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SUMMARY
The univariate Box-Jenkins models ended up being extremely helpful in expansive range of time series analysis. Since these models are 

univariate, they are appropriate just in single series of data and can’t manage the factors which are systematically dependent over space. Be that as 
it may, the greater part of the climatic marvels is subject to dependent of their neighbourhoods. To address these issues, one ought to consider the 
model which incorporates systematic dependencies in both space and time. On other hand spatio-temporal modelling fuses the spatial correlation 
between the observations at neighbouring regions over a timeframe. The autoregressive and moving average components of univariate time series 
slacked in both space and time is alluded as space time autoregressive moving average (STARMA) model. The spatial information on different 
location is incorporated by considering spatial weight grid. In this article, an attempt has been made to incorporate the second order uniform spatial 
weight matrix to model and forecast the spatio-temporal time-series data. Efforts also have been made to include the spatial heterogeneity among 
locations by considering inverse distance weightage derived from Euclidean distance of Riemannian great circle distance using longitude and latitude 
of the respective locations. The proposed methodology has been implemented in simulated data. As a contextual investigation monthly maximum 
temperature (oC) of nine districts of North Karnataka has been considered to illustrate STARMA model. As average temperature of North Karnataka is 
above 30oC and the same is responsible for growing most of the horticultural crops, with these consideration maximum temperature data is considered 
for this study. The outcomes uncovered that the proposed method of STARMA model outperformed the univariate ARIMA and first spatial order 
STARMA model for modelling and forecasting, for both simulated as well as in actual data. 
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1. INTRodUcTIoN 

Spatio-temporal time series are the observations 
which are recorded over both space and time by 
considering systematic dependencies across space and 
time. Spatio-temporal modelling manages the single 
variables recorded over a timeframe at various locations. 
The case of spatio-temporal data incorporates; daily or 
hourly carbon emission data recorded from observatory 
at many location, daily river flow data recorded from 
many river basins, hourly daily or weekly record of 
many weather parameters over different locations, and 
traffic flow measurements taken from a set of loop 
detectors in an exceptionally visit premise are cases of 
spatial time series data. Spatio-temporal modelling is 

commonly used in numerous areas viz., Geo-statistics, 
sociology, economics, environmental, ecological and 
agricultural science Many literatures recommend that 
incorporation of both spatial and temporal information 
will enhance the demonstrating effectiveness of 
phenomenon under consideration (Neuman et al. 
(2010), Schlenker and Roberts (2009) and White et al. 
(2006)). In several cases only temporal approach of 
modelling has been used (Abdel-Aal and Elhaddy 
(1994). Baillie and Chung (2002), Kaushik and Singh 
(2008) and Chattopadhay et al. (201) and in some cases 
only spatial modelling has been used, but in reality the 
underlying phenomenon depends on both spatial and 
temporal effects, the univariate temporal or univariate 
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spatial modelling is incapable of providing information 
on both spatial and temporal effects (Smith, 2000). In 
this way, it is sensible to model time and space scales 
at the same time to catch inherent vulnerability over a 
time frame over various locations. 

Because of computational difficulties and 
inaccessibility of simultaneous spatial and temporal 
information, no significant progress is accomplished 
in spatio-temporal time-series modelling as contrast 
with univariate time series modelling. Spatio-temporal 
models are the models which considers concurrent 
information on both space and time of variables under 
consideration. In univariate time series we observe 
autocorrelation between the successive observations 
over a time-frame. to model these data series, the 
Box-Jenkins autoregressive moving average (Box 
and Jenkins (1970) modelis most usually utilized 
model because of its prominent modelling building 
process. On other hand, the auto-correlated spatio-
temporal time-series phenomenon can be modeled 
using the space time autoregressive moving average 
(STARMA) model. The autoregressive and moving 
average components of univariate time series lagged in 
both space and time is alluded (rewrite) as space- time 
autoregressive moving average (STARMA) model. 

A classical multivariate time- series model i.e. 
Vector Auto-Regressive Moving Average (VARMA) 
model can be used to model the spatio-temporal 
data, but the number of parameters becomes more 
(Brynjarsdottir and Berliner (2014) and Gupta and 
Robinson (2015)). Cliff and Ord (1975) and Martin and 
Oeppen (1975) were the first to model the relationship 
between two variables in space and time. Cliff and 
Ord introduced space time model STARMA model 
that have less number of parameters compares to 
VARMA models. The STARMA model was first time 
introduced in early eighties, from that point forward 
several techniques have been developed corresponding 
to different inferential needs and data types. The 
space-time autoregressive integrated moving average 
(STARIMA) methodology was initially delineated in a 
series of papers by Pfeifer and Deutsch (1980, 1980a, 
1980b, 1980c, 1981, 1981a, 1981b). Deutsch and 
Pfeifer (1981) addressed the contemporary correlated 
errors in STARMA modelling. Tunay (2010) described 
the process of estimation of STARMA models. 
Kamarianakis (2003) reviewed the methodologies 
of space- time auto regressive moving average 

modelling. Kyriakidis and Journel (1999) proposed on 
geo-statistical space-time models. Oud et al. (2012) 
addressed spatial dependence in continuous time 
modelling.

From that point onwards, the STARMA model has 
been connected to wide assortment of spatial time- 
series data for example; river flow (Pfeifer and Deutsch 
(1981a)), spread of disease (Pfeifer and Deutsch 
(1980a)), real estate prices (Pfeifer and Bodily, (1990)) 
spatial econometrics (Elhorst (2000), Climatic data 
(Subba and Antunes (2003)), Disease modelling (write 
modelling in the entire text) (Lee (2005)),Traffic flow 
data (Kamarianakis and Prastacos, (2005), Lin et al. 
(2009) and Ding et al. (2011)), Timber prices (Zhou 
and Buongiorno (2006)), Rural watersheds (Dalezios 
(1995)), Regional employment (Giacinto (2006), 
Solar radiation (Glasbey and Allcroft (2008)), Damage 
detection (Hu et al. (2011), GDP data (Nurhayati 
(2012)) and Regional bank deposits (Kurt and Tunay 
(2015)) etc. 

