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SUMMARY
Orthogonal arrays (OAs) and balanced arrays (BAs) in two and three symbols of strength (2m + 1) have been constructed by considering a 

tactical configuration (α -β - k - v) converted into design parameters by standard relationship. In view of this, two example with OA in two symbols 
and one example of BA in three symbols of strength five have been added. In the last, example of intercropping experiment with two main crops and 
eight intercrops has been provided. 
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1.	 INTRODUCTION

Orthogonal arrays are objects that are most often 
generated through algebraic arguments. They have a 
number of applications in statistics, and have often 
been studied by algebraic mathematicians as objects 
of interest in their own right. Our treatment will reflect 
their use as representations of statistical experimental 
designs. Orthogonal arrays, first introduced by Rao 
[1946, 1947] have been used extensively in factorial 
designs. Specifically, it is of size N, k constraints, 
s levels and strength t, denoted by OA (N, k, s, t); a k 
× N matrix X of s symbols, such that all the ordered 
t-tuples of the symbols occur equally often as column 
vectors of any t × N sub matrix of X. It is clear that 
N must be of the form λst, where λ is usually called 
the index of the orthogonal array. In applications to 
factorial designs, each row corresponds to a factor, the 
symbols are factor levels and each column represents 
a combination of the factor levels. Thus every OA (N, 
k, s, t) defines an N-run factorial design for k factors, 
each having s levels . When λ = 1 we refer to such 
arrays as “orthogonal arrays of index unity”. Most 
of the techniques for the construction of 2-symbol 

orthogonal arrays are special cases of techniques for 
s-symbol arrays. In this study, a structure of primary 
interest to us is that of a Hadamard matrix. A Hadamard 
matrix of order n is an n × n matrix Hn with entries 1 
or -1, such that HnHn’ = nIn where In denotes the nxn 
identity matrix.

Paley [1933] was interested in orthogonal arrays 
with t = 2, s = 2 because of their applications to the 
theory of polytopes. Plotkin [1972] obtained the very 
strong conjecture that every Hadamard matrix of order 
8n can be obtained by specializing some orthogonal 
design of order 8n. He showed that the existence of a 
Hadamard matrix of order n implies the existence of 
three types of orthogonal design. If we write n = 4λ in 
the Hadamard matrix, it is easily seen that A(nxn−1) is an 
OA(4λ, 4λ − 1, 2, 2), based on the symbols 1 and -1. 

A comprehensive reference on the use of orthogonal 
arrays (OAs) as factorial design in diverse problems of 
statistical parameter optimization is provided by Wu 
and Hamada [2000]. Stufken and Tang [2008] provided 
a complete solution to enumerating non-isomorphic 
two-level OAs of strength t with t + 2 constraints 
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2.2	 Balanced (PB) Arrays 

Let A be an m×N matrix, with elements 0, 1, 2…, 
or s-1. Consider the st (1×t) vectors, X′ = (x1,x2,…, xt), 
which can be formed from t-rowed sub-matrix of A and 
associate with each (t×1) vector X a positive integer 
µ (x1,x2,…, xt), which is invariant under permutations 
of (x1,x2,…, xt), where xi =0,1,2,…,s-1; i=1,2,…, t. If 
for every t-rowed sub-matrix of A the st distinct (t×1) 
vectors X occur as columns µ (x1,x2,…, xt) times, then 
the matrix A is called a balanced (PB) array of strength 
t in N assemblies with m constraints, s symbols and the 
specified µ (x1,x2,…, xt), parameters. In view of the fact 
that µ (x1,x2,…, xt) is invariant under permutation of 
(x1,x2,…, xt) one can denote by i1,i2,…, ir µ ′s x1,x2,…, 
xr The number of repetitions of a fixed column of any 
t×N sub array of A, where the column contains i1x1’s, 
i2x2’s,…and irxr’s, (xj = 0, 1,2, …, s-1), ij = t , r = min 
({s,t}). The set of all permutations i1,i2,…, ir µ x1,x2,…, 
xr of an array of strength t in s symbols will be called 
the index set of the array and will be denoted by Λs,t. 
The array A will be represented as the PB arrays ( m, 
N, s, t) with index set Λst, 

2.3	 Tactical Configuration

Given a set Ω of v elements, and given positive 
integers k, β (β ≤ k ≤ v) and α, we designate by a tactical 
configuration (α -β-k-v), a system of blocks (subset of 
Ω), having k elements each such that every subset of 
Ω having β elements is included in exactly α blocks. 
If α =1, then the configuration is called the Steiner 
system i.e., it is a complete (1-β-k-v) configuration of 
v elements arranged in blocks of k so that each set of 
β elements occurs exactly once. The symbol λt denotes 
the frequency of the number of blocks in which any t 
treatments a, b, c,…, occur together. It is very obvious 
that t=1,2,…,β (β may be odd or even) and λ1= r 
(number of replication), λ0 = b = number of blocks. 

