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SUMMARY
In this paper, we propose a chain ratio-product type estimator of population total in two phase sampling when information on two auxiliary 

characters is available in different phases. It is assumed that complete information is available for one auxiliary variable while information is not 
available for other auxiliary variable and the double sampling approach is proposed accordingly. It is assumed that the known auxiliary variable is 
positively correlated with the study variable while the unknown auxiliary variables are negatively correlated with the study variable and we have 
applied the two step calibration technique due to Estavao et al. (2002). Expressions for the bias and the mean square error of proposed estimators have 
been obtained as also their estimators. It is shown, through empirical studies that the proposed estimators perform better than existing estimators in 
terms of the criteria of absolute Relative bias and Percentage relative efficiency. 
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1.	 INTRODUCTION

Survey statisticians often use auxiliary information 
to increase the precision of estimators of population 
parameters such as population mean or population 
total. In 1930’s Cochran introduced the theory of ratio 
and regression methods of estimation by utilizing the 
available auxiliary information. The ratio estimator is 
preferred when there is positive correlation between 
the study and the auxiliary variable and in case 
the study and the associated auxiliary variable are 
negatively correlated, the product estimator is useful. 
For example, a negative correlation generally exists 
between the age of individuals and hours of sleep. 
When the information on the auxiliary variable is 
not available at the population level, statisticians 
often select a large preliminary sample to observe the 
auxiliary variate and further a subsample is selected 
from the large preliminary sample to observe the 
character under study. The method of first selecting 
a large preliminary sample and then subsampling 

from that large sample is known as two-phase or 
double sampling. The double sampling technique is 
appropriate when the auxiliary variables are easily 
obtainable and it is economically feasible to collect 
information on auxiliary variables; see Hidiroglou and 
Sarndal (1998), Fuller (1998), and Hidiroglou (2001).
Under the assumption that complete information on an 
auxiliary variable x is not available, the ratio estimator 
in double sampling of population mean was given by 
Sukhatme (1962) as
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sample means of auxiliary variable x for first phase 
and second phase sample respectively. 
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Now let us assume the availability of two 
auxiliary variables x1 and x2. Further, suppose that 
the auxiliary variable x1, closely related to the other 
auxiliary variable x2 but compared to x2 less related 
to the study variable y, exists. For example, in case of 
yield estimation, area of a crop is positively correlated 
with the yield while fertilizer is less related to the 

yield. Then 2
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In this context, Chand (1975) introduced the 
chain ratio estimators. Modification of chain type 
ratio estimators has been made by several authors 
which includes Kiregyera (1980), Prasad et al. (1996), 
Singh and Upadhyay (1995), Farell and Singh (2002), 
Gupta and Shabbir (2008), Grover and Kaur (2011). 
Murthy (1964) was pioneer in introducing product 
estimators followed by Bahl and Tuteja (1991), Singh 
and Vishwakarma (2007). Estavao and Sarndal (2002) 
introduced the technique of two step calibration 
when auxiliary information is available at two levels. 
Singh (2004) improved the two-phase calibration 
methodology of Hidiroglou and Sarndal (1995, 1998). 
Sisodia and Dwivedi (1981) proposed a class of ratio 
cum product type estimator for estimating population 
mean with single auxiliary variate and Sisodia and 
Dwivedi (1982) also suggested a class of ratio cum 
product type estimator in double sampling. Singh 
and Espejo (2003) considered a ratio–product type 
estimator and under double sampling scheme, Singh 
and Espejo (2007) also suggested a ratio-product type 
estimator. Choudhury and Singh (2012) developed 
a class of chain ratio–product type estimators for 
estimating population mean in double sampling.

In this paper, the objective is to estimate the 
population total of study variable denoted by y. Further, 
two auxiliary variables correlated with the study 
variable considered. Information on one auxiliary 
variable, say x2, is not available while complete are 
information on the other variable, say x1, is available. 
In what follows, a chain ratio-product type estimator 
has been proposed in section 3 using the two step 
calibration approach suggested by Estavao and 
Särndal (2002) under the assumption that there is a 

positive correlation between y and x1 while y and x2 are 
negatively correlated. The expressions for the bias and 
the mean square error (MSE) of proposed estimator 
have been developed along with their estimators. 
Section 4 reports the empirical studies carried out 
using simulated data. Finally, major conclusions are 
summarized in section 5.

