
Available online at www.isas.org.in/jisas
Journal of the Indian Society of 

Agricultural Statistics 72(1) 2018   39–48

Unit Root and Cointegration with Logistic Errors

Nimitha John and N. Balakrishna 
Cochin University of Science and Technology, Kochi

SUMMARY
Cointegration analysis and the existence of unit root often suggest an economic relationship in the long run for more than one non stationary time 

series. In this paper, a unit root process and cointegration model of first order for  processes which allows for logistic innovation is defined. We 
propose the maximum likelihood estimator of the cointegrating vector from a first order vector autoregressive process. Then we develop a likelihood 
ratio test for unit root and cointegration associated with two time series. Monte Carlo simulations are performed to verify the finite sample properties 
of the estimator and the test statistic. To account for the distortions caused by the specific sample, a bootstrap test based on MLE is performed. Rubber 
consumption and export data are analysed to illustrate the applications of the proposed model.
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1.	 Introduction

The methods for analysing time series are 
developed by assuming that the observed series is a 
realization of certain discrete parameter stationary 
stochastic process. However, a time series representing 
a real situation need not be stationary. Box and Jenkins 
(1970) argued that a non-stationary time series 
can be converted in to stationary one by successive 
differences. According to them, if an observed non-
stationary series  becomes stationary after 
successively differencing  times, then the original 
series  is referred to as a series of integration 
of order  and is denoted by . If the series is 
stationary, then it is denoted by . The study 
on basic linear time series reveals that, if the series 
becomes stationary ARMA, after  differences then 
there are  unit roots in the characteristic polynomial 
of the underlying autoregressive model. That is, we are 
assuming that the non stationarity was only due to the 
presence of unit roots. Granger (1981) pointed out that 
set of all time series which achieve stationarity after 
differencing may have linear combinations which are 
stationary without differencing. Engle and Granger 

(1987) formalized this idea and introduced the concept 
of co-integration. That is, if a linear combination of 
several  time series provides a stationary series 
then the constituent series are said to be co-integrated. 
Some examples for cointegrating series are income 
and expenditures series, short and long term interest 
rates and prices of same commodity of different 
markets etc.

During the last decade, several estimation 
methods and test procedures for cointegration among 
nonstationary time series have appeared in literature. 
Systematic analysis of a set of cointegrating time 
series can be performed by representing them in the 
form of a vector autoregression or error correction 
models, see Engle and Granger (1987). One of 
the efficient methods for cointegration analysis is 
the maximum likelihood approach, suggested by 
Johansen (1988). This method starts from a vector 
autoregressive (VAR) model representation for a set 
of variables with Gaussian errors. Since the problem 
of cointegration and the unit root are closely related, 
test for cointegration can be carried out by testing for 
unit root from the residuals of cointegrating regression 
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applications of our model, a data analysis is presented 
in Section 8. And finally in Section 9, we summarises 
the conclusions of the study. 

2.	 �Cointegrating model with 
logistic innovations

Let  and  be two cointegrating time 
series and both are . It is customary to represent 
the series in the form of an ECM for further analysis. 
Towards that end, let  = ,  =1,2,3,... be iid 
logistic random variables with independent marginals. 
Following Engle and Granger (1987), let us write 

� (1)

�(2)

where ,  =1,2,3,.. is a sequence of 
iid bivariate random variables with independent 
marginals following symmetric logistic distribution 
with probability density function of the form

with  and  .

Reason for the above two series become 
cointegrated is as follows: The reduced form for the 
process in (1) and (2) will make the variables  and 

 as a linear combination of  and  and therefore 
both the series will be nonstationary (Integrated of 
order 1). From (1) and (2) we will get, 

� (3)

and 

� (4)

 Hence from the above two equations, it is clear 
that  and  are non stationary as they are linear 
combinations of a stationary and a non stationary 
series. Since  and  are integrated series, 
equation (2) describes a stationary linear combination 
of the nonstationary variables. Thus the variables  
and  are cointegrated and hence we can say that 
they have a long run relationship in equilibrium. But if 