3.	 Theorem

Theorem 3.1

Using the BIB design

( 2k+1,b, r, k, λ=λ2)� (3.1)

(λ=λ2 is taken for pair of two treatments in the 
sense that a set of j elements appears λj times in tactical 
configuration).

for any t and any run size N = λ 2t. More recently, 
Bulutoglu and Ryan [2018] and Bulutoglu and Margot 
[2008] formulated an integer linear programming 
(ILP) method for classifying OAs of strength 3 and 4 
with run size at most 162. A few specific construction 
methods of OAs have been proposed in Brouwer 
et  al., [2006] and Nguyen [2008]. Mixed-level OAs 
of strength 3 with run-size at most 100 are available 
online at http://elearning.cse.hcmut.edu.vn/samgroup/
OA.jap given by V.M.M. Nguyen and strength at least 
2 at http://www2.research.att.com/njas/oadir/index.
html/ given by N.J.A. Sloane. 

 A new class of arrays called balanced arrays 
(BAs) was first introduced and studied by Chakravarti 
(1956). He obtained some two symbol (2 level) 
balanced arrays by omitting suitably certain assemblies 
from an orthogonal array. . A tactical configuration, 
introduced by Sprott (1955) is a generalized structure 
of a balanced incomplete block design. Sharma and 
Chandak (1999) obtained a tactical configuration of 
order (2m + 1) from a tactical configuration of order 
2m for all positive integral values of m. An attempt 
has been made to construct a two symbol OA arrays 
of strength (2m + 1) and three symbol BAs arrays on a 
tactical configuration converted into design parameters 
by standard relationship.

2.	 DEFINITIONS AND NOTATIONS 

2.1	 Orthogonal (OA) arrays

An OA is generally presented as a two-dimensional 
array, table, or matrix of N rows and k columns. Each 
entry in the array is one element of a set of s “symbols”, 
often taken to be {0, 1, 2,…, s − 1} or {1, 2, 3, ..., 
s}.. The final basic quantity required for defining the 
array is its strength, a positive integer t ≤ k. The single 
requirement that an Nxk array of s symbols must 
meet to be an OA of strength t is that every subset 
of t columns (from among the k columns), when 
considered alone, must contain each of the possible st 
ordered rows the same number of times. A standard 
notation often used to reference an OA of N rows, k 
columns, and s symbols, of strength t is OA (N, k, s, 
t). The number of times each unique row of a t-column 
subset appears is called the index of the array, often 
designated by the symbol λ used in OAs as a class of 
factorial experimental designs. 
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with additional property that each set of j elements 
occurs λj times where j = 3,4,5,…,β. The configuration 
is possible when β =2m.

If series (3.1) is used, then an OA [N=(2b+B), 
k=(v+1), s=2, t=(2m+1)] is constructed, where 
B = B ( 2 m + 1 )+ 2(2 1) mm c+ B 2 m+ 2 1(2 1) mm c −+ B 2 m - 1+

2 2(2 1) mm c −+ B2m-2+……. 1(2 1)m c+ B1+ B0. blocks, 
where B(2m+1), B2m, B2m-1,…….. B1, and B0 are the number 
of blocks of strength (2m+1), 2m, (2m-1),…..1 and 0 
respectively.

Proof 

Applying the method given by Sprott (1955) the 
resulting complete configuration consists of blocks 
Bi of (3.1) together with blocks Bic (which are 
the compliments of the blocks Bi in addition to the 
element ∞. It is obvious that the resulting complete 
configuration has v=2k elements and all blocks contain 
k distinct elements. It is the generalized modification 
of Sprott (1955) for tactical configuration done in this 
paper.

Let Bi be the blocks of general BIB design ( v, 
b, r, k, λ=λ2) with additional property that each set of 
j elements occurs λj times where j= 3,4,5,………..β. 
Then Bic are the blocks of a BIB design (v, b, b-r, v-k,b-
2r+λ2) with additional parameters λ3=b-3r+3λ2-λ3; 

λ4 = b–4r+6λ2–4λ3+λ4,…, λβ = b +
1

1

1
( 1) ( )

k
k

k k
k

β
β λ

= +
+

=
−∑

The configuration is possible when β=2m. Suppose 
that a specified set A(β+1) of strength (β+1) occurs 
in exactly λ(β+1) blocks of Bi, then exactly the set of 
strength β of the specified set A(β+1) occurs together in 
λβ - λ(β+1) blocks of Bi; and exactly set of strength (β‑1) 
of the same set occurs in λβ - 2 λβ + λ(β+1) blocks of Bi.