In spatio-temporal time series modelling defining 
of spatial weight matrix is key to model building 
which thusly decides the model accuracy. In STARMA 
modelling spatial weight matrix is characterized in light 
of scope and limitations of the study in different ways. 
Uniform weight matrix or homogenous spatial weight 
matrix is most ordinarily utilized as spatial weight 
matrix in STARMA modelling. The spatial weight 
matrix again relies on upon number of spatial lag, as 
number of spatial lag increases, it prompts modelling 
and computational challenges (Subba and Antunes 
2003). However, to improve the performance, second 
order spatial weight matrix has been considered to 
build STARMA model in this study. One of the major 
drawbacks of uniform spatial weight matrix is they do 
not consider the spatial dynamics and heterogeneity 
and intern fails to capture the spatial heterogeneity 
(Cheng et al. 2014). Therefore, to overcome this 
difficulty, the spatial weight matrix has been built 
using Euclidean distance of Riemannian great circle 
using longitude and latitude of the locations. The 
stationary homogenous spatial weight matrix has been 
constructed by assigning uniform weightage to all 
the neighbours. The proposed methodology has been 
implemented in both simulated as well as in actual 
data. As a contextual investigation, monthly maximum 
temperature of nine districts of North Karnataka is 
considered to build STARMA model. 
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1.1 ARIMA Model 

ARIMA is standout amongst the most conventional 
and broadly utilized model for time- series modelling 
due to by Box and Jenkins (1970). In contrast to the 
regression models, the ARIMA model allows to explain 
by its past, or lagged values and stochastic error terms. 
These models are often referred to as “mixed models” 
since they use a combination of autoregressive (AR), 
integration (I) referring to the reverse process of 
differencing to produce a stationary series and moving 
average (MA) operations. An ARIMA model is usually 
stated as ARIMA (p d q). 

An autoregressive integrated moving average 
model is expressed in the following expression 

 (1) 

 (2)

Where,  is the  time series, and θj are 
model parameters, is random error, p is number 
of autoregressive terms, q is number of lagged 
forecast errors and B is the backshift operator such 
that,  (Box and Jenkins (1970)). The 
ARIMA model building consists of three stages, viz. 
Identifi cation, estimation and diagnostic checking. 

1.2 STARMA Model 

The space-time models explain the systematic 
dependencies over both space and time is modelled 
through the class of STARMA models (Pfeifer and 
Deutsch,1980b). The autoregressive and moving 
average form of space time model represented by 
STARMA model are characterized by single variable 
Zi(t), observed at N fi xed spatial locations (i= 1, 2,…, N) 
on T time periods (t = 1, 2, . . ., T). The N spatial locations 
can be a geographical locations, viz. Ccountry, Sstate, 
etc. The spatial dependencies between N times series 
is incorporated through N*N spatial weight matrices. 
Analogous to univariate time series, Z(t) is expressed 
as a linear combination of past observations and errors. 
The STARMA model (Pfeifer and Deutsch, 1980a), 
denoted by 

can be represented in the matrix equation as follows;

 (3)

Where,  is a N × 1 
vector of observations at time t = 1,…, T, p is the 
autoregressive order (AR) with respect to time, q is the 
moving average order (MA) with respect to time,  
is the spatial order of the kth AR term, 
moving average order (MA) with respect to time, 

 is the spatial 
order of the kth MA term,  is the AR parameter at 
temporal lag k and spatial lag l (scalar), 

 is the AR parameter at 
 is the MA 

parameter at temporal lag k and spatial lag l (scalar) 
and 
parameter at temporal lag k and spatial lag 

 is the N*N spatial weight matrix with spatial 
order l with diagonal elements zero and non-diagonal 
elements is the relation between sites. The spatial 
weight matrix = IN i.e. Identity matrixand each row 
of 
weight matrix 

 must add up to one. The random error vector is 
normally distributed at time t with 

 must add up to one. The random error vector is 

,

 and 

.

There are two subclasses of the STARMA model, 
in equation (3) when q=0, only autoregressive terms 
remain and consequently the model progresses toward 
becoming space-time autoregressive or STAR model 
which is represented as follows:

 (4)

When p becomes 0, only moving average terms 
remains and hence the model becomes spacetime 
moving average or STMA model which is represented 
as follows; 

 (5)

Similar to Box-Jenkins univariate ARIMA 
methodology the STARMA model is also build 
by three stage procedures of model building viz., 
identifi cation, estimation and diagnostic checking, 
proposed by (Pfeifer and Deutsch, 1980b). The 
STARMA model is said to stationary if covariance 
structure of Z(t) does not change with time and every 
Z(t) lie inside the unit root circle i.e. the STAR model 
are invertible and STAMA models are stationary. The 
space time autocorrelation function (STACF) and 
space time partial autocorrelation function (STPACF) 
are used to identify the STAR and STMA order. Like 
univariate ARIMA model, the STAR and STMA model 
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orders are identifi ed in view of signifi cant STAR and 
STMA spikes. The space time autocorrelation function 
(STACF) between lth and kth order neighbour’s time lag 
apart (s=1,…,k and h=0,1,…, 

 order neighbour’
) is given underneath; 

 (6) 

The space time partial autocorrelation function 
(STPACF) is expressed in following equation; 

 (7)

 After the selection of model orders, the next 
step is to estimate the parameters of the model. 
If the residuals are found to be homogenous then 
conditional least square techniques is use to estimate 
the model parameters otherwise conditional maximum 
likelihood estimation method can be used. In light of 
STACF and STPACF of residuals, independency of 
residuals can be diagnosed. In the event that residuals 
are approximately white noise, the sample space-time 
autocorrelation functions ought to all be viably zero. 

1.3 Spatial Weight Matrix 

Building of spatial weight matrix plays a key role 
in STARMA modelling, the hierarchical ordering 
of neighbours of each site and the selection of an 
appropriate sequence of weighting matrices is a matter 
left to the model builder since more complex the weight 
matrix, more troublesome is to estimate the parameters 
of STARMA model. In majority of cases, the space 
pattern is assumed to be equal and regularly spaced 
to ease the model building. In majority applications, 
the uniform spatial weight matrix is only a simplifying 
assumption since typically the sites are irregularly 
spaced. A weight can be picked in different ways, the 
least diffi cult of which is the binary scheme, if two areas 
shared a common border then we relegate a weight as 
1otherwise 0(Griffi th (1996) and (2009)). Be that as 
it may, in spatial weight matrix, row normalization is 
a common practice i.e. making all rows sum to one 
is common practice. These weights, in any case, must 
refl ect a hierarchical ordering of spatial neighbours. 
First order neighbours are those which are closest to 
the chosen site. Second order neighbours are farther 
away than fi rst order neighbour’s, yet closer than third 
order neighbour’s. The spatial weight matrix again 
depends on number of spatial lag, as number of spatial 

lag increases, it prompts modelling and computational 
challenges (Subba and Antunes, 2003). However, 
to improve the performance, second order spatial 
weight matrix has been considered to build STARMA 
model in this study. The second order spatial weight 
matrix STARMA model in this paper is denoted as 
STARMA-II. 

