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SUMMARY
In recent times, forecasting of agricultural commodity price becomes a major issue. But in the context of forecasting of time series data 

exhibiting Long-Range Dependence (LRD) becomes more complex with the fractional differencing value. In general, Autoregressive Fractionally 
Integrated Moving Average (AFRIMA) model is widely used for time-series forecasting having long range dependency. It has been observed that 
in many cases forecasting performance with ARFIMA model is not satisfactory. Therefore, Multi-scale Autoregressive (MAR) model based on 
wavelets decomposition can be used as an alternative for time-series forecasting. In the present investigation, MAR model is estimated using wavelet 
decomposition at level 6. Here, an attempt has been made to improve the forecasting performance of MAR model by inclusion of some extra 
regressors (modified MAR model). Daily wholesale price data on coconut of Kerala market has been used for the illustration purpose. A comparative 
study has been made for ARFIMA, MAR and modified MAR model in terms of Mean Squared Error (MSE) and Root Mean Squared Error (RMSE). 
The empirical study reveals that forecasting ability of modified MAR model outperforms the other two methodologies in terms of lower MSE and 
RMSE values.
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1.	 INTRODUCTION

In last few decades, the wavelet transform 
attracted the researcher community for time series 
analysis in many studies. For financial time series 
prediction Soltani et  al. (2000) discussed the use of 
the wavelet transformation in the presence of Long 
Range Dependence (LRD) or long memory. LRD 
have been observed frequently in financial time 
series models which makes forecasting using ARMA 
process inefficient. In general, a process is called long 
memory process if its spectral density is unbounded 
at the origin. Conventionally, the class of Fractionally 
Integrated Auto-Regressive Moving Average 
(ARFIMA) processes (Hosking (1981) and Granger 
and Joyeux (1980)) is widely used for modelling of 
financial time series with long memory process. It is 
defined with the introduction of the Hurst exponent 
H, , which controls for the fractional 
behaviour of the process. The Hurst exponent is used 
as a measure of LRD of a time series model. It relates 

to the autocorrelations of the time series, and the rate 
at which these decrease as the lag between pairs of 
values increases. For H = 1/2, the process is called 
white noise, while the property of LRD is observed 
for 1/2 < H <1. The LRD process is characterized by 
a very slow hyperbolical decaying of Autocorrelation 
Function (ACF).The numerous test procedures have 
been developed for LRD detection. Among them 
non- parametric Wavelet regression for estimating 
LRD parameter by Jenson (2000) is widely used. 
Arby and Vietch (1998) carried out a comparative 
study and concluded that the wavelet regression based 
estimation technique outperforms other popular semi-
parametric methods. The classical ARIMA (p, d, q) 
models are not an adequate tool for the prediction 
of LRD time series, as they are unable to capture the 
ACF persistence imposed by H. The F(d) process, 
introduced by Granger and Joyeux (1980) allows for 
the LRD process through fractional differencing and 
its application leads to the famous ARFIMA (p, d, q) 
process {Xt, t = 0, 1, 2, …, N-1} may be defined as,
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where, , 

, B is the backshift operator 
and  is the discrete white noise. For a stationary time 
series the value of fractional differencing parameter 

 lies between -1/2 to 1/2. When ), 
the time-series is characterized as LRD process. The 
relationship between the Hurst exponent and fractional 
differencing parameter is H = 1/2 + d. Therefore, 
the closer the value of  is to 1/2, the stronger the 
LRD present in the model. Various parametric, 
semiparametric and non-parametric methods for 
estimating LRD are available in the literature. Paul 
(2014) applied ARFIMA model to wholesale prices 
of pigeon pea in different markets of India and 
concluded that the model has better performance in 
terms of explained variability and prediction power. 
Paul et  al. (2015) have applied ARFIMA model for 
forecasting of agricultural commodity prices. They 
have also compared different estimation techniques 
for estimating the long memory parameter by means of 
MCMC and concluded that wavelet based estimation 
outperforms other techniques. 