Similarly, a specified set of strength [β-(p-1)] of 
A(β+1) occurs in 

( 1) 1 ( 2) 2 ( 3) 1( ) ( ) ( 1) ( )p p p p
p p p pβ β β βλ λ λ λ− − − − − − +− + + −  

blocks of Bi where p= 0, 1, 2,…, β+1.

Sharma and Chandak (1999) have rightly pointed 
out that the configuration is possible when β=2m for all 
positive integral values of m and it would be located at 
the middle point of (m+1). The expression of various 
values of p can be given as follows:

When p=0, 2 1 � (3.2)

When p=1, 2 2 1m mλ λ +− � (3.3)

When p=2, 2
2 1 1 2 2 1( )m m mλ λ λ− +− + � (3.4)

When p=3, 3 3
2 2 1 2 1 2 2 2 1( ) ( )m m m mλ λ λ λ− − +− + +

� (3.5)

When p=4,
4 4 4

2 3 1 2 2 2 2 1 3 2 2 1( ) ( ) ( )m m m m mλ λ λ λ λ− − − +− + + + � (3.6)

When p = m-1 
1 1 1 1

2 1 3 2 4 1 2 1( ) ( ) ( 1) ( )m m m m
m m m m mλ λ λ λ− − − −

+ + + − +− + + −  

= 
1 1

2
0
( 1) ( )

m k m
k m k

k
λ

−
−

+ +
=

−∑  � (3.7)

When p=m,

1 1 2 2 3 2 1( ) ( ) ( 1) ( )m m m m
m m m m mλ λ λ λ+ + + +− + + −  = 

1
0
( 1) ( )

m k m
k m k

k
λ + +

=
−∑ � (3.8)

When p=m+1 
1 1 1 1
1 1 2 2 1 2 1( ) ( ) ( 1) ( )m m m m

m m m m mλ λ λ λ+ + + +
+ + + +− + + −  

= 
1 1

0
( 1) ( )

m k m
k m k

k
λ

+
+

+
=

−∑ � (3.9)

When p=m+2 
2 2 2 2

1 1 2 1 2 2 1( ) ( ) ( 1) ( )m m m m
m m m m mλ λ λ λ+ + + +

− + + +− + + −  

= 
2 2

1
0

( 1) ( )
m k m

k m k
k

λ
+

+
+ −

=
−∑ � (3.10)

When p=2m, 
2 2 2 2

1 1 2 2 3 2 2 1( ) ( ) ( 1) ( )m m m m
m mλ λ λ λ +− + + −

 = 
2 2

1
0
( 1) ( )

m k m
k k

k
λ +

=
−∑ � (3.11)

When p=2m+1 
2 1 2 1 2 1 2 1

0 1 1 2 2 2 1 2 1( ) ( ) ( 1) ( )m m m m
m mλ λ λ λ+ + + +

+ +− + + −  

= 
2 1 2 1

0
( 1) ( )

m k m
k k

k
λ

+
+

=
−∑ � (3.12)

Therefore, in order to construct OA, the additional 
blocks would be added with 2b blocks· The difference 
of the equation (3.9) and (3.2) would provide the 
number of blocks B(2m+1) of strength (2m+1). Similarly, 
The difference of the equation (3.9) and (3.3) would 
provide the number of blocks B2m of strength 2m of the 
set A 2m+1 and multiplied by (2m+1) 2(2 1) mm c+ . The 
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difference of the equation (3.9) and (3.4) would provide 
the number of blocks B(2m-1) of strength 2m-1 of the 
set A 2m+1 and multiplied by (2m+1) 2 1(2 1) mm c −+ . In 
the same way ,the difference of the equation (3.9) and 
(3.11) would provide the number of blocks B1 of the 
strength 1 of the same set and it will also be multiplied 
by (2m+1) 1(2 1)m c+ . In the last, the difference of the 
equation (3.9) and (3.12) would provide the number 
of blocks B0 of strength zero i.e. no treatment would 
appear in this block. Thus, the total number of blocks 
becomes:

B=B2m+1+ 2(2 1) mm c+ B2m+ 2 1(2 1) mm c −+ B2m-1+

2 2(2 1) mm c −+ B2m-2+…, 1(2 1)m c+ B1+ B0 blocks, 
where B(2m+1), B2m, B2m-1,…….. B1, and B0 are the number 
of blocks of strength (2m+1),2m,(2m-1),(2m-2)…..1 
and 0 respectively.