1.4  Proposed method to construct the spatial 
weight matrix based on Riemannian great 
circle formula 

For each location, the Euclidean distance (in 
kilometres) between the sites is determined using the 
following expression:

 (8)

Where r, is radius of earth is assumed to be 6378.8 
kilometres and i, j=1,…, 9,  and  are the 
latitude and longitude of site i, respectively. Inverse 
Euclidean distance is considered to build the fi rst 
spatial order weight matrix. In this paper this method 
has been denoted as STARMA-III. 

1.5  derivation of Formulae for out of Sample 
Forecasts of STARMA model 

In this study, we confi ne our attention only to 
deriving out-of-sample of one-step and two-step 
ahead forecast formulae in respect of the STARMA 
(p, q) models. However, formulae for more than two-
step ahead forecasts, though quite complicated, can 
be derived along similar lines. The optimal predictor, 
which minimizes the mean one-step ahead squared 
prediction error is the conditional expectation, 
obtained from (3). 

1 1,2,..., 1
ˆ ˆ

t i t i t i t iZ Z+ + − + + −=

{ }1,ˆt i t iE z χ+ + −= Φ  (9)

Where, 1,tx −  is the information contain in 
0, 1,..., 1tX X X −  and Φ  is the parameter space.

Using recursive conditional approach, we get
( ) ( )

10 ( ) 1 11 ( ) 1 10 ( ) 1 11 ( ) 11
ˆ ˆˆ ˆˆ l l

t i t i t i t it i t iz z w z wφ φ θ ε θ ε+ − + − + − + −+ + − = − − + −

 (10)
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Formulae for two step ahead  out of sample 
forecasts are derived analytically by recursive use of 
conditional expectation

1 1 11,2,..., 1ˆ ˆt i t i t i t iz z+ + + − + + + −=

{ }1 1,t i t iE z x+ + + −
 = Φ 

1 , 1,[ ]t i t i t iE E z x xθ+ + + + −
 = Φ 

( ) ( )
10 11 10 111 1

ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆl l
t i t i t i t it i t iz z w z wφ φ θ ε θ ε+ + + ++ + + − = − − + −

 (11)

2. SIMULATIoN STUdY 

The data matrix for the STARMA model has been 
simulated in STARMA framework. All the simulations 
reported were performed using normal random 
numbers. The simulations are designed to show 
the STARMA model building and forecasting. The 
data was simulated from a system of nine locations 
distributed spatially on a regular grid with weighting 
matrix based on the parameters given in table (Table 
No.). The data matrix has been generated with the 
following model specifi cations; 

 (11)

200 observations were simulated over 9 locations. 
Among 200 observations 190 were used as training set 
and 10 were used as testing data. For simulation study 
the weight matrices has been generated randomly 
(Table 2 and 3). The Inverse distance spatial weight 
matrix has been constructed using longitude and 
latitude of different locations (Table 5). The univariate 
Box Jenkins ARIMA modelling for simulated data has 

Table 1. Spatial weight matrix of order zero. 

Location L1 L2 L3 L4 L5 L6 L7 L8 L9 

L1 1 0 0 0 0 0 0 0 0 

L2 0 1 0 0 0 0 0 0 0 

L3 0 0 1 0 0 0 0 0 0 

L4 0 0 0 1 0 0 0 0 0 

L5 0 0 0 0 1 0 0 0 0 

L6 0 0 0 0 0 1 0 0 0 

L7 0 0 0 0 0 0 1 0 0 

L8 0 0 0 0 0 0 0 1 0 

L9 0 0 0 0 0 0 0 0 1 

Table 2. First order spatial weight matrix for simulated data 

Location L1 L2 L3 L4 L5 L6 L7 L8 L9

L1 0 0.50 0 0.50 0 0 0 0 0

L2 0.33 0 0.33 0 0.33 0 0 0 0

L3 0 0.50 0 0 0 0.50 0 0 0

L4 0.33 0 0 0 0.33 0 0.33 0 0

L5 0 0.25 0 0.25 0 0.25 0 0.25 0

L6 0 0 0.33 0 0.33 0 0 0 0.33 

L7 0 0 0 0.50 0 0 0 0.50 0 

L8 0 0 0 0 0.33 0 0.33 0 0.33 

L9 0 0 0 0 0 0.50 0 0.50 0 

Table 3. Second order spatial weight matrix for simulated data 

Location L1 L2 L3 L4 L5 L6 L7 L8 L9 

L1 0 0 0.33 0 0.33 0 0.33 0 0 

L2 0 0 0 0.33 0 0.33 0 0.33 0 

L3 0.33 0 0 0 0.33 0 0 0 0.33 

L4 0 0.33 0 0 0 0.33 0 0.33 0 

L5 0.25 0 0.25 0 0 0 0.25 0 0.25 

L6 0 0.33 0 0.33 0 0 0 0.33 0 

L7 0.33 0 0 0 0.33 0 0 0 0.33 

L8 0 0.33 0 0.33 0 0.33 0 0 0 

L9 0 0 0.33 0 0.33 0 0.33 0 0 

Table 4. Row normalized Inverse distance spatial weight matrix 

Location L1 L2 L3 L4 L5 L6 L7 L8 L9 

L1 0 0.1529 0.1128 0.1093 0.1022 0.1002 0.1071 0.1928 0.1227 

L2 0.1172 0 0.2116 0.1169 0.1219 0.1159 0.1146 0.1073 0.0947 

L3 0.0773 0.1893 0 0.1176 0.1513 0.1570 0.1312 0.0874 0.0888 

L4 0.0831 0.1161 0.1306 0 0.2527 0.1347 0.1063 0.0844 0.0921 

L5 0.0642 0.0999 0.1386 0.2086 0 0.2032 0.1250 0.0726 0.0878 

L6 0.0599 0.0905 0.1371 0.1059 0.1936 0 0.2315 0.0767 0.1047 

L7 0.0683 0.0954 0.1221 0.0892 0.1270 0.2467 0 0.0972 0.1542 

L8 0.1628 0.1183 0.1077 0.0936 0.0977 0.1082 0.1287 0 0.1830 

L9 0.0966 0.0973 0.1020 0.0953 0.1101 0.1378 0.1903 0.1706 0 
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Table 5. Longitude and Latitude of locations under consideration 

Sl.No. Location Latitude Longitude 

1 Gulbarga 17.31320N 76.87497E 

2 Bijapur 16.82754N 75.72532E 

3 Raichur 16.20082N 77.36228E 

4 Bagalkot 16.18170N 75.69580E 

5 Belgaum 15.85037N 74.50465E 

6 Dharwad 15.46025N 75.01028E 

7 Gadag 15.423302N 75.603708E 

8 Koppal 15.35070N 76.155434E 

9 Bellary 15.13940N 76.92140E 

Table 6. Univariate modelling of simulated data 

Location Model 
AR 

Parameters 
MA 

Parameters 

AR1 AR2 MA1 MA2 

L1 ARIMA 
(101) 

