. However, one should realize that since an 
essential requirement is that r be less than or equal to 
p, influential observations must be identified in several 
iterations - at most p at a time. 
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Table 6. Various Measures of Influence (Ordered by I1)

Sr. No. Deleted Obs. Trace I1 Determinant I2 Smallest Evalue I3

1 {17} 0.37140 0.37140 0.37140

2 {1 17} 0.40546 0.39672 0.32172

3 {5 17} 0.42846 0.40497 0.28854

4 {12 17} 0.43071 0.39983 0.27057

5 {1 5 17} 0.43215 0.41111 0.27055

6 {1 12 17} 0.43365 0.40753 0.26118

7 {1} 0.43952 0.43952 0.43952

8 {1 5 12 17} 0.44662 0.41546 0.23988

9 {5 12 17} 0.44898 0.41290 0.24847

10 {1 5} 0.46253 0.46151 0.43195

11 {1 12} 0.46477 0.46200 0.41411

12 {1 5 12} 0.47169 0.46590 0.40245

13 {5} 0.48553 0.48553 0.48553

14 {5 12} 0.48778 0.48205 0.41326

15 {12} 0.49003 0.49003 0.49003
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Appendix: A Representative SAS Code for 
Detecting Influential Observations

Here we present a short SAS program to detect a 
set of five most influential observations for the data 
set used in Section 3. The eight most influential sets 
of five observations are printed here. Program can be 
easily modified for any other data set and for any other 
number of influential observations.

options nosource nonotes ;
proc datasets; delete myresults;; 
run;
data mountain;
input y x1-x7;datalines;

67.2 19.7 60.5 70.3 65.7 69.3 65.7 67.3

69.1 19.6 64.9 70.4 62.6 69.6 64.6 66.4

67.0 19.4 65.4 65.8 66.2 68.8 64.0 69.4

72.4 19.4 63.4 71.9 60.7 68.0 64.9 67.1

63.6 19.7 65.1 65.1 65.5 65.5 61.8 70.9

72.7 19.6 65.2 71.1 63.5 66.2 67.3 68.6

68.5 19.8 64.3 67.9 62.4 71.4 63.4 69.4

69.7 19.7 65.3 68.8 61.5 66.0 62.4 67.7

68.4 19.7 64.5 68.7 63.9 68.8 62.3 68.8

70.4 19.9 63.4 70.3 65.9 69.0 63.7 65.1

67.5 18.9 63.3 70.4 63.7 68.2 66.2 68.5

73.3 18.3 63.1 65.2 65.4 66.6 61.7 64.0

70.0 20.3 64.9 68.8 65.2 70.2 62.4 67.0

69.8 19.7 63.5 70.3 63.1 64.4 65.1 67.0

63.6 19.9 62.0 65.5 64.1 67.7 62.1 66.5

64.3 19.6 63.5 65.2 63.9 70.0 64.2 64.5

68.5 21.3 66.1 65.4 64.8 68.4 66.4 70.8

70.5 20.1 64.8 70.2 65.3 65.5 63.7 66.9

68.1 20.2 62.6 68.6 63.7 69.8 66.7 68.0

66.1 19.2 62.2 67.3 63.6 70.9 63.6 66.7

;



17Ravindra Khattree / Journal of the Indian Society of Agricultural Statistics 73(1) 2019   11–17

data mountain; set mountain; sr = _n_;drop y; run;

%macro tryout;

%do i = 1 %to 20;

%do j = &i+1 %to 20;

%do k = &j+1 %to 20;

%do m = &k+1 %to 20;

%do s = &m+1 %to 20;

data mountain2; set mountain;

if (sr ˜in (&i &j &k &m &s));

run;

proc iml;

n = 20;

p = 7;

r =5;

use mountain;

read all var {x1 x2 x3 x4 x5 x6 x7} into X;

use mountain2;

read all var {x1 x2 x3 x4 x5 x6 x7} into T_1; A = (X)‘*X;

Ainv = inv(A);

B_1 = (T_1)‘*T_1;

U_1 =root(B_1);

G_1 = U_1*Ainv*(U_1)‘;

eigenv_1 = eigval(G_1);

sum = (trace(G_1) -(p-r))/r;;

deter = (det(G_1))**(1/r);

e5 = eigenv_1[7];

result =J(1,8,1);

result[4] =sum;

result[5] = deter;

result[6] = e5;

result[1] =&i;

result[2] =&j;

result[3] =&k;

result[7]	 =&m;

result[8] =&s;

create mydata from result;append from result;close mydata; 

quit;

proc datasets nolist;

	 append base=myresults data=mydata force; run;

%end;

%end;

%end;

%end;

%end;

run;

%mend tryout;

%tryout;

title “Check the Set of 5 Observations”; 

data myresults; set myresults;

sum = col4;deter = col5; smallest = col6; drop col4 col5 col6;

run;

proc sort data = myresults; by sum;run; 

proc print data = myresults(obs = 8); 

run;