Thus, it provides the construction of OA’s with 
parameters [N= (2b+B), k=(v+1), s=2, t=(2m+1)].

Hence the theorem.

3.1.1 Illustrative Examples 

Example 1

Let us consider a BIB design with parameters (5, 
10, 4, 2, 1) with b=3r-2λ in addition to its compliment 
with parameters (5, 10, 6, 3, 3). Thus, we have doubly 
balanced incomplete block design with parameters (6, 
20, 10, 3, 4, 1). Then, addition of four blocks would 
provide OA (24, 6, 2, 3 ) which is given below. In order 
to have another DBIBD , BIB design with parameters 
(5, 10, 6, 3, 3) and (5, 5, 4, 4, 3) will be taken together 
so that we have DBIBD with parameters (6, 15, 10, 4, 
6, 3). Then, two DBIBD with parameters (6, 20, 10, 
3, 4, 1) and (6, 15, 10, 4, 6, 3) will be taken at a time 
resulting into a tactical configuration of strength four 
with parameters (7, 35, 20, 4, 10, 4, 1). In order to get 
a tactical configuration of strength five, compliment of 
(7, 35, 20, 4, 10, 4, 1) will be added together and then 
we have (8, 70, 35, 4, 15, 5, 1, 0). Applying Theorem 
3.1, we have OA’s with parameters [N=96, k=8, s=2, 
t=5] with index 3. Two examples of OA are obtained 
using Theorem 3.1 as follows:

(i) OA (24,6,2,3 ) of index 3 

111000 110001
110100 101001
110010 100101
001110 100011
010110 011001
011010 010101
011100 010011
100110 001101
101010 001011
101100 000111
111111 000000
111111 000000

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
   



















 

(ii) OA (96,8,2,5 ) of index 3

11100010
11010010
11001010
00111010
01011010
01101010
01110010
10011010
10101010
10110010
11000110
10100110
10010110
10001110
01100110
01010110
01001110
00110110
00011110
00101110
10111000
11011000
11101000
11110000











01111000
11100100
11010100
11001100
00111100
01011100
01101100
01110100
10011100
10101100
10110100
00011101
00101101
00110101
11000101
10100101
10









 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



01110001
10011001
10101001
10110001
11001001
11100001
11010001
0100

010101
10001101
01100101
01010101
01001101
00111001
01011001
01101001

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0111
00100111
00010111
00001111
10000111
00011011
00101011
00110011
11000011
10100011
10010011
10001011
01100011
01010011
01001011
00000000
00000000

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 










 

00000000
11111111
11111111
11111111
11110000
01111000
00111100
00011110
00001111
11110000
01111000
00111100
00011110
00001111
00010000
00001000
00000100
00000010
00000001
00010000
00001000
00000100
00000010
000000












01

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
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Example 2

Let us consider a BIB design with parameters (9, 
18, 8, 4,3) with b=3r-2λ in addition to its compliment 
with parameters (9, 18, 10, 5, 5). Thus, we have doubly 
balanced incomplete block design with parameters 
(10, 36,18, 5, 8, 3). Thus, we have OA (40, 10, 2 ,3) of 
index 5 after applying Theorem 3.1. In order to have 
another DBIBD BIB design with parameters (9, 18, 
8, 4, 3) and (9, 12, 4, 3, 1) will be taken together so 
that we have DBIBD with parameters (10, 30, 12, 4, 
4, 1). Then, two DBIBD with parameters(10, 36, 18, 
5, 8, 3) and (10, 30, 12, 4, 4, 1) will be taken at a time 
resulting into a tactical configuration of strength four 
with parameters (11, 66, 30, 5, 12, 4, 1). In order to get 
a tactical configuration of strength five, compliment 
of (11, 66, 30, 5, 12, 4, 1) as (11, 66, 36, 6, 18, 8, 3) 
will be added together and then we have (12, 132, 66, 
6, 30, 12, 4, 1), as tactical configuration (1-5-6-12). 
Applying Theorem 3.1, we have OA’s with parameters 
(N=160, k=12, s=2, t=5) with index 5.

Theorem 3.1.2

The columns of A’ when treated as assemblies 
give rise to a BAs arrays with three symbols, [2(b+B)] 
assemblies and strength (2m + 1) where A’ is given by 

A’ = [N’│ M’l 

and A’ denotes the transpose of A. 

