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SUMMARY
In the present study, the class of nonlinear models, with intrinsically linearly related mean response and input variables, were explored for the 

generation of locally D-optimal designs. It has been found that these models have the advantage of design construction in transformed or coded design 
space with suitable transformation in initial parameter guesses. Exponential and Poisson regression models with two continuous input variables were 
investigated. For the construction of D-optimal designs, the modified version of Fedorov algorithm was used that require a suitable candidate set 
representing the design space along with the initial parameter guesses. The efficient method of constructing the candidate sets with respect to each 
model is proposed. The optimality of generated designs was validated using general equivalence theorem. 

Keywords: Candidate set, D-optimality, Fisher information matrix, General equivalence theorem, Modified Fedorov exchange algorithm, Standardized 
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1.	 INTRODUCTION

Nonlinear models are unavoidable in many 
agricultural and industrial situations. These models 
are formulated either based on firm theoretical results 
or analysis of previously available data. Thus, under 
such situations if an experiment has to be conducted, 
the experimental design should incorporate nonlinear 
component also. Violating the assumption of linearity 
in the model might pose problems in design 
construction, namely dependency of design on initial 
parameter guesses and computational intensive design 
construction procedure. Though dependency on initial 
parameter guesses are unavoidable as emphasized 
by Palanichamy (1993), we found that for certain 
nonlinear models it is possible to generate designs in 
favourable range of design variables by transforming 
the initial parameter guesses given for original design 
variables range. The design construction procedure 
becomes computationally more difficult for the cases 
of experiments with continuous input variables. 

Chernoff (1953) was probably the first to address 
the issue of developing designs for nonlinear models 

and discussed the use of initial parameter guesses. 
Designs depending on initial parameter guesses are 
called local. Logistic model has been extensively 
studied for the construction of optimal designs. But 
most of the literature focuses on one variable cases 
[See Ford et al. (1992), Sebastiani and Settini (1997), 
Mathew and Sinha (2001), Woods et al. (2006), Dror 
and Steinberg (2006) and Li and Majumdar (2008)]. 
Wang et al. (2006) and Russell et al. (2009) studied 
Poisson regression model and constructed D−optimal 
designs. Lall et  al. (2018) constructed D-optimal 
saturated designs for logistic model through 
algorithmic approach.

In the present paper, locally D-optimal designs 
for exponential and Poisson regression models with 
two continuous variables have been obtained by 
transforming initial parameter guesses for design 
generation under transformed or rescaled input 
variables range. This approach can only be followed 
under nonlinear models with intrinsically linear 
mean response and input relationship. The issue of 
construction of candidate sets for implementing the 
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modified version of Fedorov algorithm is addressed 
Under different model settings, the efficient method of 
constructing a candidate set for successful performance 
of the algorithm is given. We investigate exponential 
and Poisson regression models and obtained D-optimal 
designs under these model setups. 

2.	 �Model and Algorithmic 
Procedure

A nonlinear model with intrinsically linear mean 
response and input relation can be defined as:

E(yu) = η(xu,θ), u = 1, 2,…, n � (1)

where, yu is the response, xu is the input setting, θ 
is the vector of unknown parameters and η(xu,θ) is the 
intrinsically linear relationship between mean response 
and input variables. This relational function is called 
intrinsically linear because it can be transformed to a 
linear function. Following Atkinson et al. (2007), the 
basic notations and terms are defined here.

For model (1), a Fisher Information Matrix (FIM) 
of a design say ξ with n design points can be defined 
as:

1 ( , ) ( , )( , ) x xM
xn

′∂ ∂   ξ =    ∂ ∂   ∑ η θ η θ
θ

θ θ
� (2)

A D-optimal design maximizes the determinant 
of its respective FIM compared to any other design 
for a given number of runs. For a given design ξ, 
standardized variance function is defined for any point 
x from the design space (χ) as:

-1( , ) ( , )( , ) ( , )x xx Md ∂η ∂η   ξ = ξ   ′∂ ∂   

θ θ
θ
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Let θ0 be the initial parameter guess. As η(x,θ) 
is nonlinear, both FIM and standardized variance 
function will depend upon θ0. Thus a D-optimal design 
will also be dependent on θ0. Optimality of a given 
design can be checked using General Equivalence 
theorem which was extended to nonlinear models by 
White (1973) and Whittle (1973). For a D-optimal 
design, the following inequality holds:

0
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where, k is the number of unknown parameters in 
the model.