2.	 THEORETICAL FRAMEWORK

A finite population of size N denoted by
{ }1,2,..., ,...,Ω = k N  is considered and we assumed 

that complete information on the auxiliary variable 
(x1) is available. A large preliminary sample

( )= ∈Ω′ ′s s  of size ′n  following a sampling design 
( )p ,  is drawn from W to estimate (x2) for which 

information on population total is not available. The 
k th unit sampling weight is denoted as 1 11= πk ka
with ( )1 = ∈ ′π k P k s  , known first-phase inclusion 
probability for k th unit. Next, a second phase sample 

( )= ∈ ′s s s  of size n is drawn from ′s  with the 
corresponding sampling weight for k th unit given 
by 2 21= πk ka , where ( )2k P k s sπ = ∈ ′  is the 
conditional inclusion probability for k th unit given 

′s . 1 2=k k ka a a  is the total sampling weight of k th 
unit, also known as the design weight. The k-th unit 
of the study variable (y), ky  is observed at the second 
phase i.e. ( ){ }: ∈ky k s . Our objective is to estimate 
the population total ∈Ω= ∑y kkt y . The k-th unit for 
both the auxiliary variates are given by x1k and x2k 
respectively. Further we assume that 1∈ Ω∑ kk x  is 
known and x1k and x2k are known values for every 

∈ ′k s . The well-known calibration approach (Deville 
and Särndal 1992) is used to modify the basic sampling 
design weight 1 2=k k ka a a  that appear in the two phase 
double expansion estimator 1 2

ˆ
∈= ∑DE k k kk sY a a y . The 

calibration approach aims at modifying the design 
weight ak with the specific objective of finding out 
new calibrated weight wk based on a distance function 
and a set of constraints, also known as calibration 
constraints. The proposed estimator based on the 
revised calibrated weight is ˆ

∈= ∑CAL k kk sT w y .

3.	 �THE PROPOSED CHAIN RATIO-
PRODUCT TYPE ESTIMATOR

Following Estavao and Särndal (2002), we 
consider two-step calibration technique and in each 
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of the two steps a distance function is minimized to 
compute the calibrated weights. An intermediate 
calibrated weight is obtained at the first step which 
involves calibration from ′s  to W and in the second 
step, the final calibrated weight is obtained through 
calibration from s to ′s . In first step, we minimized the 

chi-squared type distance function 
( )2

1 1
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k k
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k k

w a
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to obtain first phase calibrated weight 1kw . The 
minimization is performed subject to the calibration 
constraint 1 1 1 1k k kk s kw x x X∈ ∈Ω′ = =∑ ∑ , where qi’s 
are suitably chosen constants and 1 11

N
kkX x== ∑  . 

The Lagrange function (L1) associated with the 
minimization problem is given by
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On differentiating L1 with respect to 1kw  and 
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With 1 11k kq x= , we obtained the first phase calibrated 
weight 1kw  as
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The first phase calibrated weight 1kw  is used 
again in the second step (calibration from s to 

′s  ) to obtain the final calibrated weight kw . In 
what follows, a chi‑squared type distance function 
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The Lagrange function ( 2L ) corresponds to the 
minimization problem is given by
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Taking 2 2 1k k kq x x=  and differentiating 2L  with 
respect to kw  and equating it to zero we have
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Solving both the equations for 1λ  and 2λ , 
replacing these values in kw , we get the second phase 
calibrated weight kw . On inserting the value of kw in 

ĈALT , we obtain the proposed chain ratio-product type 
estimator as
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sampling without replacement (SRSWOR) design, the 
expression (3) reduces to 
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To obtain the Bias and MSE of ĈAL RPT −  in (4), we 
proceed as follows.