Proof: 

Let fgh
ijkµ  denote the frequency of the t - plet in the 

t×b (t≤v) sub array of the b×v array in three symbols i, 
j, k with frequencies f, g and h respectively, such that 
f+g+h=t.

For completeness, the image method of Dey et al., 
(1972) is reproduced below which is the additional 
modification of Dey et  al., (1972) for generalized 
balanced arrays (BAs).

Consider a BIB design with usual parameters v, b, 
r, k, and λ.

Let N (=nij) be the incidence matrix of this BIB 
design, where 

Nij=1,if the jth treatment appears in the ith block 
= 0, otherwise.

Evidently, N is a bxv array of symbols (0, 1). Let 
any assembly of this array be denoted by a row vector 

z=(z1,z2,…,zv), z=0 or 1, z being the vector and the 
points within, factor binary points in incidence matrix 
of BIB design.

Then, they defined the ‘image ‘of z as z* given by 
z*=(z1*,z2*,….zv*), zi+zi*=2(mod3) for all i=1,2,…v. 
Now, let M be a bxv array of ‘images’ of each of the 
assemblies of N.

The frequency of the ordered t-plet (1, 1, 1,…, 
(2m + 1) i.e. 

  

in any t-columned sub-array of N is obviously the 
number of blocks in which any (2m + 1) treatments a, 
b, c, ..., occur together and is therefore equal to λ2m+1 
(Sharma and Chandak (1999). The frequency of the 
other t-plet (0, 1, 1, …, 2m) i.e. 

In any t-columned sub array of N is the number 
of blocks in which all treatments occur with only one 
treatment absent. Clearly, the number of such blocks 
is λ2m –λ 2m+I and similarly the frequency of the blocks 
of ordered t -plet 

 is

λ2m -1 – 2λ2m + λ2m +I 

Proceeding like this 

=λ 2m -2 -3C1λ 2m -1 +3C2λ2m –λ 2m+1 

In the same fashion 

=λ 2m-(p-l) -PCI λ 2m -{p-2) + PC2 λ 2m -{p -3)-….. 

(-I)PPCp λ 2m+1 where p =0, 1, 2..., 2m 

Therefore, the total number of assemblies 
containing the part or whole of the blocks of the 
strength(2m+1)is 

2 1 2 1

1
( 1) ( )

m k m
k k

k
λ

+
+

=
−∑
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(see, Sharma and Chandak (1999) and hence the 
frequency of the blocks of ordered t-plet not containing 
a single treatment i.e. 

 = b + 
2 1 2 1

1
( 1) ( )

m k m
k k

k
λ

+
+

=
−∑

Since the assemblies of M are “images” of those of 
N, it follows that in any t-columned sub-array of M, the 
frequency of the ordered t-plets will be corresponding 
to N i.e., the frequency of the ordered t-plets viz., no 
factor absent, one factor absent, two factors absent and 
so on in N are: 

, , ……..

will give rise in M , , 

, .

Clearly the frequencies 

 = λ 2m +I 

 = λ2m –λ 2m +I

 = λ 2m -1 -2λ2m +λ 2m +I 

 = b+
2 1 2 1

1
( 1) ( )

m k m
k k

k
λ

+
+

=
−∑

 = λ 2m-(p-l) -pCI λ 2m -{p-2) + pC2 
λ 2m -{p -3)-….. 

 (-I)PpCp λ 2m+1 where p =0, 1, 2...,2m. Therefore, in 
the whole array, the frequencies of all ordered t-plets 
are given by 

= = λ 2m +I 

 =  = λ2m –λ 2m +I

 =  = λ2m -1 –2λ2m +λ2m+I 

 =  

= λ2m-(p-l) – pCI λ2m–{p-2) +  = b +
2 1 2 1

1
( 1) ( )

m k m
k k

k
λ

+
+

=
−∑  pC2 λ 2m–{p -3)-….. (-I)PpCp λ 2m+1 

where p =0, 1, 2...,2m, and 

 =  = b  +
2 1 2 1

1
( 1) ( )

m k m
k k

k
λ

+
+

=
−∑

Thus, A is a three symbol BAs of strength (2m + 1) 
for all positive integral values of m. The frequencies of 
all other t-plets combinations are zero. 

Hence the theorem. 

The results of Dey et al. (1972) become a particular 
case when m = 1 in this theorem.