, then the series are uncorrelated random walks 
and hence they are no longer cointegrated. The model 
given above has been studied by Engle and Granger 
(1987) in detail with possibly correlated white noise 
and the model can be transformed in to the error 

series. Some of the test procedures for cointegration 
in the literature includes the Dickey-Fuller unit root 
test, Engle and Granger two step estimator, Johansen 
likelihood ratio test etc. Engle and Granger (1987) 
suggest an efficient estimation technique of the error 
correction model with the assumption of Gaussianity 
of errors. All the above mentioned theories and 
studies are based on the assumption that the possibly 
cointegrated VAR or error correction model (ECM) 
has normally distributed errors and, hence, they have 
the same likelihood function as the classical Johansen 
method. But in practical situations most of the series 
we come across are far from Gaussian and hence a 
study of cointegrating models with non Gaussian errors 
is necessary. Kim and Schmidt (1993) considered 
the finite sample accuracy(size) of the Dickey fuller 
unit root test when the errors were conditionally 
hetroskedastic. Lee and Tse (1996) examined the 
performance of Johansen likelihood ratio tests for 
cointegration in the presence of GARCH errors.

To the best of our knowledge, apart from the 
above cointegration tests based on conditionally 
hetroskedastic errors, to date, there is no studies on 
cointegration and error correction model when the 
innovations are non normal in their distributions. 
There are several standard non normal distributions in 
literature and each distributions may need independent 
attention. In this paper, we study the properties of 
two cointegrating time series and then model them 
with independent and identically distributed logistic 
error variables. We propose an estimation procedure 
for cointegrating parameters using the method of 
conditional maximum likelihood estimation and then 
develop a test procedure for unit root and cointegration 
when the innovation processes are generated by iid 
logistic distribution. Since the underlying distribution 
of the test statistic is well-known (asymptotic Chi-
square), a bootstrap method provides a way to account 
for the distortions caused by the finite sample. To 
account that, we perform a bootstrap test based on 
MLE for the likelihood ratio test for cointegration.

Rest of the paper is organized as follows. In 
Section 2, we define a cointegration model with logistic 
innovations and study the likelihood based estimation 
in Section 3. In Sections 4 and 5 we study the problems 
of testing of hypothesis on unit root and cointegration. 
A simulation study is conducted in Section 6 followed 
by bootstrap method in Section 7. To illustrate the 
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correction form by subtracting the lagged values from 
both the sides.

Before studying the properties of the model it is 
convenient to reparameterise the model in (1) and (2) 
by subtracting the lagged values from both the sides. 
Let  be a difference operator, on applying  operator 
on  and  of both sides of equations (1) and (2) 
and after some algebra we will get,

 and 

 , 

where  and  are linear combinations of the 
, =1,2 and  . Hence the Error Correction 

representation becomes:

� (5)

� (6)

where 

Here  is the cointegrating parameter. The above 
error correction representation has three unknown 
parameters and we estimate them by the method of 
conditional maximum likelihood. 

3.	 �Maximum likelihood estimation 
for Error Correction Model

Estimation of model parameters is one of 
the important problems involved in modelling of 
Gaussian and non Gaussian time series. Tiku et.al 
(1999) developed estimation method for a regression 
model with autocorrelated errors following a shift 
scaled Student’s t distribution. Wong and Bian (2005) 
extended the work of Tiku et.al to the case, where 
the underlying distribution is a generalised logistic 
distribution using the modified maximum likelihood 
estimators since they found their maximum likelihood 
estimates are intractable. However, in our model we 
do not encounter such a problem while estimating the 
cointegration parameters using logistic innovations and 
hence we can proceed with the estimation technique 
using the conditional maximum likelihood estimates. 
If an explicit form for the innovation density function 
is available, then the conditional likelihood based 
inference is possible for error correction model given 
in (5) and (6). To obtain the maximum likelihood 
estimation of parameters in the error correction model, 
the innovation random variables are assumed to follow 

iid logistic distribution with the joint density function:

� (7)

The parameter vector to be estimated is 
 and the conditional log-likelihood 

function for the ECM is given by

.