0.25 
(0.011) 

- 0.35 
(0.012) 

- 

L2 ARIMA 
(100) 

0.53 
(0.06) 

- - - 

L3 ARIMA 
(101) 

0.47 
(0.010) 

- 0.29 
(0.014) 

- 

L4 ARIMA 
(101) 

0.15 (0.07) - -0.23 
(0.02) 

- 

L5 ARIMA 
(100) 

0.51 (0.06) - - 

L6 ARIMA 
(200) 

0.66 (0.07) -0.04 
(0.06) 

- 

L7 ARIMA 
(102 

0.55 (0.06) -0.07 
(0.03) 

-0.816 
(0.040) 

- 

L8 ARIMA 
(100) 

0.42 (0.011) - -0.65 
(0.012) 

-0.30 
(0.024) 

L9 ARIMA 
(101) 

0.59 (0.07) - 0.31 (0.09) - 

Table 8. Model Performance (MAPE) under testing data set (2-steps- ahead forecast) 

obs. 

Location 1 Location 2 Location 3 

Actual 
Forecast 

Actual 
Forecast 

Actual 
Forecast 

ARMA STARMA-I STARMA-
II 

STARMA-
III ARMA STARMA-I STARMA-

II 
STARMA-

III ARMA STARMA-I STARMA-
II 

STARMA-
III 

1 39.86 40.14 40.02 39.93 39.78 42.16 40.54 41.02 41.74 42.74 39.97 40.83 40.72 40.63 40.42 

2 41.06 39.93 39.97 40.12 40.29 40.04 40.31 40.78 40.23 40.12 40.00 38.88 39.1 39.24 39.57 

3 38.88 39.87 38.81 38.14 38.65 38.47 40.18 40.02 39.92 39.62 40.17 39.00 39.5 39.63 39.87 

4 36.92 39.86 37.12 36.18 36.35 39.96 40.11 39.78 40.98 40.17 38.44 37.11 37.64 37.69 37.92 

5 37.69 39.08 38.98 38.08 38.03 39.81 40.07 39.89 40.1 39.7 39.96 40.90 40.83 40.78 40.67 

6 37.67 39.76 39.23 38.34 38.13 39.45 40.05 40.25 40.56 40.78 39.96 38.92 40.67 40.62 40.47 

7 38.58 39.96 39.87 39.84 39.91 39.30 40.04 39.9 38.94 38.94 40.36 39.19 39.23 39.67 39.89 

8 38.39 39.86 39.86 39.6 39.13 40.79 40.04 40.47 40.87 40.83 39.12 39.92 40.03 39.82 39.74 

9 39.90 39.84 40.4 40.12 40.11 40.58 40.03 40.63 40.59 40.51 39.97 38.76 38.81 39.5 39.78 

10 40.09 41.06 42.27 42.23 42.11 41.47 40.03 40.16 40.32 40.5 40.00 42.62 42.54 41.56 41.05 

MAPE 3.32 2.52 2.15 1.73 MAPE 2.00 1.68 1.52 1.22 MAPE 3.08 2.6 1.91 1.32 

been depicted in Table 6. Finally, the modelling and 
forecasting performance is depicted in Table 7 to 10. 
The results clearly indicated that the STARMA model 
outperformed the ARIMA model in all 9 locations. 
Further the proposed STARMA models STARMA-II 
and STARMA-III outperformed over the ARIMA 
model and STARMA-I (First order uniform spatial 
weight matrix STARMA model). 

Table 7. Model Performance (MAPE) under training data set 

Sl. 
No Location ARIMA STARMA-I STARMA-

II 
STARMA-

III 

1 L1 2.04 1.57 1.54 1.42 

2 L2 2.14 1.67 1.63 1.55 

3 L3 1.84 1.57 1.49 1.38 

4 L4 1.96 1.54 1.43 1.40 

5 L5 2.07 1.62 1.58 1.45 

6 L6 1.92 1.48 1.45 1.41 

7 L7 1.99 1.75 1.72 1.68 

8 L8 2.02 1.54 1.50 1.44 

9 L9 1.93 1.51 1.48 1.39 

3.  APPLIcATIoN: A cASE STUdY oF 
MAxIMUM TEMPERATURE oF NoRTh 
KARNATAKA 

In this study monthly mean maximum temperature 
of nine districts viz., Gulbarga, Bijapur, 

Raichur, Bagalkot, Belgaum, Dharwad, Gadag, 
Koppal and Bellary of North Karnataka state of 
India are considered to model and forecast using 
STARMA model. Data on monthly maximum 
temperature (oC) of north Karnataka districts from 
January, 2000 to August, 2016 were collected from 
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Table 9. Model Performance (MAPE) under testing data set (2-steps- ahead forecast) 

obs. 

Location 4 Location 5 Location 6 

Actual 

Forecast 

Actual 

Forecast 

Actual 

Forecast 

ARMA STARMA-I STARMA-II STARMA-
III ARMA STARMA-I STARMA-II STARMA-

III ARMA STARMA-I STARMA-II STARMA-
III 

1 40.35 39.93 40.03 40.17 40.23 42.31 41.11 41.32 41.25 41.7 41.08 39.21 39.3 40.25 40.48 

2 39.56 40.25 40.17 40.13 39.86 41.02 40.53 40.63 40.711 40.92 41.14 39.47 40.2 40.34 40.55 

3 38.77 40.40 39.93 39.54 39.05 40.61 40.23 40.72 40.56 40.65 41.37 39.63 39.97 40.12 40.75 

4 38.56 40.42 40.11 39.85 39.16 41.45 40.08 41.12 41.2 41.35 41.50 39.72 40.25 40.45 40.75 

5 39.17 40.41 40.24 40.13 39.6 41.81 40.00 41.15 41.45 41.7 41.19 39.78 40.03 40.44 40.72 

6 38.80 41.08 39.72 39.17 39.01 40.46 41.97 41.5 41.25 41.05 40.46 39.81 39.98 40.117 40.5 

7 40.13 41.17 40.98 40.64 40.53 40.61 39.95 40.16 40.55 40.57 41.33 41.83 41.72 41.61 41.52 

8 40.60 40.34 40.43 40.32 40.25 40.90 39.94 39.97 40.16 39.97 41.42 39.84 40.25 40.33 40.75 

9 40.35 41.04 40.89 40.76 40.5 42.31 38.91 39.18 40.28 40.5 41.72 39.81 40.2 40.34 40.32 

10 39.56 42.10 41.86 41.24 41.05 41.02 40.93 40.98 41.08 41.05 40.64 39.85 40.1 40.15 40.3 

MAPE 3.22 2.41 1.78 1.09 MAPE 2.82 1.93 1.36 1.04 MAPE 3.70 2.57 2 1.37 

Table 10. Model Performance (MAPE) under testing data set (2-steps- ahead forecast) 

obs. 