Example 3

Let us consider the incidence matrix of the tactical 
configuration (1-5-6-12) having v = 12, b = 132, 
r = 66, k =6,λ2=30,λ3=12,λ4=4, λ5=1, and applying the 
construction method given in Section 3 of this paper.

In N, we have

05*
012 5 3 42µ λ λ λ= + −

14*
012 4 4 5 4 3 4 55 [ ] 5 [ 3 2 ]c cµ λ λ λ λ λ= − + − +

23*
012 3 3 4 55 [ 2 ]cµ λ λ λ= − +

32*
012 2 2 3 4 55 [ 3 3 ]cµ λ λ λ λ= − − +
41*
012 1 1 1 2 2 3 3 4 5

1 3 4 5 1 1 2 2 3 3 4 5

5 [ 4 4 4 ]
5 [ 2 4 4 4 ]

c c c c
c c c c

µ λ λ λ λ λ
λ λ λ λ λ λ λ λ

= − − + − +
− + − + − + −

50*
012 0 1 1 2 2 3 3 4 4 5

3 4 5 0 1 1 2 2 3 3 4 4 5

[ 5 5 5 5 ]
[ 2 5 5 5 5 ]

c c c c
c c c c

µ λ λ λ λ λ λ
λ λ λ λ λ λ λ λ λ

= − + − + − +
− + − + − + − +

Similarly in M, we have

*50
012 5 3 42µ λ λ λ= + −

*41
012 4 4 5 4 3 4 55 [ ] 5 [ 3 2 ]c cµ λ λ λ λ λ= − + − +

*32
012 3 3 4 55 [ 2 ]cµ λ λ λ= − +

*23
012 2 2 3 4 55 [ 3 3 ]cµ λ λ λ λ= − − +
*14
012 1 1 1 2 2 3 3 4 5

1 3 4 5 1 1 2 2 3 3 4 5

5 [ 4 4 4 ]
5 [ 2 4 4 4 ]

c c c c
c c c c

µ λ λ λ λ λ
λ λ λ λ λ λ λ λ

= − − + − +
− + − + − + −

*05
012 0 1 1 2 2 3 3 4 4 5

3 4 5 0 1 1 2 2 3 3 4 4 5

[ 5 5 5 5 ]
[ 2 5 5 5 5 ]

c c c c
c c c c

µ λ λ λ λ λ λ
λ λ λ λ λ λ λ λ λ

= − + − + − +
− + − + − + − +

In overall, we get X is a PB arrays (v=12, b=320, 
s=3, t=5 with index set Λ 3,5.

050
012 5 3 42 10µ λ λ λ= + − = ,
140 041
012 012 4 4 5 4 3 4 55 [ ] 5 [ 3 2 ]c cµ µ λ λ λ λ λ= = − + − + =25

230 032
012 012 3 3 4 55 [ 2 ]cµ µ λ λ λ= = − + =50
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320 023
012 012 2 2 3 4 55 [ 3 3 ]cµ µ λ λ λ λ= = − − + =50
410 014
012 012 1 1 1 2 2 3 3 4 5

1 3 4 5 1 1 2 2 3 3 4 5

5 [ 4 4 4 ]
5 [ 2 4 4 4 ]

c c c c
c c c c

µ µ λ λ λ λ λ
λ λ λ λ λ λ λ λ

= = − − + − +
− + − + − + −  

=25
500 005
012 012 0 1 1 2 2 3 3 4 4 5

3 4 5 0 1 1 2 2 3 3 4 4 5

[ 5 5 5 5 ]
[ 2 5 5 5 5 ]

c c c c
c c c c

µ µ λ λ λ λ λ λ
λ λ λ λ λ λ λ λ λ

= = − + − + − +
− + − + − + − +

=5

The frequency of other treatment combinations of 
strength five is zero.

Example 4 

Hedayat and Wallis (1978) have given a theorem 
stating that the existence of Hadamard matrix of 
order 4t implies the existence of BIB designs with 
parameters:

v= 2t , b=4t-2, r=2t-1,k= t and λ=t-1

On the basis of t=2, let us consider BIB design 
v = 4, b = 6, r =3, k = 2, λ2= 1, so that N’ of Example 3, 
can be obtained. Taking the images of N’ as M’ using 
zi + zi* = 2 (mod 3) for all i = 1, 2,…, v treatments. 
The blocks are given below:

A’ = 

100011 122211
010101 212121
001110 221112
111000 111222

   
   
   
   