For construction of D-optimal designs for models 
with more than one continuous variable, we employ 
the Fedorov algorithm (Fedorov, 1972), which 
works on computation of design point exchange. The 
modified version of the algorithm used in this study is 
as follows:

	 (i)	 Obtaining Candidate Set (CS): A grid of 
design points representing the design space.

	 (ii)	 Selecting Initial design (ξ0): A random or 
user provided design of size n with positive 
determinant of its FIM.

	 (iii)	 Use of an exchange computation: one design 
point is exchanged between the design and 
the candidate set at every iteration until the 
stopping criterion is met.

	 (iv)	 Stopping criterion: No significant improvement 
in determinant of FIM or the design satisfies 
the general equivalence theorem. 

Let at iteration j, xin ∈  Candidate Set,  

xout ∈  design(j), 
0

( , )x
a out

=

∂η
=

∂ θ θ

θ
θ

 and 
0

( , )x
b in

=

∂η
=

∂ θ θ

θ
θ

Thus, the design point exchange can be performed 
by maximizing the following expression (Fedorov, 
1972 page 100):

1 1 1 1 1 2( , ) 1 ( )( ) ( )a N a b N b a N a b N b a N bin out j j j j jx x − − − − −′ ′ ′ ′ ′∆ = + − − +

� (5)

where, ( , )N Mj jn= × ξ θ .

Since a discrete representation of the design space 
is used here, it might be possible that some points 
other than candidate set can increase the determinant 
of FIM on performing exchange. Thus, optimality of 
design generated using Fedorov algorithm may not 
be guaranteed. To handle this problem, an additional 
search step is proposed. We assume that the design 
generated by the Fedorov algorithm is near to 
optimal design if not optimal and implement the 
above mentioned algorithm once again. This time the 
candidate set is reconstructed as the grid of design 
points in the vicinity of design (say ξ1*), which was 
found using the original candidate set and the initial 
design is chosen as design ξ1* only. 

Let f(x, θ) be the linear polynomial function 
of x and θ under nonlinear setup η(x, θ) of model 
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(1). In model (1), the number of variables and their 
polynomial form is given by f(x, θ). Here, we have 
considered exponential and Poisson regression 
models for the following forms of f(x, θ) and obtained 
D-optimal designs: 

f(x, θ) = β0 + β1x1 + β2x2 � (6)

f(x, θ) = β0 + β1x1 + β2x2+ β12x1x2� (7)
2 2

0 1 1 11 1 2 2 22 2 12 1 2( , )xf x x x x x x= β +β +β +β +β +βθ � (8)

The maximum of standardized variance function 
give in (4) is denoted by by ρ = maxx d(x, ξ).

3.	 �Transformation of Initial 
Parameter Guesses

In this paper, all the design input variables are 
rescaled to the range [-1, 1]. Thus, the initial parameter 
guesses provided by an expert or experimenter in 
context of original variables range, cannot be used 
directly in the design generation procedure. Let xi, i 
= 1,2,...,v be a design variable in model (1), xi ∈  [ai, 
bi] and zi ∈  [-1, 1] be the corresponding rescaled or 
coded variable. From the theory of response surface 

methodology, it is known that 0( )iu i
iu

i

x x
z

−
=

∆
, where, 

xi0 = {bi + ai}/2 and Δi = {bi - ai}/2. 

Since model (1) is intrinsically linear for mean 
response and input variables relation, we define

( , ) [ ( , )]x xg fη =θ θ

where, g() is some nonlinear function and f(x, θ) 
is as defined earlier. Let β0, βi and βií be the unknown 
parameters in model (1) with β0 being intercept, βi 
is coefficient of first order term corresponding to 
variable xi and βií is the coefficient of second order or 
cross product term corresponding to xi and xí , where 
i = 1,2,...,v. Let α0, αi and αií be the parameters of the 
model corresponding to coded variables zi. Then,

0 0 0
1

v
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i

x
=
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formulation is helpful in using a vector of initial 
parameter guesses with respect to original variables 
for generating designs in terms of coded variables. 