The form of the above log likelihood function 
suggest that we have to maximize it by some numerical 
methods. Hence on differentiating the log-likelihood 
function with respect to the parameter vector , we 
will get three equations given by, 

� (8)

� (9)

� (10)

These equations are solved numerically and are 
illustrated using simulated samples in Table 3.

The study of cointegrating models with logistic 
errors uses the properties of first order autoregressive 
models with logistic innovations, which we discuss in 
the next Section. 

4.	 �Unit root test for AR(1) model 
with logistic errors

Dickey and Fuller (1979) developed a unit root 
test for cointegration among nonstationary time 
series when the innovations were assumed to follow 
Gaussian series. Some other authors have examined 
the size distortions of this test when the errors were 
conditionally hetroskedastic. In particular, our interest 
is to analyse the time series in the presence of non-
normal innovations, specifically logistic errors. If the 
time series are integrated of same order and are non 
stationary, then test for cointegration can be carried 
out by developing a unit root test for the residual 
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series of either cointegrating regression equation or 
of the ECM. If the residuals obtained from the error 
correction model are stationary, then the variables 
could explain a long run behaviour in the equilibrium 
and hence they are cointegrated.

Let us consider the first order autoregressive 
process  defined by, 

� (11)

where  and  is a sequence of independent 
logistic random variables with mean zero. Note that  
=  +  + ... +  and if ,  converges 
to a stationary process as  with  and 

. If a realisation ( , , ,.....,
 ) of a first order autoregressive time series are given, 

we are interested in finding an estimator of  and in 
tests of the null hypothesis that . Mostly, the 
alternative hypothesis of interest,  is that the 
time series  was generated by  =  +  + , 
where . One can also consider the alternative 
of interest that the time series is generated by  =  
+  + , where . Our interest is to find 

 , the maximum likelihood estimator for  in model 
(11) and hence shall obtain the test procedure of unit 
root under the null hypothesis. An ordinary least 
square estimate of the regression coefficient in the 
autoregressive equation is obtained to be as 

Let us suppose n observations, say , , ,.....,  
are available for the analysis and we shall obtain the 
likelihood function based on n observations generated 
by the model (11). The joint density function of 

 is 

,

and the log-likelihood function of  conditioned 
on  is 

� (12)

The critical points of the above log likelihood 
function can be obtained by setting the first derivative 
with respect to  equal to zero. 

where . The first 

order partial derivative equation suggest that 
the value of  that maximises (12) must satisfy 

. This equation can be 
solved by some numerical technique and if any such 
solution exists specifies a critical point, which is either 
a maximum or a minimum. It should be noted that if 
the partial derivative of second order is negative, then 
the critical point will be a maximum. 

Now let us consider the hypothesis  
against the alternative . Under , the 
maximum value of the likelihood function is

 

and under the alternative, the 
maximum value of likelihood function is, 

. 
For , the likelihood ratio test rejects  when 

 is small. Wilks 
(1938) established that under suitable regularity 
conditions, the distribution of  is asymptotically 
Chi-square distribution. The regularity conditions are 
all verified and hence the decision of unit root in the 
model can be made by comparing the likelihood ratio 
test statistic 

� (13)

with the corresponding Chi-squared table value at 
a given level of significance.

5.	 Test for Cointegration in an ECM

Modern economic theory often suggests that 
certain pairs of financial or economic variables should 
be linked by some long run economic relationship. 
One of the primary interest concerned with such 
variables is that to test whether the set of variables 
are cointegrated. There are several test procedures 
available for cointegration when the disturbances in 
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vector error correction model are i.i.d Gaussian and 
some authors have examined the performance of these 
tests by comparing the sizes and powers of the tests in 
which the model assumptions are violated. If  
in the cointegrating equation, then the series will be a 
random walk and therefore model cannot explain any 
long run behaviour in the observed series. Hence it is 
necessary to assure that the variables are all integrated 
with same order and are non stationary before we test 
for the presence of cointegration. Then the idea of 
testing the presence of unit root in the auto regression 
equation (2) can be extended to testing the presence of 
cointegration using a similar approach that considered 
in Engle and Granger (1987). That is, once the series 
are identified to be unit root nonstationary with same 
order of integration, we can extend the test procedure of 
unit root for testing the presence of cointegration to the 
residuals of the fitted error correction model. The null 
hypothesis of unit root  can then be identically 
equal to testing  in the error correction model. 
Note that, unlike the usual cointegration test that 
applied to the residuals of the cointegrating regression, 
here we apply the test for the residuals from error 
correction model. So to test for cointegration, the null 
hypothesis that has to be taken is no cointegration , 