Estimation of ARFIMA is complicated as it 
involves filtering the LRD influence i.e, estimated 
value of  is required prior to model fitting. On the 
other hand, the wavelet analysis allows the presence 
of LRD, while an estimate of d is not required and 
value of d is automatically considered in the wavelet 
based model. Ghosh et  al. (2010) used discrete 
wavelet transformation for testing the trend of all-
India monsoon rainfall time- series. They observed 
that Haar wavelet at level 6 performed better than 
Daubechies (D4) wavelet at level 6 in terms of 
power of the test. Some other applications of wavelet 
transform in time series analysis can be found in Paul 
et al. (2013) and Paul and Birthal (2015). Multi-scale 
Auto-Regressive (MAR) models (Daoudi et al., 1999) 
involves wavelet decomposition. The analysed time 
series is presented as a function of the lagged values 
of the decomposed coefficients. As a matter of fact, 
MAR models can be used as a flexible alternative 
of the ordinary ARMA models, which could be used 
to explain the structural property of the time-series 
model. Benaouda et  al. (2006) proposed a wavelet 
based approach for short-term electricity price 
forecasting. Hence, they concluded that the proposed 

approach presents better forecasting accuracy with an 
acceptable computation time. Bogdanova and Ivanov 
(2015) have developed two applied procedures. The 
first one is an algorithm, which assesses the presence 
of the LRD exponent based on the wavelet regression 
of Arby et  al. (2003). Second, they outlined a data-
driven additional regressor selection procedure, which 
relies on a multi-scale extension of the ACF.

Coconut is a highly valuable multipurpose crop 
among all the plantation crops. Not only the raw 
coconut, husk is also collected from the fruits which 
leads the production of copra, ropes, bags etc. Raw 
coconut is used as direct consumption as well as for 
the extraction of oil. Kerala contributes the highest 
area and production of raw coconut in India (Annual 
report of Coconut Development Board 2015-16) 
and hence daily wholesale price data obtained from 
AGMARKNET (http://agmarknet.gov.in) of raw 
coconut is considered for this present study.

2.	 LONG RANGE DEPENDENCE (LRD)

A long range dependence or long memory 
process (Granger and Joyeux, 1980) can be defined 
as   where  is the coefficient of 
autocorrelation with lag of . Fractional integration is 
a generalization of integer integration. For example, 
an autoregressive moving-average process integrated 
of order  [denoted by ARFIMA ] can be 
represented using equation (1), where  can 
be expressed as follows,

� (2)

For 0< <0.5 the long memory process is 
stationary. For such processes, the effect of a white 
noise  on  decays as  increases. But 
the rate of decay is much slower (hyperbolically) than 
for a process integrated of order zero. According to the 
value of , long memory process can be sub-divided 
into 4 groups and these are,

Value of Names

Intermediate Memory and Anti-persistence 

White noise(Short-Memory)

Stationary and Persistence Long Memory

Nonstationary and Persistence Long Memory
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Various methods have been developed to estimate 
this LRD parameter. These are some important 
methods listed below,

i.	 Parametric method- Maximum Likelihood 
Estimation (MLE).

ii.	 Semi-parametric method- Whittle, GPH, 
Sperio etc.

ii.	 Non-parametric method- R/S analysis, 
Wavelet etc.

3.	 WAVELET-BASED APPROACH

The term wavelet (Vidakovic, 1999) is used to 
refer to a set of basic functions with a special structure 
which is the key to the main fundamental properties 
of wavelets and their usefulness in statistics. Wavelets 
are fundamental building block functions, analogous 
to the trigonometric sine and cosine functions. 
As with a sine or cosine wave, a wavelet function 
oscillates about zero. This oscillating property makes 
the function a wave. However, the oscillations for a 
wavelet damp down to zero, hence the name wavelet. 
If (.)ψ  be a real valued function defined over the 
real axis ( ),−∞ ∞  and satisfying two basic properties 
such as the integral of (.)ψ  is zero and the square 
of (.)ψ  integrates to unity, then the function (.)ψ  
is called a wave. Various types of filters are used for 
transformation of the time-series model. Among them, 
most widely used wavelet filter is Haar filter. The 
simplest wavelet basis for L2(R) is the Haar basis. The 
Haar function is a bonafide wavelet, though not used 
much in practice, uses a mother wavelet given by,