Let 1 1 1l L ε= + , 2 2 2l L ε= + , 3 3 3l L ε= + , 
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Now expressing ĈAL RPT −  in (4) in terms of 'sε  
and expanding the right hand side by ignoring the 
terms involving 'sε  in degrees greater than two, we 
have
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Taking expectations in both sides and using the 
result in (6), we get the bias of ĈAL RPT −  to the first 
degree of approximation as
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Now to obtain the MSE of the estimator ĈAL RPT −
 , 

we express ĈAL RPT −  in (4) in terms of 'sε  and 
expanding the right hand side by ignoring the terms 
involving 'sε  in degrees greater than or equal to two, 

we have
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Now subtracting NY  from both sides, we get
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Squaring both sides, taking expectations and using 
the result in (5) and (6), we get the MSE of ĈAL RPT −  to 
the first degree of approximation as
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and corresponding estimator of the MSE of 
ĈAL PT −  is given by 
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4.	 EMPIRICAL EVALUATIONS

This section deals with the results from simulation 
studies to evaluate the performance of the proposed 
chain ratio-product type estimator with the existing 
ones. The empirical result uses model-based simulation 
to generate fixed finite population. To assess the 
performance of the proposed estimator, we consider 
the following existing estimators
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ˆ 1n n n
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n n n
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� (Choudhury and Singh, 2012)
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� (Chain Ratio cum Product estimator)

m̂puT  = nNy  (Mean per unit estimator).

Two criteria viz. absolute Relative Bias (RB) and 
Percentage Relative Efficiency (PRE) are chosen to 
assess the performance of various estimators.
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where kT  denotes the actual value of the estimators 

ĈAL RPT − , ĈST , ĈRT  and m̂puT  for the k-th simulation 
run, with predicted value as k̂T  for all the estimators 
and M denotes the number of simulation run. The 
Monte Carlo simulation was run M = 2500 times.

Here, first we generated unknown auxiliary variate 
2x  using the model

( )2 1 11 ; 1,...k k kx x e k Nβ= + =

where ( )2
1 ~ 5kx χ , ( )2~ 0,k ee N σ  and the value 

of 1β  is chosen as 15.And then we generated a fixed 
finite population of size N = 1000 using the model

( )2 1 3 21 ; 1,...k k k ky x x k Nβ β ε= + + =

where ( )2~ 0,k N εε σ  and the scale parameters 
are taken as 2 5β =  and 3 0.5β = .We chose different 
values for both eσ  and εσ  to generate twelve different 
datasets for the simulation studies. In particular, 
different values for parameters eσ  and εσ  are given 
as (2.5, 5.5, 7.5) and (10, 15, 20, 25) respectively. 
This lead to twelve different population data sets with 
different values of correlation between y, 1x  and 2x  . 
These are described in Table 1. For each fixed finite 
population, a first phase sample s′  of size 500 units 
was selected by SRSWOR design while from s′ , a 
subsample s of size 100 units was drawn by SRSWOR 
design and estimation of population total was carried 
out. In particular, we drew M = 2500 samples from the 
fixed population and for each sample we calculated the 
estimates of population total. The related results are 
reported in Table 2 to Table 4.

Two things emerged from the Table 2 to Table 
4. Firstly, the absolute relative bias decreases and 
percentage relative efficiency increases as the 
correlation between y and 1x  increases and the 
correlation between y and 2x  decreases, which is 
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the basic aim of this paper. Secondly, the proposed 
estimator outperforms all the existing estimators 
in terms of the RB and PRE for small as well as the 
large correlation between y, 1x  and 2x . As expected 
the relative gain in both bias and the mean squared 
error for the proposed estimator is highest for the 
parameter set-1.