Location 7 Location 8 Location 9 

Actual 

Forecast 

Actual 

Forecast 

Actual 

Forecast 

ARMA STARMA-I STARMA-II STARMA-
III ARMA STARMA-I STARMA-II STARMA-

III ARMA STARMA-I STARMA-II STARMA-
III 

1 40.17 41.55 41.2 41.12 40.7 41.74 40.20 40.32 40.85 41.2 41.28 40.34 39.85 40.2 40.85 

2 40.21 42.25 41.5 41.45 41.02 39.66 40.76 40.15 40.06 39.98 40.71 39.80 40.04 40.15 40.3 

3 38.77 41.8 40.05 39.95 39.55 39.64 40.99 40.25 40.05 39.9 41.23 40.48 40.89 40.92 41.1115 

4 41.35 40.01 40.45 40.7 40.85 41.09 42.64 42.24 41.75 39.97 40.54 40.29 40.7 40.46 40.6 

5 39.13 41.25 40.75 40.25 40.68 39.43 40.92 40.56 40.32 40 41.60 40.17 40.48 40.55 40.62 

6 37.60 39.24 39.02 38.92 38.2 37.80 41.61 39.5 39.2 39.4 41.32 42.11 41.86 41.45 41.4 

7 37.51 39.1 38.115 38.15 37.98 37.99 40.12 39.65 39.06 38.7 41.09 41.97 41.7 41.65 41.5 

8 38.89 38.12 38.6 38.55 38.62 38.98 40.98 40.25 39.78 39.93 42.01 40.05 41.1 41.25 41.45 

9 38.78 37.89 37.15 37.33 37.5 42.22 39.91 40.75 40.97 40.88 39.31 38.03 38.25 38.3 38.9 

10 40.95 38.11 39.25 39.55 39.56 40.68 43.16 42.16 41.8 40.7 39.52 41.02 40.95 40.85 40.78 

MAPE 4.47 2.98 2.61 2.07 MAPE 4.98 3.1 2.23 1.86 MAPE 2.62 2.02 1.7 1.16 

Table 11. Descriptive Statistics of maximum temperature of North Karnataka 

Locations Mean S. d Minimum Maximum Skewness Kurtosis c.V (%) 

Gulbarga 34.06 4.01 28.7 42.78 0.68 -0.83 11.79 

Bijapur 32.95 3.79 26.73 41.69 0.67 -0.68 11.49 

Raichur 34.47 3.54 29.71 43.71 0.74 -0.66 10.26 

Bagalkot 32.6 4.03 26.04 42.5 0.63 -0.65 12.35 

Belgaum 31.41 4.53 22.82 42.1 0.08 -0.82 14.42 

Dharwad 31.94 4.1 24.97 41.48 0.63 -0.58 12.84 

Gadag 31.98 4.13 24.96 41.73 0.67 -0.53 12.92 

Koppal 32.87 3.91 27.46 42.31 0.71 -0.63 11.90 

Bellary 33.82 3.55 28.61 43.48 0.68 -0.75 10.51 
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Fig. 1. Geographical map of Karnataka 

Fig. 2. Map of districts/locations considered 

1. Gulbarga 
2. Bijapur
3. Bagalkot
4. Belgaum 
5. Dharwad 
6. Gadag
7. Koppal
8. Raichur
9. Bellary

global weather data portal developed by The National 
Centre for Environmental Prediction (NCEP), Texas 
A&M University (http://globalweather.tamu.edu). 
The data from January, 2000 to August, 2015 is 
used for model building and data from September, 
2015 to August, 2016 is used for model validation 
(Forecasting performance). Regardless of the study, 
descriptive statistics of all nine districts (Locations) 
are ascertained to comprehend the nature of data 
under consideration (Table 11). By observing values 

Fig. 3. Original time series of monthly mean maximum temperature of 
North Karnataka

Fig. 4. ACF plots of original monthly mean maximum temperature time 
series of North Karnataka

Fig. 5. PACF plots of original monthly mean maximum temperature time 
series of North Karnataka
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of skewness and kurtosis, one can infer that, the data 
under consideration follows Gaussian distribution. 
The time series plots of each series plotted in figure 3 
indicates presence of seasonality, subsequently the 
original series are seasonally adjusted. 

3.1  Fitting of univariate ARIMA models to 
maximum temperature series 

The univariate ARIMA model has been fitted 
for all districts separately. The ACF and PACF plots 
of original series (Figure 4 & 5) indicates the series 
is having seasonal effect. In this way, for effective 
modelling and forecasting the time series, data are 
seasonally adjusted by removing the seasonal effect. 
The ACF and PACF plots of seasonally adjusted 
series (Figure 6 & 7) unmistakably indicates, series 
are free of seasonality and are found to be stationary. 
Therefore, the series were seasonally adjusted. 

Fig. 6. ACF plots of seasonally adjusted monthly mean maximum 
temperature time series of North Karnataka 

Fig. 7. PACF plots of seasonally adjusted monthly mean maximum 
temperature time series of North Karnataka (Gulbarga data like that may 

be mentioned everywhere)

The Box-Jenkins univariate ARIMA model 
has been fitted for all 9 locations separately. The 
best candidate ARIMA model has been selected 
automatically by auto.arima function in R package 
‘forecast’. The autoregressive and moving average 
parameters of respective models of 9 locations 
alongside standard errors are mentioned in Table 12. 
After the candidate model selection and parameters 
estimation by maximum likelihood estimation 
method, diagnostic checking of residuals is important. 
Ljung-Box test statistic has been employed to check 
the efficacy of the selected model. Chi-square value 
of Ljung-Box test statistic (Table 13) unmistakably 
uncovers that residuals of each models are non-
noteworthy. Further, performance of selected models 
under training data set (model building) and testing 
data set (model validation) using mean absolute 
percentage error (MAPE) has been reported in table 
20 to 23. 