	 1,	 0 ≤ x <½,

ψ(x) =	 -1,	 ½ ≤ x ≤1,

	 0,	 otherwise

Haar wavelets possess the property of compact 
support, which means that it will vanish outside of a 
finite interval.

3.1	 Wavelet transformation

The maximal overlap discrete wavelet transform 
(MODWT) is a linear filtering operation that transforms 
a series into coefficients related to variations over a set 
of scales. It is similar to discrete wavelet transform 
(DWT) in that, both are linear filtering operations 
producing a set of time-dependent wavelet and scaling 

coefficients. MODWT is well-defined for all sample 
sizes N, whereas for a complete decomposition of 
J levels. But DWT requires N to be multiple of 2J, 
where J is any positive integer. MODWT also differs 
from DWT in the sense that it is a highly redundant, 
non-orthogonal transform. MODWT coefficients are 
obtained by applying DWT pyramid algorithm once 
to X and another to the circularly shifted vector TX. 
Hence, the first application yields the usual DWT (W) 
of the time series vector X computed as W = P X and 
the second application consists of substituting TX for 
X obtained as W = PTX, where W and P can be written 
as W= [W1W2…WJVJ]́ and P=[P1P2…PJQJ]`. 

The Mallat algorithm (Mallat, 1989) filters the 
original data series X = (X0, X1, ... , XN−1) using a pair 
of high-pass and low-pass filters denoted respectively 
as, h = (h0, h1, ... , hL−1) and g =(g0, g1, ... , gL−1), each 
of length L, L < N. The wavelet (Wj) and the scaling 
coefficients (Vj) corresponding to the jth level of 
decomposition, j = 1, 2, ... , J, J is an positive integer, 
are obtained by,

 and 

 

� (3)

where hj,1 is the jth level MODWT wavelet filter 
and gj,1 is the jth level MODWT scaling filter. A time- 
series can be completely or partially decomposed into 
a number of levels 

3.2	 Wavelet-based estimator of the LRD parameter

The wavelet regression relies on the Mallat 
decomposition and it utilizes the fact that there is a linear 
relationship between the variable sj= log2(var(wj)) and 
the scale j, , j1 and j2 are integers, referred 
to as upper and lower cut-off, respectively. Intuitively, 
one would run linear regression in order to estimate the 
slope coefficient γ, where the fractional differencing 
parameter is expressed as . And  can be 
estimated by the equation,

,� (4)

where , 

, , , 
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, .

Bogdanova and Ivanov (2015) have proposed an 
algorithm based on the simulation studies. It involves 
the following steps:

Step 1: The Mallat algorithm is applied over a 
window of the first 500 observations.

Step 2: An estimate of the slope coefficient  is 
obtained through application of equation (4) and an 
estimate of d is derived as .

Step 3: The window is slid forward by 1 
observation (i.e. the first observation is dropped and 
the 501st observation is included). The first two steps 
are performed again, thus obtaining another estimate 
of . The estimating procedure is repeated until the 
last observation is included in the window.