4.	 Construction of Candidate Set

As discussed earlier, a candidate set is the discrete 
representation of continuous design space. The design 

generation can be seen as an optimization problem 
with the design criterion as objective function, 
candidate set as solution space and constraints related 
to variables and model. A candidate set should have 
low discrepancy or high uniform density. A candidate 
set with low density or high discrepancy might result 
in deletion of optimal and near optimal design points 
from the solution space. Although a candidate set 
with very high density seems tempting but it incurs 
huge computational costs at the same time. Evidently 
a candidate set with low density is bound to produce 
imprecise results. Hence, there is a trade off between 
accuracy and cost. There are two basic methods of 
constructing candidate set.

Method A: Let xi, i = 1,2,...,v be a design variable 
in model (1) with xi ∈  [ai, bi] and S be the desired 
number of equidistant points in the range of any given 
design variable. The candidate points of variable xi are 
given by xis = ai + (bi – ai)s/S, s = 0,1,...,S. Similarly 
for each variable S, candidate points are found and 
candidate set is constructed by simply taking the 
Cartesian product of set of candidate points for all 
variables. Thus, the total number of design points in 
candidate set for model (1) with v variables is (S+1)v. 
In this study, ai = -1 and bi = 1, So, xis = -1 + 2s/S.

Method B: It is similar to method A, except the 
candidate points for a given variable xi is generated 
by taking equidistant points at a fixed increment (t) 
in its respective range. The total number of candidate 
points S for a variable xi, xi ∈  [ai, bi] is given by 
S = 1 + (bi – ai)/t. Here S = 1 + 2/t. 

Method A is more popular (Mandal and Torsney, 
2006; Labadi and Wang, 2010) as it includes large 
fractions, while method B has candidate points with 
fixed size of fraction. In order to improve the Fedorov 
algorithm with candidate set constructed using method 
B, we propose an additional search step described 
below. 

Let CS0 be the candidate set generated using 
method B with increment t and Fedorov algorithm 
resulted in design ξ0. Assuming ξ0 is the design which 
lies in the neighbourhood of D-optimal design if 
it is not itself the D−optimal design, the following 
procedure is adopted for the case of two variables:

	 (i)	 Let dlm be a point in design ξ0, l = 1,2,...n 
and m = 1,2. For each dlm generate r (say 21) 
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equidistant points in the range [dlm – t, dlm + t]. 
Denote the set of r generated points by {dlm}.

	 (ii)	 Take Cartesian product, 1 2{ } { }l ld d l⊗ ∀  and 
combine the resulting l grids into a single grid 
of points. The result is a grid with structure of 
a data frame or matrix with dimension lr2 × 2. 

	 (iii)	  Remove the design point or the row of grid 
found in step  2 with entry less than -1 or 
greater than +1.

The output is a grid in the vicinity of ξ0. Using this 
grid as candidate set and the design as initial design 
one can easily reach towards D−optimal design. 
We found that incorporation of this additional step 
gives improved results as compared to method A. 
The candidate points generated by method A are not 
equidistant and hence applying modification to this 
method will not give complete coverage of the design 
space.

5.	 Exponential Model

The exponential model is one of the most popular 
nonlinear models in agricultural and industrial 
situations. The general form of this model in our 
framework is defined as follows:

exp[ ( , )]xu u uy f e= +θ , u = 1, 2,…, n� (9)

where, yu is the response corresponding to ith 
design point and eu ~ N(0, σ2), σ2 > 0 is the error.

For a design ξ with n design points under 
exponential model setup and θ0 being the vector of 
initial parameter guesses, FIM can be given by:

02 ( , )

1

1( , ) xM f(x)f(x)
n

f

u

e
n =

′ξ = ∑ θθ � (10)

where, f(x) is such that f(x, θ) = f(x)́ θ.