 against the alternative hypothesis of 
. Once the model parameters are estimated from the 
data, we tests the residuals from the error correction 
model using the test procedure described below. If the 
residuals are stationary, (ie; the null hypothesis of no 
cointegration is rejected) then we can conclude that 
the variables will be cointegrated.

Denote the residuals from the error correction 
model by,

and the hypothesis of interest is  against 
.

For model (5), under the null hypothesis, the 
maximum value of the likelihood function is

 =  

and under the alternative hypothesis, the maximum 
value of the likelihood function is,

 = .

For the model (6), under the null, the maximum of 
the likelihood function is

  =  and under 
the alternative, maximum of the likelihood function is 

= .

Hence we reject the null hypothesis of no 
cointegration if the likelihood ratio tests statistic

� (14)

or 

� (15)

is too large or too small based on Chi-square 
critical value. As our study deals with two time series, 
we have two error correction models that represent the 
cointegrating relationship. Though both the ECM has 
a unique representation for the long run cointegrating 
relationship, which is represented by the term , the 
null hypothesis of no cointegration will be rejected if 
at-least one of the above test statistic exceeds the Chi-
square critical value. 

6.	 Simulation Study

As the estimating equations do not admit explicit 
solutions, we analyse the performance of the above 
methods by simulation. Hence we carry out a simulation 
study to understand the performance of the estimator 
and test statistic described in Sections 4 and 5 for 
various sample sizes and for different specified values 
of the model parameters. For the simulation purpose, 
we first generate the innovation random variable from 
a logistic distribution. Then for specified values of 
the model parameter, we simulated the sequence , 
=1,2,...,  using the relation described in (11). Based 

on this sample, we obtain the maximum likelihood 
estimates of  using the procedure described in 
Section 4. We used sample autocorrelation as the initial 
estimate while solving the log likelihood equations by 
iterative methods. For the given values of the model 
parameter, we repeated the experiment 100 times for 
computing the estimates and then averaged them over 
the repetitions. Next we compute the likelihood ratio 
test statistic given in equation (13) for various sample 
sizes and for different parameter values. Finally we 
compute the number of rejections in 500 trials for 
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testing the null hypothesis of interest. The numerical 
computations are carried out for various value of the 
model parameter and are summarised in Tables 1 
and 2.
Table  1. The average estimates and the corresponding root mean 

squares errors of the MLE

Sample size True value MLE  RMSE 

100 -0.8 -0.7766 0.0706

-0.5 -0.5006 0.0883

-0.3 -0.2951 0.0874

 0.2 0.1797 0.0977

 0.3 0.2781 0.0917 

 0.6 0.5699 0.0829

 0.8 0.8832 0.0708

300  0.8 0.7921 0.0354

 0.5 -0.5007 0.0456

-0.3 -0.2874 0.0547

 0.2 0.2006 0.0492

 0.3 0.3008 0.0571

 0.6 0.6007 0.0425

 0.8 0.7944 0.0341

500 -0.8 -0.7949 0.0477

-0.5 -0.4995 0.0375

-0.3 -0.2989 0.0446

 0.2 0.1967 0.0394

 0.3 0.3031 0.0404

 0.6 0.5977 0.0357

 0.8 0.7929 0.0271

Table  2. No of rejections in 500 trials of the hypotheis 
 against  using the test statistic given in (13) 