Table 12. Univariate ARIMA model fitting for seasonally adjusted monthly maximum temperature of North Karnataka

Location Model Intercept 
AR Parameters MA Parameters 

AR1 AR2 AR3 MA1 MA2 MA3 MA4 

Gulbarga ARIMA (100) 33.80 (0.15) 0.486 (0.066) - - - - - - 

Bijapur ARIMA (100) 32.82 (0.178) 0.542 (0.064) - - - - - - 

Raichur ARIMA (002) 34.52 (0.143) - - - 0.618 (0.072) 0.201 (0.072) - - 

Bagalkot ARIMA (203) 32.24 (0.142) 0.28 (0.033) -0.24 (0.028) - -0.134 (0.076) 0.299 (0.102) 0.293 (0.068) - 

Belgaum ARIMA (302) 31.08 (0.455) 0.579 (0.051) -0.85 (0.087) 0.6538 (0.049) -0.726 (0.045) 0.782 (0.036) - - 

Dharwad ARIMA (204) 31.67 (0.203) 0.692 (0.030) -0.64 (0.027) - -0.376 (0.080) 0.176 (0.107) 0.236 (0.103) 0.136 (0.070) 

Gadag ARIMA (303) 31.59 (0.159) 0.625 (0.040) -0.891 (0.0669) 0.239 (0.0374) -0.316 (0.0407) 0.487 (0.0473) 0.193 (0.0250) - 

Koppal ARIMA (100) 32.699 (0.273) 0.672 (0.056) - - - - - - 

Bellary ARIMA (200) 33.782 (0.209) 0.786 (0.072) -0.161 (0.080) - - - - - 
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Table 13. Diagnostic checking of ARIMA model of maximum 
temperature time series of Karnataka 

Time-series Box-Ljung statistic Probability 

Gulbarga 6.23 0.858 

Bijapur 12.50 0.328 

Raichur 9.10 0.613 

Bagalkot 11.45 0.407 

Belgaum 8.47 0.671 

Dharwad 12.90 0.300 

Gadag 9.20 0.608 

Koppal 7.09 0.792 

Bellary 18.508 0.070 

3.2  construction of spatial weight matrix for 
maximum temperature series 

As explained in methodology section, the spatial 
weight matrix has been constructed by assigning 
equal weightage to each neighbours. The map of nine 
locations under consideration is delineated in Figure 2 
and each location are represented by numbers from 
one to nine. In light of the neighbouring locations, 
connectivity spatial weight matrices have been 
considered. For instance, for location 1, location 2 and 

location 8 are fi rst order neighbours. Again, 3, 6 and 
7 are second order neighbours to location one. In a 
similar manner, fi rst and second order neighbours for 
all nine locations are reported in table 5. In light of the 
numbers of neighbours, the spatial weights have been 
doled out to each location. In uniform spatial weight 
matrix equal weights are relegate to each neighbours. 
To make row normalization i.e. making all rows sum to 
one we divide, one by number of neighbours (correct 
neighbours in the entire document) i.e. , here n is 
number of neighbours. For example, for fi rst location 
(Gulbarga) there are two fi rst order neighbours, then 
we divide one by two and assign 0.5 as weight to each 
locations. As we calculated weight for fi rst location, 
one can proceed in same manner to calculate weights 
for all nine locations. In light of this procedure fi rst 
order spatial weight matrix has been calculated in 
table 14. As explained in methodology section, in this 
article attempt has been made to incorporate second 
order spatial weight matrix in STARMA model. For 
fi rst location 3, 6 and 7 are second order neighbours, 
then we divide one by three and assign 0.33 as weight 
to each locations; in the same manner one can proceed 
further to calculate weights to all nine locations for 
second order neighbours. The second order spatial 
weight matrix for all nine locations are depicted in table 
16. To compute STACF and STPACF fi rst order spatial 
weight matrix (Table 15) is need to be incorporate in 
the model. In fi rst order spatial weight matrix, since 
we do not assign weights to any neighbours, diagonal 
elements end up noticeably equal to one. The proposed 
inverse distance matrix (Table 4) has been constructed 
using Euclidean distance of Riemannian great circle 
using longitude and latitude of the locations under 
consideration (Table 5). 

Table 14. Neighbours of each site for each spatial order 

Location
order

1 2
1 2,8 3,6,7
2 1,3 4,8,7
3 2,4,5,6 7,8
4 3,5 2
5 3,4,6 9
6 3,5,7,9 2,8
7 6,8,9 1,2,3
8 1,7,9 2,3,6
9 6,7,8 5

Table 15. First order spatial weight matrix for Maximum temperature data 

Location Gulbarga Bijapur Raichur Bagalkot Belgaum dharwad Gadag Koppal Bellary 

Gulbarga 0 0.5 0 0 0 0 0 0.5 0 

Bijapur 0.5 0 0.5 0 0 0 0 0 0 

Raichur 0 0.25 0 0.25 0.25 0.25 0 0 0 

Bagalkot 0 0 0.5 0 0.5 0 0 0 0 

Belgaum 0 0 0.33 0.33 0 0.33 0 0 0 

Dharwad 0 0 0.25 0 0.25 0 0.25 0 0.25 

Gadag 0 0 0 0 0 0.33 0 0.33 0.33 

Koppal 0.33 0 0 0 0 0 0.33 0 0.33 

Bellary 0 0 0 0 0 0.33 0.33 0.33 0 
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Fig. 8. STACF plots of original monthly mean maximum temperature 
time series of North Karnataka 

Fig. 9. STPACF plots of original monthly mean maximum temperature 
time series of North Karnataka 

Fig. 10. STPACF plots of seasonally adjusted monthly mean maximum 
temperature time series of North Karnataka

3.3 STARMA model fitting 

In this article, STARMA model was estimated 
using the three stage procedure due to Pfeiffer and 
Deutsch (Pfeiffer and Deutsch, 1980a). As discussed in 
methodology section, STARMA estimation procedure 
is extension of Box-Jenkins ARIMA methodology in 
spatio-temporal set up. As in ARMA, it has three stages 
of model building viz., model identification, estimation 
and diagnostic checking. Model identification is most 
vital stride to utilize the forms of spatio-temporal 
models viz., STAR, STAMA and STARMA. TACF 
and PACF plots of original series are depicted in fig. 8 
and 9 and which indicates the presence of seasonality, 
therefore, the data has been adjusted seasonally and 
STACF and STPACF plot plotted of the seasonally 
adjusted series are plotted in fig. 10 and 11. Based on 
the significant spikes in STACF and STPACF plots, 
the STARMA (1 0 1) model has been selected. 

Parameters of the identified models are estimated 
using maximum likelihood method and are given in 
Table 17 (First order STARMA), Table 18 (Second 
order STARMA) and Table 19 (Inverse distance 
STARMA) alongside their standard errors and 
probability values. The estimated parameters are 
then consolidated in the model and predicted values 
were obtained. For diagnostic checking, multivariate 
Box-Pierce Non Correlation test is applied and the 
residuals are observed to be non-correlated. Further, 
performance of models under consideration for 
training data set (model building) and testing data set 
(model validation) utilizing mean absolute percentage 
error (MAPE) obtained are presented in Table 20 to 23. 