From Table 1, it is clear that, the highest positive 
correlation between y and 1x  and the highest negative 
correlation between y and 2x  appear in the parameter 
set 1. Hence the gain in efficiency is highest for 
parameter set 1 followed by parameter set 2 and 3. If 
we consider, with in parameter set evaluation, then 
from Table 2 to Table 4, it is evident that within a given 
parameter set, the bias and the efficiency increases 
as the correlation between y and 1x  increases and 
the correlation between y and 2x  decreases. Let us 
consider Table 4 which contains the bias and relative 
efficiency for parameter set 3. In this particular set, 

( )1,y xρ  ranges from 0.80 to 0.50 while ( )2,y xρ  
ranges from -0.28 to -0.16. As the ( )1,y xρ  increases 
from 0.50 to 0.80 and ( )2,y xρ  decreases from -0.16 
to -0.28 gradually, the bias decreases as well as the 
relative efficiency increases. 

5.	 CONCLUDING REMARKS

In this paper, we have been able to develop a chain 
ratio-product type estimator of population total based 
on two step calibration approach proposed by Estavao 
and Särndal (2002) that performs better than the 
existing estimators. We assumed that the study variable 
was positively correlated with one auxiliary character 
while there was a negative correlation between the 
study and the other auxiliary variate. We also assumed 
that the auxiliary variable which is known at the 
population level, should be positively correlated and 
the other auxiliary variable for which the population 
total is unknown, should be negatively correlated 
with the study variable. It may be noteworthy that 
the proposed chain ratio type estimator outperforms 
the existing estimators in terms of bias as well as 
relative efficiency. 

Table 1. Description of Simulation Parameters

Parameter Set eσ εσ ( )1,y xρ ( )2,y xρ ( )1 2,x xρ

Set-1 1a 2.5 10 0.83 -0.46 -0.54

1b 2.5 15 0.71 -0.40 -0.54

1c 2.5 20 0.60 -0.34 -0.54

1d 2.5 25 0.51 -0.29 -0.54

Set-2 2a 5.5 10 0.83 -0.34 -0.43

2b 5.5 15 0.70 -0.29 -0.43

2c 5.5 20 0.59 -0.24 -0.43

2d 5.5 25 0.51 0.20 -0.43

Set-3 3a 7.5 10 0.80 -0.28 -0.36

3b 7.5 15 0.69 -0.24 -0.36

3c 7.5 20 0.58 -0.20 -0.36

3d 7.5 25 0.50 -0.16 -0.36

Table 2. Relative Bias (RB) and Percentage Relative Efficiency 
(PRE) of Different Estimators of Population  

Total in parameter set-1

Set 1a Set 1b Set 1c Set 1d

RB PRE RB PRE RB PRE RB PRE

ĈAL RPT −
0.02 1253.84 0.02 998.24 0.03 775.23 0.03 537.46

m̂puT 0.10 100.00 0.10 100.00 0.11 100.00 0.11 100.00

ĈST 0.09 156.25 0.09 144.36 0.10 126.59 0.10 118.95

ĈRT 0.05 408.23 0.06 364.26 0.06 258.63 0.07 242.64

Table 3. Relative Bias (RB) and Percentage Relative Efficiency 
(PRE) of Different Estimators of Population  

Total in parameter set-2

Set 2a Set 2b Set 2c Set 2d

RB PRE RB PRE RB PRE RB PRE

ĈAL RPT −
0.04 1034.24 0.05 794.33 0.05 521.46 0.06 324.20

m̂puT 0.13 100.00 0.13 100.00 0.14 100.00 0.15 100.00

ĈST 0.13 128.35 0.13 122.14 0.14 117.86 0.15 109.45

ĈRT 0.09 312.53 0.09 285.42 0.09 267.24 0.10 243.13

Table 4. Relative Bias (RB) and Percentage Relative Efficiency 
(PRE) of Different Estimators of Population  

Total in parameter set-3

Set 3a Set 3b Set 3c Set 3d

RB PRE RB PRE RB PRE RB PRE

ĈAL RPT −
0.05 887.82 0.07 500.13 0.09 332.76 0.11 244.02

m̂puT 0.15 100.00 0.15 100.00 0.16 100.00 0.17 100.00

ĈST 0.14 104.40 0.15 104.08 0.16 103.80 0.16 103.54

ĈRT 0.10 208.26 0.11 207.31 0.11 206.45 0.12 205.68
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