   
   

 where A’ is the transpose 
of A

The combinatorial arrangements, in particular, 
orthogonal and partially balanced arrays of specified 
strength t are used in the construction of balanced 
symmetrical and asymmetrical confounded factorial 
experiments, multi factorial designs (fractional 
replications) and so on (Rao ,1947; 1949 and Nair 
and Rao (1948)). Balanced arrays satisfy the same 
properties as orthogonal arrays when used as fractional 
replicated factorial designs in terms of estimability of 
main effects and interactions, but the estimates, of main 
effects and interactions may have different precisions 
besides being correlated. The construction and use 
of such designs have been indicated in Chakravarti 
(1956), (1961), (1963) and extensively investigated 
by Srivastava (1972), Srivastava and Anderson (1970) 
and Srivastava and Chopra (1971a), (1971b), (1971c), 
(1973) in the special case s =2, i.e., S has two symbols 
0 and 1. 

A catalogue of two new designs that can be 
obtained through the BAs has been given below: 

*OA (24, 6, 2, 3) and OA (96, 8, 2, 5) of index 3 
are given.

** The N’ and its images M’ are BAs of strength 
(2m + 1) with three symbols (0, 1, 2). In particular, 
Example 4.4 is a BAs of strength 5 with 3 symbols 
with index set A 3,5 constructed by author in the present 
paper.

***The constructed PB array in the present paper 
can be used for conducting intercropping experiments 
when the intercrops are sub-divided into various groups 
based on agronomic practices including main crop 
assuming that some of the interaction of intercrops are 
negligible. We construct design for experiments where 
each plot consists of main crop p and q intercrops, 
such that each of these intercrops is selected from a 
group of r intercrops following Rao and Rao (2001). 

Now, let us consider an intercropping experiment 
using two main crops and 8 intercrops where the 
intercrops are partitioned into four groups Q1, Q2, 
Q3  and Q4 with 2 in each group viz., Q1 = [1, 2 ], 
Q2 = [3, 4] , Q3 = [5, 6 ] and Q4=[7,8]. Let us designate 
the symbols 0,2 of first row of PB array with intercrops 
1, 2 of Q1, second row with intercrops 3, 4 of Q2 , 
third row with intercrops 5, 6 of Q3 and fourth row 
with intercrops 7,8 of Q4. Considering the column of 
the array as the plots of the intercrop experiment in 
addition to the two main crops m1 and m2 in each plot. 
The resulting intercropping experiment will consist of 
the following 12 plots: 

�(m1, m2, 3, 5); (m1, m2, 1, 5); (m1, m2, 1, 3); 
(m1, m2, 1, 7); (m1, m2, 3, 7); (m1, m2, 5, 7)

�(m1, m2, 4, 6); (m1, m2, 2, 6); (m1, m2, 2, 4); 
(m1, m2, 2, 8), (m1, m2, 4, 8), (m1, m2, 6, 8).

It is to be noted that this method provides 
intercropping design with two main crops and eight 
intercrops divided into four groups of two intercrops 
each. It is claimed that this design for intercropping 
experiment has lesser number of blocks as compared 
to Rao and Rao (2001)

In the context of an actual example of intercropping 
experiment, Pandey et al. (2003) have studied the effect 
of maize (Zea mays L.) based intercropping systems 
on maize yield as main crop and six intercrops viz., 
pigeon pea, sesamum, groundnut, blackgram, turmeric 
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and forage meth by conducting an experiment during 
the rainy seasons of 1998 and 1999 at the research farm 
of Rajendra Agricultural University, Pusa, Samastipur 
(Bihar). The experiment consisting of 6 intercrops with 
one main crop was conducted in randomized complete 
block design with 4 replications. Maize was sown at 
75 cm row spacing in sole as well as in intercropping 
on 26 and 22 June, respectively, in the first and second 
year of experimentation. One row of pigeon pea at 
distance of75 cm and 2 rows of other intercrops at 30 
cm distance were accommodated between 2 rows of 
maize. The intra row spacing of 30, 30, 10, 15, 10 and 
15 cm were maintained by thinning for 6 intercrops.

ACKNOWLEDGEMENT

The authors are grateful to the editor’s and referees 
for their critical and valuable cogent comments that 
have eventually brought a drastic change of the paper. 
The authors are also indebted to Dr. M.L. Chandak, 
Ex-Professor & Head, Department of Mathematics 
and Statistics for his kind help during the preparation 
of this paper.

REFERENCES
Brouwer, A.E., Cohen, A.M. and Nguyen, M.V.M (2006). Orthogonal 

arrays of strength 3 and small run sizes, J. Statist. Plg. Inf., 136, 
3268-3280.