for different values of 
Sample  

size n=50 n=100 n=250 n= 350

.01   .05   

.1   .2
   .01   .05   
.1   .2

   .01   .05   
.1   .2

 .01   .05   
.1   .2

500   500   
500   500

500   500   
500   500

500   500   
500   500

500   500   
500   500

500   500   
500   500

500   500   
500   500

500   500   
500   500

500   500   
500   500

218   327   
411   460

466   493   
499   500

500   500   
500   500

500   500   
500   500

122   216   
312   389

376   448   
482   496 

500   500   
500   500

500   500   
500   500

59   133   197  
283

197   311   
399   464

500   500   
500   500

500   500   
500   500

56   103   167  
273

53   108   167  
277

285   388   
439   480

482   496   
500   500

7   14   33   35 8   15   38   45    1   8   24   
50

5   12   33   
45

Next to evaluate the accuracy of the estimation 
and testing procedure of the error correction model, 
a simulation study is carried out for different sample 
sizes and for different values of the model parameters. 
For the study, we first generate a sample of size, say 
T, from the autoregressive equations in (1) and (2) 
with innovation random variables generated from 
logistic distribution. For different values of the model 
parameters, we simulated the time series  and 

 using the equations (3) and (4). Based on this 
sample , we generate the error correction model 
using (5) and (6). Finally we obtained the MLE of 
the parameters by solving the likelihood equations in 
(8), (9) and (10). We then repeated the experiment 50 
times for computing the estimates and then averaged 
them over the repetitions. After the parameters of 
ECM being estimated, we test for cointegration using 
the residuals from the error correction model. We use 
the test statistic given in (14) and (15) to compute the 
number of rejections of the null hypothesis under the 
various alternatives. In practical situations, we could 
reject the null hypothesis of no cointegration based 
on either of the two test statistics. The numerical 
computations for estimation and testing are carried 
out for various values of the model parameters and are 
summarised in Tables 3,4 and 5.
Table  3. The average estimates and the corresponding root mean 

squared errors of MLE

Sample 
 True values MLE 

300 2.6 1.5 1.8 2.708(0.3125) 1.4965(0.0156) 1.8016(0.0049) 

0.5 2 3 0.5080(0.0851) 1.9600(0.2108) 3.0096(0.0258) 

0.3 2.5 3.5 0.3178(0.0683) 2.4966(0.1028) 3.529(0.0547) 

0.2 3 4 0.1863(0.0588) 2.9448(0.1667) 4.027(0.0837) 

0.1 3 4 0.1018(0.0429) 2.7962(0.1550) 4.029(0.1978) 

500 2.6 1.5 1.8 2.6777(0.2319) 1.5009(0.0108) 1.8040(0.0275) 

0.5 2 3 0.5133(0.0624) 1.9915(0.0727) 3.035(0.1361) 

0.3 2.5 3.5 0.3107(0.0537) 2.489(0.0507) 3.5116(0.0269) 

0.2 3 4 0.2037(0.0488) 3.0027(0.0643) 4.0179(0.0451) 

0.1 3 4 0.1048(0.0390) 2.9740(0.1498) 4.0560(0.238) 

700 2.6 1.5 1.8 2.6651(0.0182) 1.5003(0.0068) 1.8006(0.0019) 

0.5 2 3 0.5075(0.0522) 2.0208(0.0477) 3.0244(0.1113) 

0.3 2.5 3.5 0.3035(0.0391) 2.4976(0.0418) 3.5072(0.0194) 

0.2 3 4 0.1904(0.0379) 2.9789(0.0619) 4.0079(0.0421) 

0.1 3 4 0.1047(0.0260) 3.0078(0.0948) 4.0182(0.0653) 
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Table  4. No of rejections in 500 trials of the hypothesis 
 ( =0) against the alternative of  ( ) using 

the first ECM
ECM-1

Sample 
size

50 100

0.01 0.05 0.1 0.2 0.01 0.05 0.1 0.2           

=0.5 500 500 500 500 500 500 500 500

=0.8 450 462 472 475 486 489 491 492

=0.9 413 429 441 452 470 475 480 492

=.95 220 250 270 285 295 300 325 347

Table  5. No of rejections in 500 trials of the hypothesis 
 ( =0) against the alternative of  ( ) using 