Table 16. Second order spatial weight matrix 

Location Gulbarga Bijapur Raichur Bagalkot Belgaum dharwad Gadag Koppal Bellary 
Gulbarga 0 0 0.33 0 0 0.33 0.33 0 0 
Bijapur 0 0 0 0.33 0 0 0.33 0.33 0 
Raichur 0 0 0 0 0 0 0.5 0.5 0 
Bagalkot 0 1 0 0 0 0 0 0 0 
Belgaum 0 0 0 0 0 0 0 0 1 
Dharwad 0 0.5 0 0 0 0 0 0.5 0 

Gadag 0.33 0.33 0.33 0 0 0 0 0 0 
Koppal 0 0.33 0.33 0 0 0.33 0 0 0 
Bellary 0 0 0 0 1 0 0 0 0 
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Fig. 11. STPACF plots of seasonally adjusted monthly mean maximum 
temperature time series of North Karnataka 

Table 17. STARMA-I Model parameters 

Spatial lag 
Slag 0 Slag 1

AR MA AR MA 

Parameters 0.79 0.23 -0.14 -0.15 

(0.019) (0.04) (0.02) (0.04) 

Probability <0.0011 <0.0011 <0.0011 <0.0011 

Multivariate Box-Pierce Non Correlation Test of residuals: Chi-
square=62.13 (p=0.21) Values in the parenthesis indicates the 
standard error 

Table 18. STARMA-II Model parameters 

Spatial lag 
Slag 0 Slag 1 Slag 2 

AR MA AR MA AR MA 

Parameters 0.66 
(0.023) 

0.119 
(0.010) 

0.171 
(0.052) 

0.213 
(0.0157) 

0.79 
(0.089) 

0.28 
(0.116) 

Probability <0.001 <0.001 0.013 0.004 <0.001 0.010 

Multivariate Box-Pierce Non Correlation Test of residuals: Chi-
square=69.86 (p=0.31) Values in the parenthesis indicates the 
standard error

Table 19. STARMA-III Model parameters 

Spatial lag 
Slag 0 Slag 1 

AR MA AR MA 

Parameters 0.81 0.25 -0.18 -0.17 

(0.02) (0.04) (0.03) (0.05) 

Probability <0.001 <0.001 <0.001 <0.001 

Multivariate Box-Pierce Non Correlation Test of residuals: Chi-
square=65.19 (p=0.25) Values in the parenthesis indicates the 
standard error

4.  coMPARISoN oF FoREcASTING 
PERFoRMANcE 

The Mean Absolute Percentage Error (MAPE) 
has been computed to compare the forecasting 
performances of all the models under considerations 
for both training and validation data set for all the 
locations separately. The MAPE values under training 
and testing data set for simulated data is given in Table 
7 to 10 and for maximum temperature series of North 
Karnataka, MAPE values for training and testing data 
set is given in Table 20 to Table 23. In view of the 
lowest MAPE values of the proposed STARMA model 
for all the locations, it is confirmed that STARMA 
model performed better than the Box-Jenkins ARIMA 
model in all the locations for training data set. Further, 
two- steps- ahead forecasts were calculated to carry 
out the model validation. In view of results obtained, 
it is unmistakably indicating that STARMA model 
likewise performed better than the Box-Jenkins ARMA 
models for all nine locations for test data set. The 
second order spatial lag STARMA model performed 
better than ARIMA and first order STARMA model, 
it clearly reveals that second order STARMA model 
tends towards optimality and admissibility over first 
order STARMA model. Finally, the inverse distance 
STARMA model (STARMA-III) performed best over 
remaining models in both simulated as well as actual 
data set. 

5. coNcLUSIoN

Box-Jenkins univariate ARIMA models are 
most popularly used in univariate time series cases, 
whereas their applications are limited when it comes 
to multivariate spatio-temporal time series analysis. 

Table 20. Model Performance (MAPE) under training data set 

Sl. 
No Location ARIMA STARMA-I STARMA-II STARMA-III 

1 Gulbarga 2.54 1.33 1.30 1.25 

2 Bijapur 2.73 1.31 1.29 1.19 

3 Raichur 2.36 1.25 1.24 1.18 

4 Bagalkot 2.80 1.53 1.49 1.42 

5 Belgaum 3.42 2.13 2.07 1.89 

6 Dharwad 3.31 1.71 1.69 1.58 

7 Gadag 2.97 1.61 1.56 1.51 

8 Koppal 2.89 1.49 1.41 1.36 

9 Bellary 2.45 1.36 1.24 1.18 
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Table 21. Model Performance (MAPE) under testing data set (2-steps- ahead forecast) 

Series 

Gulbarga Bijapur Raichur

Actual 
Forecast 

Actual 
Forecast 

Actual 
Forecast 

ARMA STARMA-I STARMA-
II 

STARMA-
III ARMA STARMA-I STARMA-

II 
STARMA-

III ARMA STARMA-I STARMA-
II 

STARMA-
III 

Sep-15 36.1 36.99 36.85 36.78 36.2 33.5 35.16 32.55 32.6 32.9 35.8 33.4 36.9 36.6 35.56 

Oct-15 37.2 34.87 37.89 38.65 37.5 34.4 34.09 33.7 33.9 34 36.1 32.7 37.28 37.1 37.02 

Nov-15 36.2 34.32 38.28 37.98 37.1 32.5 33.51 33.89 33.7 33.02 34.9 31.4 33.1 35.5 33.98 

Dec-15 35.8 34.06 37.6 37.25 37.1 32.8 33.19 33.92 34 32.95 35.4 30.8 34.18 36.2 34.8 

Jan-16 34.5 33.93 37.11 36.92 36.7 32.2 33.02 33.5 33.4 32.9 34.3 31.5 35.89 35.6 35.22 

Feb-16 38.8 33.87 40.12 39.55 39.3 36.0 32.93 36.95 36.9 36.15 38.9 34 39.2 40.7 38.78 

Mar-16 41.4 33.84 43.98 43.56 43.1 38.7 32.88 40.03 40.1 39.25 41.7 37.5 43.27 43 42.3 

Apr-16 42.1 33.82 43.75 43.15 43 41.7 32.85 42.98 42.5 41.05 43.7 40.1 44.55 44.4 44.03 

May-16 42.8 33.81 43.9 43.2 41.7 40.6 32.84 41.75 41.3 41.25 42.1 40.5 44.75 44.9 43.2 