For two variables under first and second order 
polynomial form of f(x, θ), D-optimal designs have 
been generated and reported in Table 1, 2 and 3. The 
tables report the design generated for a model with 
given initial parameter guesses using the methods 
A and B for construction of candidate set (CS). 
The method A was constructed by taking Cartesian 
product of the sets of S +1 candidate points for the two 
variables x1 and x2. In the same line, method B was 
used to obtain the candidate set by using S candidate 

Table 1. First order exponential model with two variables

CS S Design with θ0 = [4, 1.5, 1.5]́ |M(ξ, θ)| ρ

A 19 x1 1 1 0.368421 2.32E+14 3.009732

x2 1 0.368421 1

49 x1 1 1 0.346939 2.33E+14 3.001012

x2 1 0.346939 1

99 x1 1 1 0.333333 1.93E+14 3

x2 1 0.333333 1

B 21 x1 1 1 0.33 2.33E+14 3

x2 1 0.33 1

51 x1 1 1 0.332 2.33E+14 3

x2 1 0.332 1

101 x1 1 1 0.334 2.33E+14 3

x2 1 0.334 1

Table 2. First order exponential model with two variables and 
interaction

CS S Design with θ0 = [4, 1.5, 1.5, 0.1]́ |M(ξ, θ)| ρ

A 19 x1 1 0.368421 1 0.368421 1.10E+17 4.023282

x2 1 0.368421 0.368421 1

49 x1 1 0.346939 1 0.346939 1.11E+17 4.002316

x2 1 0.346939 0.346939 1

99 x1 1 0.333333 1 0.333333 1.11E+17 4.000185

x2 1 0.333333 0.333333 1

B 21 x1 1 0.33 1 0.34 1.11E+17 4

x2 1 0.33 0.34 1

51 x1 1 0.336 1 0.336 1.11E+17 4.000001

x2 1 0.336 0.336 1

101 x1 1 0.334 1 0.338 1.11E+17 4

x2 1 0.334 0.338 1

Table 3. Second order exponential model with two variables and 
all second order terms

CS S Design with θ0 = [4, 1.5, 1.5, 0.5, 0.5, 0.1]́ |M(ξ, θ)| ρ

A 19 x1 -1 -1 0.789474 1  1 1 1.56E+30 6.04338

x2 -1 1 1 1 -1 0.368421

49 x1 -1 -1 0.795918 1  1 1 1.57E+30 6.04232

x2 -1 1 1 1 -1 0.428571

99 x1 -1 -1 0.777778 1  1 1 1.58E+30 6

x2 -1 1 1 1 -1 0.42

B 21 x1 -1 -1 0.776 1  1 1 1.58E+30 6

x2 -1 1 1 1 -1 0.42

51 x1 -1 -1 0.776 1  1 1 1.58E+30 6

x2 -1 1 1 1 -1 0.42

101 x1 -1 -1 0.778 1  1 1 1.58E+30 6

x2 -1 1 1 1 -1 0.42
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points taken for both the variables. For method B, the 
additional search step was also implemented to find 
the final designs reported in the tables. The number of 
runs in the designs is equal to the number of unknown 
parameters in the model. The tables also give the value 
of determinant of FIM for the respective designs along 
with the value of ρ to check their optimality.

6.	 Poisson Regression Model

A Poisson regression model can be written as

	 Yij ~ Poisson(λi),� (11)

where λi = exp[f(x, θ)]

In toxicity research, yij is the number of organisms 
or cells that survive the experiment for the j-th replicate 
at the i-th design point and we assume it follows a 
Poisson distribution with λi as the mean. Similar to 
exponential model the FIM is found as

0( , )

1

1( , ) xM f(x)f(x)
n

f

u

e
n =

′ξ = ∑ θθ � (12)

The difference in the form of FIMs of designs for 
exponential and Poisson regression model is due to the 
different response distributions. For details related to 
FIM see Atkinson et al. (2007), Wang et al. (2006) and 
Russell et al. (2009). 