the second ECM
ECM-2

Sample 
size

50 100

0.01 0.05 0.1 0.2 0.01 0.05 0.1 0.2           

=0.5 500 500 500 500 500 500 500 500 

=0.8 477 488 489 491 484 490 491 496

=0.9 453 465 477 483 476 480 484 490

=.95 259 270 280 280 370 320 340 363 

Note that from Table 1 and 3, for series of length 
100 and 300, estimates are reasonably satisfactory and 
become more accurate with increasing sample size. 
From Table 2, it is evident that as  becomes closer 
to 1, the number of rejections of the null hypothesis 
of unit root becomes smaller. For example, in a length 
of 50 series, the hypothesis  was rejected 
7 times at the 0.01 significance level, while it was 
rejected 218 times when  was 0.8. Hence we claim 
that the derived test statistic is powerful for testing 
the presence of unit root in an observed nonstationary 
time series. From Tables 4 and 5, it is seen that for 
large values of  or as  increases to 1, the number of 
rejections of the null hypothesis in 500 trial decreases.

7.	 Bootstrap Method

In this section we address the accuracy of a 
bootstrap algorithm in small samples for testing the 
presence of cointegration in an ECM. In recent years, 
there has been an increasing interest in parametric and 
non parametric bootstrap inference for econometric 
and financial time series. The technique of parametric 
bootstrap suggest estimation of the sampling 
distribution of the statistic using random sampling 
methods and it may also be used for constructing tests 
of hypothesis. Here we provide a simulation based 

parametric bootstrap method that involves simulating 
data sets using the maximum likelihood estimates and 
hence computing the likelihood ratio test statistic for 
each available simulated data set.

In small sample situations, the asymptotic 
likelihood ratio test discussed in the earlier sections 
may not be suitable for determining the cointegrating 
relationship between two or more time series. The 
theoretical chi-square distribution for likelihood ratio 
test will provides much better results if the sample size 
is reasonably large. Hence for finite sample situations, 
we can use a parametric bootstrap approach in which 
we constructs the distribution of the likelihood ratio 
test statistic empirically. So we provide a Monte Carlo 
simulation to compare the performance of bootstrap 
testing with the usual method based on an asymptotic 
approximation of the distribution of the test statistic. 
The method involves 4 steps.

As a starting point, we estimate the parameters 
of the cointegration model using the conditional 
maximum likelihood estimation method and then 
obtain the asymptotic likelihood ratio test statistic 
for the real data. Secondly, we generate a bootstrap 
sample using the maximum likelihood estimates as 
the initial values and hence compute the likelihood 
ratio test statistic for the bootstrap sample. Thirdly, 
we repeat the above step 10000 times which yield an 
estimate of the distribution of the likelihood ratio test 
statistic. Finally, we compute the empirical quantiles 
of the test statistic and then take the decision on the 
null hypothesis of no cointegration by comparing the 
calculated critical values with the calculated likelihood 
ratio test value.

We analyse a real data set for testing the presence 
of cointegration by our proposed model in section 8. 

8.	 Data Analysis

In this section, we illustrate the analysis of 
cointegration with non normal innovation using the real 
data set. The data set consists of monthly observations 
on consumption and export of natural rubber collected 
from “The Rubber Board”, Ministry of Commerce and 
Industry, Govt. of India, Kottayam. The Figure 1(a) 
and Figure 1(b) provide the time series plot of the log 
transformed data and it indicates that the time series is 
nonstationary.
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Fig. 1(a). Time plot of consumption series

Fig. 1(b). Time plot of Export series

First we tested the data for cointegration with 
normally distributed errors using the Johansen test 
for cointegration. Table below shows the Johansen 
test of cointegration for normally distributed errors. 
Johansen’s trace test tests the null hypothesis of r 
cointegrating vectors against the alternative hypothesis 
of n cointegrating vectors. If r=0, it means that there is 
no relationship among the variables that is stationary.  

Table  6. Johansen Trace test
Cointegration 

rank  test  10%  5%  1% 

r=1  4.9  7.52  9.24  12.97 

r=0  32.29  17.85  19.96  24.6 

The maximum eigen value test tests the null 
hypothesis of r cointegrating vectors against the 
alternative of  cointegrating vectors. From 
the tables, it can be seen that in both cases the null 
hypothesis of one cointegrating vector is not rejected. 
This implies that, cointegration exist between the 
rubber consumption and export series.  