3.3	 Wavelet-based prediction: MAR model

The Haar átrous (Shensa, 1992) decomposition of 
the time series X =(X0, X1, . . . ,XN−1) and one-step-
ahead forecast of a MAR (Aj, j = 1, . . . , J + 1 ) model 
can be expressed as,

 

		  ,� (5)

where Aj, j = 1, . . . , J is the number of lagged 
values of the wavelet details Wj, j = 1, . . . , J and 
AJ+1 is the number of lagged values of the scaling 
sequence CJ. The estimates { , k =1, ..., Aj, j = 1, 
..., J + 1} of the unknown parameters in equation (5) 
are obtained by Ordinary Least-Squares (OLS) 
regression. Furthermore, the MAR models are very 
flexible to the term structure of the analyzed time-
series and the presence of LRD might be modelled by 
the inclusion of just few additional lagged values at the 
lower frequencies. A matter of applied significance is 
to decide on how many additional lags to include and 
more importantly, at which frequencies. Bogdanova 
and Ivanov (2015) proposed a data-driven solution of 
the problem. Throughout the manuscript this model is 
represented as new model. For this purpose, they first 
introduce the correlation matrix R between original 
series X and the lagged values of wavelet coefficients, 
defined in equation (6):

1, 1 2, 1 , 1 , 1

1, 2 2, 2 , 2 , 2

1, 2, , ,

( , ) ( , ) ... ( , ) ( , )
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.
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 
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� (6)

Based on the LRD definition, it might be 
hypothesized that R will be dominated by significant 
coefficients at the lower frequencies for long-memory 
time-series. Two common features of R for both long 
and short-memory time-series might be noted. First, 
the number of significant coefficients depend on the 
values of the parameters controlling for the memory 
of the time- series. Second, the higher the value of 
these parameters, the stronger the influence of the 
smooth component on the behaviour of time-series. 
As mentioned earlier, in case of long-memory, MAR 
specification requires identification of the lagged 
details to be incorporated in the model. Based on the 
matrix R, the following specification procedure can be 
followed (Bogdanova and Ivanov, 2015), 

Step 1: The fractional differencing exponent is 
estimated through the algorithm, proposed in section 
3.2. If significant LRD is identified, then steps 2 and 
3 are applied.

Step 2: Equation (5) is estimated for Aj= 1, j = 1, 
2, ..., J, J + 1.

Step 3: The ACF { , s = 1, 2, ..., S} of the 
estimated residuals is inspected for the presence of 
significant coefficients. If significant autocorrelation 
is detected, then step 4 is performed.

Step 4: Let { , m ≤ S} be statistically significant, 
then the MAR(1) model is augmented with the 
inclusion of wj,(t−m) as an additional regressor, where 
j represents the level of decomposition at which the 
highest correlation is observed for the mth row of the 
matrix R. This step is performed until the augmented 
model residuals exhibit no significant autocorrelation.

So, after inclusion of wj,(t−m) as an additional 
regressor, the new model would be,

� (7)
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where k is the strongest correlation corresponds to 
the wavelet coeffi cient series of mth lag.

4. EMPIRICAL STUDY

For the present study the daily fi nancial time 
series data on “raw coconut” of the market Thodupuze 
of Kerala for minimum and maximum price has been 
collected from AGMARKNET over the time period 
from August, 2014 to December, 2017. The data set 
consist of 872 data points. The descriptive statistics is 
presented in the following table:

Table 1: Descriptive Statistics

Series Min Max Mean SD CV Skewness Kurtosis

Minimum 1100 3400 1654 407.23 24.62 2.047 8.434

Maximum 1200 3500 1860 422.8 22.73 1.17 5.79

The above table shows that standard deviation 
is high for maximum series whereas the coeffi cient 
of variation (CV) is higher for minimum series. 
Moreover, both the series is positively skewed and 
leptokurtic in nature.

Fig. 1. Time plot of minimum and maximum price 
(Rs. /Quintal) of Coconut

4.1 Estimation of LRD parameter 

Estimation procedure mentioned in section 3.2 
has been performed for both the series and output of 
the test is displayed in Table 2. It is clearly observed 
that maximum and minimum series exhibit strong 
long-range dependence. The ACF plots of two series 
displayed in Figure 2. It indicates the hyperbolical 
decaying of auto-correlation near about 200 lags. This 
indicates the presence of stationary long-memory 
property of the corresponding series.