Jun-16 36.4 33.75 37.25 35.9 35.3 33.5 32.83 34.86 34.2 34.18 36.0 35.8 38.25 37.6 36.29 

Jul-16 33.4 33.82 31.1 31.25 31.8 31.0 32.83 28.2 29.3 28.9 34.1 32.6 36.75 36.8 35.9 

Aug-16 34.1 33.85 32.12 31.87 32.2 31.7 32.82 28.8 29.7 29.1 35.2 32.3 37.85 37.3 37.85 

MAPE 8.45 4.45 3.89 3.08 MAPE 7.33 4.23 3.28 2.42 MAPE 7.94 4.5 3.93 2.41 

Table 22. Model Performance (MAPE) under testing data set (2-steps- ahead forecast) 

Series 

Bagalkot Belgaum dharwad 

Actual 
Forecast 

Actual 
Forecast 

Actual 
Forecast 

ARMA STARMA-I STARMA-
II 

STARMA-
III ARMA STARMA-I STARMA-

II 
STARMA-

III ARMA STARMA-I STARMA-
II 

STARMA-
III 

Sep-15 34.7 32.9 35.4 35.25 35.02 34.7 36.75 35.75 35.6 35.12 33.3 35.60 34.2 33.83 33.5 

Oct-15 35.1 32.7 36.83 36.5 36.03 35.5 35.38 36.35 36.2 35.8 34.6 34.15 36.5 36.2 35.85 

Nov-15 33.3 31.3 35.5 35.2 34.89 35.2 33.81 37.16 37 37.12 32.8 34.23 34 33.5 33.95 

Dec-15 33.9 30.9 35.6 34.89 34.25 35.1 32.32 35.75 35.9 35.65 33.8 33.63 34.75 34.3 34.62 

Jan-16 33.6 31.8 33.9 33.95 33.4 34.2 31.19 36.74 36.4 36.75 33.1 32.54 35.1 34.9 34.12 

Feb-16 37.3 34.6 38.8 38.56 37.85 37.4 30.61 38.98 38.7 38 36.5 31.28 38.1 37.9 37.95 

Mar-16 40.6 37.7 42.3 41.46 40.95 40.3 30.65 42.3 41.6 41.11 38.9 30.19 41.2 40.9 39.45 

Apr-16 42.5 40.1 43.75 42.9 42.95 42.1 31.20 43.87 43.6 43.65 40.8 29.56 41.75 41.6 41.25 

May-16 40.9 38.9 43.8 42.19 42.25 40.2 32.06 42.56 42 42.25 38.6 29.54 39.8 37.5 37.5 

Jun-16 33.9 32.8 36.8 34.28 34.35 34.2 32.95 35.5 34.1 34.15 32.1 30.08 34.98 34.7 33.3 

Jul-16 31.4 29 32.9 32.75 32.25 30.6 33.60 28.75 29.8 29.75 29.3 31.01 27.15 27.8 28.11 

Aug-16 32.2 29 31 31.2 31.2 31.7 33.82 30.94 31.4 31.15 29.8 32.07 30.75 30.2 30.25 

MAPE 6.49 4.56 2.77 1.98 MAPE 11.27 4.31 3.08 2.68 MAPE 10.18 4.66 3.63 2.65 

Table 23. Model Performance (MAPE) under testing data set (2-steps- ahead forecast) 

Series 

Gadag Koppal Bellary 

Actual 
Forecast 

Actual 
Forecast 

Actual 
Forecast 

ARMA STARMA-I STARMA-
II 

STARMA-
III ARMA STARMA-I STARMA-

II 
STARMA-

III ARMA STARMA-I STARMA-
II 

STARMA-
III 

Sep-15 34.0 32.41 34.85 34.7 34.11 34.4 34.2 36.21 35.89 35 35.75 38.14 36.30 36.12 35.78 

Oct-15 34.3 33.74 35.4 34.8 34.74 35.3 34.0 35.06 36.22 36 35.89 36.06 37.10 36.50 36.12 

Nov-15 32.8 33.31 34 33.25 33.02 32.0 32.6 34.29 33.55 32.9 32.33 34.87 36.70 35.20 34.56 

Dec-15 33.4 32.64 35.1 34.9 33.99 34.4 32.5 33.77 36.89 36 35.11 34.27 36.40 36.12 36.04 

Jan-16 32.3 31.75 33.3 33.5 33.6 33.5 33.5 33.42 35.55 35.6 35 33.99 35.90 35.75 35.12 

Feb-16 36.2 30.86 37.9 37.05 37.12 37.2 36.2 33.18 38.91 38.7 38.23 33.87 39.50 39.25 39.22 

Mar-16 38.9 30.19 40.4 39.12 39 39.6 39.4 33.02 41.55 41.2 41.25 33.82 40.60 40.80 40.95 

Apr-16 41.7 29.92 43.4 42.77 42.33 42.3 42.4 32.92 43.88 43 43.33 33.80 44.20 43.65 43.50 

May-16 39.2 30.11 40.8 40.11 40 40.2 41.6 32.85 39.44 39.6 39.15 33.79 40.90 40.65 40.05 

Jun-16 32.6 30.69 35.7 34.25 34.1 34.1 35.4 32.80 32.75 32.8 33.25 33.78 35.80 34.45 34.65 

Jul-16 31.2 31.49 33.8 33.22 33.06 32.1 32.3 32.77 33.5 33.2 32.5 33.60 33.00 33.20 32.60 

Aug-16 33.0 32.30 33.9 33.88 33.75 33.5 32.7 32.74 32.15 32.7 32.96 33.64 34.90 35.10 34.11 

MAPE 9.11 4.56 2.92 2.27 MAPE 7.6 4.38 3.19 2.54 MAPE 7.70 4.26 3.10 2.05 
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As contrast to univariate ARIMA model, STARMA 
models have less number of parameters. For the 
illustrated data set, the STRAMA model has only four 
parameters for all the nine locations, whereas ARIMA 
has ARIMA has numerous parameters, under such 
cases over parameterization may prompt to lower sum 
of squares of residuals. Based on the results obtained 
one can infer that STARMA model outperformed 
the univariate ARIMA models. Again the proposed 
STARMA model performed better as compared to the 
univariate ARIMA and classical STARMA models 
in both training and testing data set respectively. The 
proposed models are validated by obtaining out of 
sample forecast for last twelve months’ data set. The 
out performance of STARMA model over univariate 
ARMA model could be because of the inclusion of 
spatial information i.e. neighbouring effect in the form 
of spatial weight matrix (Information matrix). Further, 
the proposed STARMA model which addresses the 
optimality, admissibility and spatial heterogeneity 
outperformed over traditional models 
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