Table 7. Johansen Eigen Value test
Cointegration 

rank test 10% 5% 1% 

r=1  4.9  7.52  9.24  12.97 

r=0  27.39  13.75  15.67  20.2 

The parameter estimates are obtained as ,  
 and .  is 

the estimated cointegrating relationship using the 
Johansen test. Finally to evaluate the adequacy of 
the model using normal errors, we checked whether 
the residual series obtained from the fitted model 
follows normal distribution. But the assumption of 
normality is rejected for the residual series, hence 
we tested for cointegration with errors generated by 
logistic innovations. Although the plot seems to be 
nonstationary, it is important to test whether a series 
is stationary or not before we test for cointegration. 
Hence we performed a unit root test developed for 
logistic error variables to the data set in order to test 
whether the series is stationary or not.

The  values obtained for testing the unit root 
for consumption and export series are obtained as 
0.9928 and 0.9723 respectively. Since both the  
values obtained are very large, we do no reject the 
null hypothesis of unit root and hence the series 
meets cointegration test condition. Next we perform 
a maximum likelihood estimation described in the 
above section in order to find the parameter estimates 
of an error correction model of order 1. The parameter 
estimates are obtained as ,  
and . Thus the estimated cointegrating 
relationship, if any exist, is , where  
is the month-wise rubber consumption series and  
is the month-wise rubber export series. The residuals 
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from the error correction model is obtained as 

Using the parameter estimates of the ECM, 
we tested whether the residuals follow a logistic 
distribution using Kolmogorov-Smirnov test. The 

 values obtained for the series are 0.965 and 0.303 
respectively, which indicates that logistic distribution 
is suitable for the residuals. The probability-probability 
plot of the residuals are shown in Figure 2(a) and 
Figure 2(b) also confirms the result.

Fig. 2(a). PP- plot of residuals of consumption series

Fig. 2(b). PP- plot of residuals of Export series

Finally we performed a bootstrap algorithm 
for testing cointegration using the error correction 
model with logistic errors. The bootstrap values and 
asymptotic values are given in Table 8.

Table 8. Emperical levels for bootstrap and asymptotic tests
Nominal 

level
0.2 0.1 0.05

bootstrap 0.024 2.7197 0.0005 3.849 -0.0957 5.146 

Asymptotic 0.016 2.71 0.0039 3.84 0.0098  5.02 

The value of the test statistic obtained for the error 
correction equation of export series is 0.000219 and 
from Table 8 we can conclude that we reject the null 
hypothesis of no cointegration at 10 percent level of 
significance using a bootstrap test and asymptotic 
test implying that the residuals from the ECM are 
stationary. If the null hypothesis of no cointegration 
is rejected, then the cointegrating vector parameter 
estimate provides an estimate of a long run relationship. 
That is,  is the cointegrating relationship 
and the cointegrated vector is .

Thus in both situations, that is with normal and 
non normal errors, the existence of cointegration 
relationship in the data is identified. But the residual 
series obtained from the cointegrating regression using 
normal errors rejects the assumption of normality. 
Hence we proceed with the vector autoregression 
model that allows for logistic innovations to arrive at 
a right conclusion.

9.	 Conclusions

This study provides the evidence of the long-run 
cointegrating relationship of Rubber consumption and 
Export series. In this paper, we developed maximum 
likelihood estimation of the cointegration vector in a 
first order vector autoregressive model that allows for 
logistic innovations. Then we developed LRT to detect 
the presence of cointegration by developing a unit root 
test for the residuals of the ECM. All the estimating 
equations are solved by using numerical techniques. 
From the simulation studies, it is observed that the 
proposed procedure is powerful for detecting the 
presence of unit root and cointegration. Along with the 
usual asymptotic test, a bootstrap test based on MLE is 
carried out to account for the size distortions caused by 
the finite samples. The data analysis confirms that the 
proposed model detects the presence of cointegration. 
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