Table 2. Estimated value of d 

Price Series d t-Value

Minimum 0.39* 7.61

Maximum 0.41* 8.36

*denotes the signifi cance at 5% level.

Fig. 2. ACF plots of (a) Maximum and (b) Minimum series

4.2  Wavelet decomposition of maximum and 
minimum series

MODWT is computed using “Haar” wavelet fi lter 
at level 6. The MODWT coeffi cients are shown in 
Figure 3 and Figure 4. The wavelet coeffi cients are 
denoted by W1, W2, W3, W4, W5, W6 and the scaling 
coeffi cient is denoted by V6. The coeffi cients at the 
top (below) are “low-frequency” (“high frequency”) 
information. The wavelet coeffi cients do not remain 
constant over time and refl ects the changes of the data 
at various time-epochs. The locations of abrupt jumps 
can be spotted by looking for vertical (between levels) 
clustering of relatively large coeffi cients. Smoothness 
of the plot increases as we move from high frequency 
to low frequency components. Here, V6, scaling 
coeffi cient is considered as the actual signal, hidden in 
the noisy time series data. 

(a)

(b)
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Fig. 3. MODWT plot of maximum series

Fig. 4. MODWT plot of minimum series

4.3 Calculation of correlation matrix R 

The correlation coeffi cients of the maximum 
and minimum price series with their corresponding 
10 lagged wavelet coeffi cients have been calculated 
using equation 6 and shown in the below table. The 
correlation coeffi cients which are signifi cant at 5% 
level is mention in that Table 3 and 4.

4.4 ARFIMA model fi tting 

ARFIMA model is fi tted for the maximum and 
minimum series with the help of Equation 1. All the 
parameters along with the test statistic are provided in 
the Table 5. All the parameters are signifi cant at 1% 
level for both the series. Model validation is provided 
in the section 4.6.

Table 3. Correlation coeffi cients calculated for the series 
Maximum price with the lagged values of wavelet coeffi cients 

and scaling coeffi cient for decomposition level 6

Lag W1 W2 W3 W4 W5 W6 V6

t-1 0.127* 0.224* 0.307* 0.335* 0.318* 0.384* 0.814*
t-2 0.129* 0.224* 0.299* 0.299* 0.309* 0.382* 0.805*
t-3 0.162* 0.196* 0.289* 0.263* 0.3* 0.38* 0.796*
t-4 0.097* 0.188* 0.271* 0.24* 0.292* 0.379* 0.787*
t-5 0.123* 0.196* 0.243* 0.226* 0.282* 0.38* 0.77*
t-6 0.118* 0.189* 0.202* 0.216* 0.271* 0.382* 0.769*
t-7 0.121* 0.176* 0.16* 0.21* 0.262* 0.384* 0.76*
t-8 0.1* 0.146* 0.142* 0.206* 0.253* 0.385* 0.751*
t-9 0.1* 0.098* 0.135* 0.203* 0.244* 0.387* 0.741*

t-10 0.053 0.087* 0.134* 0.201* 0.236* 0.388* 0.732*

*denotes the signifi cance at 5% level.

Table 4. Correlation coeffi cients calculated for the series 
Minimum price with the lagged values of wavelet coeffi cients 

and scaling coeffi cient for decomposition level 6

Lag W1 W2 W3 W4 W5 W6 V6

t-1 0.060 0.104* 0.153* 0.247* 0.364* 0.462* 0.805*
t-2 0.065 0.106* 0.144* 0.251* 0.362* 0.462* 0.794*
t-3 0.066* 0.106* 0.131* 0.254* 0.360* 0.461* 0.782*
t-4 0.067* 0.099* 0.131* 0.260* 0.357* 0.461* 0.771*
t-5 0.063 0.090* 0.138* 0.267* 0.353* 0.460* 0.759*
t-6 0.053 0.078* 0.153* 0.273* 0.349* 0.458* 0.747*
t-7 0.055 0.060* 0.170* 0.277* 0.344* 0.456* 0.735*
t-8 0.031 0.087* 0.187* 0.278* 0.338* 0.455* 0.722*
t-9 0.034 0.121* 0.200* 0.277* 0.330* 0.452* 0.709*
t-10 0.087 0.142* 0.207* 0.272* 0.322* 0.449* 0.696*

*denotes the signifi cance at 5% level.