Bulutoglu, D.A. and Margot, F. (2008) Classification of orthogonal 
arrays by integer programming, J. Statist. Plg. Inf., 138, 654-666.

Bulutoglu, D.A. and Ryan, K.J. (2018). Integer programming for 
classifying orthogonal arrays, Austr. J. Combinatorics, 70(3), 
362-385. 

Chakravarti, I.M. (1956). Fractional replication in asymmetrical 
factorial designs and partially balanced arrays, Sankhya, 17, 
143‑164. 

Chakravarti, I.M. (1961). On some methods of construction of partially 
balanced arrays. Annal. Math. Statist., 32, 1181-1185. 

Chakravarti, I.M. (1963). Orthogonal and partially balanced arrays and 
their applications in design of experiments. Metrika, 7, 231-243. 

Dey, A., Kulshreshtha, A.C. and Saha, G.M. (1972). Three symbol 
partially balanced arrays. Annal. Institute Statist. Math., 24(3), 
525-528. 

Hedayat A and Wallis, W.D. (1978). Hadamard matrices and their 
applications, Annal. Statist., 6 (6), 1184-1238.

Nair, K.R. and Rao, C.R. (1948). Confounding in asymmetrical 
factorial experiments. J. Roy. Statist. Soc., RIO, 109-131.

Nguyen, V.M. Man (2008). Some new constructions of strength 3 
mixed orthogonal arrays, J. Statist. Plg. Inf., 138(1), 220‑233.

Paley, R.E.A.C.(1933). On orthogonal matrices, J. Math. Physics, 12, 
311-320.

Pandey, LB., Bharati, V. and Mishra, S.S. (2003). Effect of maize (Zea 
mays) based

intercropping systems on maize yield and associated weeds under 
rainfed condition, Ind. J. Agronomy, 48(1), 30-33.

Plotkin, M.(1972). Decomposition of Hadamard matrices, J. 
Combinatorial Theory (A) 13, 127-130.

Rao, C.R. (1946). Hypercubes of strength “D” leading to confounded 
designs in factorial experiments, Bulletin Calcutta Math. Soc., 
38, 67-78. 

Rao, C.R. (1947). Factorial arrangements derivable from combinatorial 
arrangements of arrays, J. Roy. Statist. Soc., Suppl. 9, 128-139.

Rao, C.R. (1949); On a class of arrangements. Edinburgh Mathematical 
Society, 8, 1l9-125. 

Rao, D.R. and Rao, GN. (2001). Design and analysis when the 
intercrops are in different classes. J. Ind. Soc. Agril. Statist., 
54(2), 236-243. 

Sharma, H.L. and Chandak, M.L. (1999). A generalization of a theorem 
of Sprott on tactical configurations, Aligarh J. Statist., 19, 43-50.

Sprott, D.A. (1955). Balanced incomplete block designs and tactical 
configurations. Annal. Math. Statist., 26, 752-758. 

Srivastava, J.N. (1972). Some general existence conditions for 
balanced arrays of strength t and 2 symbols. J. Combinatorial 
Theory, 12, 198-206. 

Srivastava, J.N. and Anderson, D.A. (1970). Optimal fractional 
factorial plans for main effects orthogonal to two-factor 
interactions: 2m series. J. Amr. Statist. Assoc., 65, 828-843. 

Srivastava J.N. and Chopra, D.V. (1971a). On the characteristics roots 
of the information matrix for balanced fractional 2m factorial 
designs of resolution V, with applications. Annal. Math. Statist., 
42, 722-736. 

Srivastava, J.N. and Chopra, D.V. (l971b). Some new results in the 
combinatorial theory of balanced arrays of strength four with 
2 ≤µ2≤ 6. A.R.L. Technical Report, 71-72. 

Srivastava, J.N. and Chopra, D.V. (l971c). Optimal balanced 2m 
factorial designs of resolution V, m ≤ 6. Technometrics, 13, 
257‑269. 

Srivastava, J.N. and Chopra, D.V. (1973). Balanced arrays and 
orthogonal arrays. In: A Survey of Combinatorial Theory, J.N. 
Srivastava, et  al., eds., North Holland Publishing Company, 
411‑428.

Stufken, John and Tang,Boxin (2008).Complete enumeration of two 
– level orthogonal arrays of strength D with D+2 constraints, 
Annal. Statist., 35(2), 793-814.

Wu C.F.J. and Hamada, M.,(2000). Experiments: Planning, analysis, 
and parameter design optimization, A Wiley-Inter science 
Publication, MR1780411, USA (2000).