Table 4, 5 and 6 report the D-optimal designs 
found for different Poisson regression model setup.
Table 4. First order Poisson regression model with two variables

CS S Design with θ0 = [4, 1.5, 1.5]́ |M(ξ, θ)| ρ

A 19 x1 1 -0.36842 1 2823620 3.002259

x2 1 1 -0.36842

49 x1 1 -0.34694 1 2826881 3.000246

x2 1 1 -0.34694

99 x1 1 1 -0.33333 2827466 3

x2 1 -0.33333 1

B 21 x1 1 -0.332 1 2827460 3

x2 1 1 -0.332

51 x1 1 -0.336 1 2827443 3

x2 1 1 -0.336

101 x1 1 -0.332 1 2827460 3

x2 1 1 -0.332

According to the theoretical result given by 
Russell et  al. (2009), the D-optimal design for first 

order Poisson regression model with two variables 
with initial parameter guesses θ0 = [4, 1.5, 1.5]́ will be 
{(1,1), (1,-1/3),(-1/3,1)}. 
Table 5. First order Poisson regression model with two variables 

and interaction

CS S Design with θ0 = [4, 1.5, 1.5, 0.1] |M(ξ, θ)| ρ

A 19 x1 1 -0.36842 -0.36842 1 18954381 4.004941

x2 1 -0.36842 1 -0.36842

49 x1 1 -0.34694 -0.30612 1 19006831 4.000793

x2 1 -0.34694 1 -0.30612

99 x1 1 -0.33333 -0.33333 1 19014712 4.000185

x2 1 -0.33333 1 -0.33333

B 21 x1 1 -0.34 -0.324 1 19016296 4

x2 1 -0.34 1 -0.324

51 x1 1 -0.336 -0.328 1 19016318 4

x2 1 -0.336 1 -0.328

101 x1 1 -0.34 -0.328 1 19016037 4

x2 1 -0.34 1 -0.328

Table 6. Second order Poisson regression with two variables and 
all second order terms

CS S Design with θ0 = [4, 1.5, 1.5, 0.5, 0.5, 0.1]́ |M(ξ, θ)| ρ

A 19 x1 -1 -1 1 1 0.578947 1 4.62E+13 6.013574

x2 -1 1 -1 1 1 0.157895

49 x1 -1 -1 1 1 0.55102 1 4.63E+13 6.003134

x2 -1 1 -1 1 1 0.183674

99 x1 -1 -1 1 1 0.555556 1 4.63E+13 6.000997

x2 -1 1 -1 1 1 0.191919

B 21 x1 -1 -1 1 1 0.56 1 4.63E+13 6

x2 -1 1 -1 1 1 0.192

51 x1 -1 -1 1 1 0.56 1 4.63E+13 6

x2 -1 1 -1 1 1 0.192

101 x1 -1 -1 1 1 0.56 1 4.63E+13 6

x2 -1 1 -1 1 1 0.192

7.	 Discussion

The choice of nonlinear models with intrinsically 
linear mean response and input variable relation in the 
present study helped in generating designs in desired 
coded variable range. This type of consideration is 
not needed for linear models as the designs, FIMs 
and other functions do not depend upon the initial 
parameter guesses. Since the initial parameter guesses 
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are obtained from either previously available data or 
expert opinion, it is reasonable to expect the guesses 
according to original design variables range. A 
working formula for suitable transformation of the 
initial parameter guesses has been given for design 
generation in coded design variable space. For 
searching the designs we implemented the modified 
version of Fedorov algorithm for nonlinear models 
with two continuous input variables. As this algorithm 
was originally devised for discrete design space, 
applying it for continuous design space require high 
computational resources. We undertook the study of 
efficient construction of candidate set under different 
model setups. Candidate set construction method A 
was found to work with fair accuracy for 99 candidate 
points in each variable. On the other hand, method 
B coupled with our proposed additional step was 
found to perform better than method A. Method B is 
recommended for construction of candidate set with 
an increment of 0.1 or 21 candidate points in each 
variable for the model setups considered in this study. 
The D-optimal designs for exponential and Poisson 
regression model were generated. The reported 
designs were validated for optimality by empirically 
computing the inequality given by general equivalence 
theorem. If proper transformation of initial parameter 
guesses is not available then the reported procedure 
can be easily customized for original variables range. 
All computations presented here were performed 
by developing suitable R-codes available with the 
authors.
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