4.5 MAR model fi tting 

MAR model is fi tted for the maximum and 
minimum series with the help of equation 5. It is seen 
that the intercept term is not signifi cant at 5% level 
while rest of the coeffi cients are signifi cant at same 
level of signifi cance for both the series. Residuals are 
calculated for the fi tted model for calculating ACF 
plot. This ACF plot will lead to the selection of the 
new regressors.

ACF plot of residuals of maximum series given in 
the Figure5, showed that lag 4 and lag 9 have signifi cant 
auto-correlation function. Now from table 3, it can be 
easily found out that V6 has the strongest correlation 
coeffi cient with X in both the lags. So according to the 
suggested algorithm, we have to include V6 of lag 4 
and 9 in the MAR model for maximum series.
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Fig. 5. Estimated ACF of the residuals for maximum series

After inclusion of the two extra regressors, 
parameters of the MAR model have been re-estimated 
for maximum series and given in the table 7. In this 
estimated model, all the coefficients are significant at 
5% level of significance except the intercept term.

Similarly, residual ACF plot for minimum series 
is given in the Figure 6, which showed that lag 4 
has significant auto-correlation function. Now from 
Table  4, we can identify that V6 has the strongest 
correlation coefficient with X of lag 4. So, according 
to the suggested algorithm we have to include V6 of 
lag 4 in the MAR model.

Table 7. Estimation output of equation 7 for maximum series

Coefficients Value St. Error t-Statistic p-Value

Intercept 8.65 7.61 1.14 0.26

W1 0.94* 0.05 19.80 <0.001

W2 0.95* 0.04 21.50 <0.001

W3 0.90* 0.03 26.41 <0.001

W4 0.91* 0.03 33.33 <0.001

W5 0.94* 0.02 46.24 <0.001

W6 0.83* 0.03 31.11 <0.001

V6 0.20* 0.10 2.09 <0.001

V6,N-4 0.79* 0.10 8.17 <0.001

V6,N-9 0.37* 0.13 2.84 <0.001

*denotes the significance at 1% level.

Fig. 6. Estimated ACF of the residuals for Min series

Table 5. Parameter estimation of ARFIMA model for the maximum and minimum series

Parameters
Maximum Minimum

Estimate St. Error Z-value p-Value Estimate St. Error Z-value p-Value
d 0.499* 0.002 256.063 < 0.001 0.499* 0.002 250.571 < 0.001

MA(1) -0.645* 0.033 -19.526 < 0.001 -0.649* 0.033 -19.548 < 0.001

MA(2) -0.515* 0.042 -12.211 < 0.001 -0.533* 0.036 -14.849 < 0.001

MA(3) -0.479* 0.034 -14.084 < 0.001 -0.466* 0.041 -11.441 < 0.001

MA(4) -0.293* 0.039 -7.514 < 0.001 -0.284* 0.039 -7.241 < 0.001

MA(5) -0.140* 0.039 -3.534 < 0.001 -0.147* 0.040 -3.712 < 0.001

*denotes the significance at 1% level.

Table 6. Estimation parameters for maximum and minimum series

Coefficients
Maximum Series Minimum Series

Value St. error t-Statistic p-Value Values St. Error t-Statistics p-Value

Intercept -1.751 7.563 -0.231 0.817 -6.151 7.253 -0.855 0.403

W1 1.009* 0.048 20.934 <0.001 1.021* 0.043 23.792 <0.001

W2 1.022* 0.044 22.842 <0.001 1.023* 0.04 25.857 <0.001

W3 0.957* 0.034 27.817 <0.001 0.971* 0.03 31.962 <0.001

W4 0.998* 0.026 38.312 <0.001 0.994* 0.023 43.631 <0.001

W5 0.993* 0.019 50.102 <0.001 1.005* 0.017 57.734 <0.001

W6 1.026* 0.013 76.505 <0.001 1.029* 0.012 86.013 <0.001

V6 1.001* 0.003 250.739 <0.001 1.007* 0.004 233.502 <0.001

*denotes the significance at 5% level.
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After including that extra regressor, parameters 
of the MAR model have been re-estimated and given 
in the Table 8. In this model all the coefficients are 
significant at 5% level of significance except the 
intercept term.

Table 8. Estimation output of equation 7 for minimum series

Coefficients Values St. Error t-Statistics p-Value

Intercept 5.64 7.53 0.75 0.45

W1 0.95* 0.04 22.64 <0.001

W2 0.96* 0.04 24.47 <0.001

W3 0.92* 0.03 30.46 <0.001

W4 0.92* 0.02 38.36 <0.001

W5 0.95* 0.02 53.25 <0.001

W6 0.87* 0.02 36.59 <0.001

V6 0.36* 0.09 4.05 <0.001

V6,N-4 0.64* 0.09 7.41 <0.001

*denotes the significance at 5% level.

4.6	 Model validation

Last 80 observations of the corresponding series 
were kept before for model validation. Calculated 
Mean square error (MSE) and Root mean square error 
(RMSE) are displayed in Table 9 for maximum and 
minimum series. It is clearly seen that the new model 
has lesser MSE and RMSE as compared to other two 
models. The actual as well as predicted prices using 
the best found model are also reported in table 10. 
The closeness of predicted price to the actual price are 
clearly visible.

Table 9. Calculated MSE and RMSE for the Maximum and 
Minimum series

Model
Max Series Min Series

MSE RMSE MSE RMSE

ARFIMA 5873.69 76.64 6007.8 77.51

MAR 376.74 19.41 277.36 16.65

New Model 248.37 15.76 252.01 15.87

In the Figure 7, actual observations and predicted 
values is plotted. The graph indicates that the predicted 
values are very close to the actual values for both 
the series. RMSE of New model, MAR model and 
ARFIMA model have been calculated over a moving 
window of 10 side length for 80 observations for both 
the series. The plots of RMSE are displayed in Figure 8 
and 9 for maximum and minimum series respectively. 
Here we can see that in both plots, RMSE of the new 

Fig. 7. Observed versus predicted graph for last 80 observations: (a) 
Minimum and (b) Maximum series

Fig. 8. RMSE for New, MAR and ARFIMA model over a moving 
window of 80 observations for maximum series

Fig. 9. RMSE for New, MAR and ARFIMA model over a moving 
window of 80 observations for minimum series

(a)

(b)
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Table 10. Actual vs predicted price (Rs/Quintal)

Obs.
Minimum Price Maximum Price

Obs.
Minimum Price Maximum Price

Actual Forecast Actual Forecast Actual Forecast Actual Forecast

1 1700 1711.68 1800 1811.78 41 2700 2699.82 2800 2798.45

2 1700 1713.14 1800 1814.01 42 2700 2700.28 2800 2799.01

3 1800 1713.80 1900 1814.78 43 2700 2700.99 2800 2799.75

4 1800 1808.26 1900 1909.02 44 2700 2702.32 2800 2801.34

5 1800 1808.34 1900 1909.24 45 2700 2703.66 2800 2802.92

6 1800 1807.88 1900 1908.15 46 2700 2704.99 2800 2805.08

7 1800 1807.22 1900 1908.34 47 2700 2705.53 2800 2805.77

8 1800 1808.37 1900 1909.74 48 2700 2706.05 2800 2806.32

9 1800 1809.53 1900 1911.14 49 2700 2705.56 2800 2805.73

10 1900 1810.68 2000 1913.12 50 2700 2705.07 2800 2805.13

11 1900 1905.62 2000 2006.52 51 2700 2704.40 2800 2804.35

12 1900 1905.17 2000 2006.08 52 2700 2703.72 2800 2803.57

13 1900 1904.44 2000 2005.24 53 2700 2703.05 2800 2802.79

14 1900 1902.71 2000 2003.25 54 2700 2702.64 2800 2801.76

15 1900 1901.72 2000 2002.14 55 2700 2703.02 2800 2802.20

16 1900 1901.73 2000 2002.17 56 2700 2703.22 2800 2802.46

17 1900 1901.74 2000 2002.21 57 2700 2703.95 2800 2803.37

18 1900 1901.76 2000 2002.24 58 2700 2707.96 2800 2808.05

19 1900 1903.76 2000 2003.85 59 2700 2711.96 2800 2812.73

20 1900 1907.38 2000 2007.89 60 2700 2716.50 2800 2818.07

21 2000 1910.99 2100 2012.51 61 2700 2721.04 2800 2823.41

22 2000 2010.41 2100 2110.85 62 2700 2724.57 2800 2827.60

23 2000 2014.71 2100 2115.82 63 3000 2728.10 3100 2833.53

24 2200 2018.74 2300 2121.54 64 3000 3014.03 3100 3114.86

25 2300 2210.36 2400 2310.69 65 3000 3013.81 3100 3115.12

26 2300 2306.01 2400 2405.07 66 3000 3013.76 3100 3115.31

27 2500 2305.54 2600 2405.92 67 3000 3013.98 3100 3115.25

28 2500 2492.39 2600 2589.21 68 3000 3018.02 3100 3120.27

29 2500 2491.48 2600 2588.67 69 3100 3021.05 3200 3124.72

30 2500 2491.01 2600 2588.38 70 3100 3117.87 3200 3220.60

31 2500 2490.55 2600 2588.09 71 3200 3119.32 3300 3223.35

32 2500 2493.10 2600 2591.36 72 3200 3214.50 3300 3317.03

33 2500 2495.61 2600 2594.34 73 3200 3214.30 3300 3317.02

34 2600 2499.11 2700 2598.90 74 3200 3214.83 3300 3317.22

35 2600 2596.41 2700 2694.89 75 3200 3216.15 3300 3318.90

36 2600 2598.56 2700 2697.23 76 3200 3218.48 3300 3321.78

37 2600 2600.44 2700 2699.74 77 3200 3222.82 3300 3326.95

38 2600 2601.32 2700 2700.60 78 3200 3227.15 3300 3331.98

39 2700 2603.21 2800 2703.24 79 3200 3231.47 3300 3337.01

40 2700 2698.90 2800 2797.30 80 3200 3234.20 3300 3340.20
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model i.e the model proposed by Bogdanova and 
Ivanov (2015) has lower values throughout the 8 
windows. We also observed that, short range forecast 
(window of 10) has the lower RMSE value than the 
long range forecast.

5.	 CONCLUSION

In recent times, forecasting of agricultural 
commodity price data having long memory property 
becomes important. A wavelet based approach to 
the analysis and modelling of financial time- series 
exhibiting strong LRD has been illustrated in this 
study, which includes wavelet decomposition of 
the time series using MODWT. Here, long memory 
parameter of the data under consideration has been 
estimated with the help of wavelet decomposition. 
After decomposition, ARFIMA and Multiscale 
Autoregressive (MAR) models have been fitted to 
the time series data and the new model suggested by 
Bogdanova and Ivanov, 2015 (modified MAR) is also 
fitted to the same data set. For testing the adequacy 
of the model, Mean Square Error (MSE) and Root 
Mean Square Error (RMSE) were calculated for the 
fitted models. A comparative study has been done 
among ARFIMA, MAR and modified MAR model 
and it is found that for both the series (maximum 
and minimum), modified MAR model has better 
forecasting ability as compared to the usual MAR and 
ARFIMA model in terms of lower MSE and RMSE 
values.
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