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SUMMARY
In the present paper, an attempt has been made to examine the effect of measurement error in the study variate on the efficiency of the model-

based estimators of finite population total under super population model when variance of the study variate, y, is a function of the auxiliary variable 
x, related to y, and included as an independent variable in the model. Simulation results show that there is considerable loss in the precision of the 
estimators due to measurement error. However, such losses are marginal if the variability in the measurement errors as compared to variability in 
model errors is small.
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1.	 Introduction

A general treatment for inference problem 
in regression models with measurement errors 
is considered in Fuller (1987). Bolfarine (1991) 
considered finite population prediction under error-
in-variables super population model. He considered 
two models: (i) location error-in-variables super 
population model, i.e.

 i iy e= µ + , i i iY y v= + , i=1, 2,……., N � (1.1)

where Yi and yi are the observed and true value 
of y, respectively, ( )2~ 0,i ee iidN σ , ( )2~ 0,i vv iidN σ  
and ( )cov , 0i ie v = , and (ii) regression model with 
measurement errors as

0 1i i iy x e= β + β + , i=1, 2, …., N

i i iY y v= + , i i iX x u= +  � (1.2)

where Yi and Xi are observed values and, yi and xi 
are true values of y and x, respectively. ( )2~ 0,i ee iidN σ ,  

( )2~ 0,i vv iidN σ , ( )2~ 0,i uu iidN σ  and 2( )i ev y = σ  . ie ,  
iv  and iu  are mutually independent. However, he 

assumed that the random sample comes from a 
bivariate normal population of (y, x). He developed 
prediction estimators for finite population mean 

1

N

i
i

y y N
=

=∑  and ( ) ( )22

1

1
N

y i
i

S y y N
=

= − −∑ , population 

mean square, under the model (1.1), an optimal 
predictor for y  under the model (1.2). Chattopadhyay 
and Datta (1994) have extended the work of Bolfarine 
(1991) to the stratified sampling under the location 
error-in-variables super-population model. Various 
authors have made contribution on this aspect in recent 
past. Notably among them are Battese et  al. (1988), 
Eltinge (1994), Mukhopadhyay (1994), Stefanski 
(2000), Ghosh and Sinha (2007), Ma and Li (2010), 
West (2010) etc. 

When we consider the model-based/model 
assisted estimation of finite population total or mean 
of the study variate y, it has been found generally 
in most of socio-economic surveys that variance of 
y is a function of the auxiliary variable x related to 
y, when x is included as an independent variable in 
the model. The structure of the variance function is 
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generally observed as ( ) 2 gV y x= σ , 1 2
2

g≤ ≤ , 2σ  is 

variance of error term in the model, for most of the 
data encountered in practice (See the work of Smith; 
1938, Jessen; 1942, Desh Raj; 1958, Rao and Bayless; 
1969, Bayless and Rao, 1970). Also for instance, 
Royall (1970, 1971) and Royall (1973a, 1973b) have 
assumed g=1. Some of the authors (Mukhopadhya, 
1994, Chattopadhyay and Datta, 1994, etc.) have taken 
g=0, i.e. the variance of y is not a function of x. Scott 
et al (1978) have considered g=2. Therefore, there is 
need to examine the effect of measurement error in 
variables on the precision of the estimators of finite 
population total or mean under a super population 
model where variance of y is a function of x.

It has been generally conceived that the auxiliary 
information on the auxiliary variables (x) related to 
the study variate (y) are obtained from administrative 
records and various other sources in most of the socio-
economic surveys. Therefore, error in the magnitude 
of x may not be always found and even if there is little 
bit error, it may not pose serious problems, particularly, 
in estimating model parameters. However, response 
errors and/ or measurement error are likely to occur 
in the study variable which would certainty affects 
the estimate of finite population parameters as well 
as its standard error. Therefore, in the present paper, 
an attempt has been made to develop model based 
estimators for the finite population total when only 
the study variable is subject to the measurement error 
under super population model with ( ) 2

i eV y = σ  and
( ) 2

i e iV y x= σ . Section-2 deals with the development 
of model-based estimators and derivation of model 
variance of the estimators etc. A limited simulation 
study to examine the effect of measurement error on 
the standard error of the estimators under these two 
models has been conducted in Section-3.The section-4 
has dealt with discussion and concluding remarks.

2.	 �Estimation of finite population 
total under super population 
model when study variable is 
subject to measurement error

We consider the following two super population 
models. 

Model- I: 

i i iy x e= β + , i i iY y v= + , 1, 2,...,i N= . � (2.1)

where Yi and yi are the observed and true 
values of y, respectively. vi

’s and ei
’s are assumed to 

be independently distributed with mean zero and 
variances 2

vσ  and 2
eσ , respectively. It is also assumed 

that ( )cov ,i iv e  is zero. xi’
s (i=1,2,…,N) are the values 

of the auxiliary variable x related to y, and it is assumed 
that they are correctly known.

Model- II:
1/ 2

i i i iy x e x= β + , i i iY y v= + , i=1,2,…,N � (2.2)

with ( ) 2
i e iv y x= σ .

 where the notations, terms and assumptions are 
same as defined in Model- I. The model (2.2) is also 
referred to as ξ - model (Royall & Herson, 1973a).

2.1	 Estimation of finite population total under 
Model-I:

The objective is to estimate 
1

N

i
i

T y
=

=∑ . Consider 

that a sample of size n units from the population 
consisting of N units is drawn, not necessarily by 
probability sampling. The population total T can be 
decomposed as follows 

i i
i s i s

T y y
∈ ∈

= +∑ ∑  � (2.1.1)

where s  is complement to s, i.e. it contains non- 
sampled units of the population. An estimator of T is, 
therefore, given by

1̂ ˆi i
i s i s

T Y y
∈ ∈

= +∑ ∑  � (2.1.2)

where ˆˆi iy x= β  and 2
ˆ

i i
i s

i
i s

Y x

x
∈

∈

β =
∑
∑

 is the best linear 

unbiased estimator (blue) of β that is obtained after the 
fitting of the Model-I with data contained in s by least 
square technique. We state and prove the following 
theorem.

Theorem 2.1.1: The estimator 1̂T  is model-
unbiased estimator of T with model variance.

( )

2 2

2
1 2

2 2

ˆ 2
i i i

i s i s i s
e i

ii s
i i i s

i s i s

x x x
V T N n x n

x
x x

∈ ∈ ∈

∈
∈

∈ ∈

                     
       = σ + − + δ + +

       
                     

∑ ∑ ∑
∑ ∑∑ ∑ , 
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2

2
v

e

σ
δ =

σ
. 

Proof: 

We take the model expectation of the estimator 1̂T ,  
as follows

( )1 2
1

ˆ
i i N

i s
i i i

ii s i s i
i s

Y x
E T T E Y x y

x
∈

∈ ∈ =
∈

  
  

− = + −  
      

∑
∑ ∑ ∑∑

( )
( )

( )2
1

.
i i i i N

i s
i i i i i i

ii s i s i
i s

x e v x
E x e v x x e

x
∈

∈ ∈ =
∈

 β + +
 

= β + + + − β + 
 
  

∑
∑ ∑ ∑∑

1

0
N

i i i
i s i s i

x x x
∈ ∈ =

  
 = β + −β =     
∑ ∑ ∑ , as per assumption 

under model-I � (2.1.3)

This shows that the estimator is model unbiased 
estimator of T.

We derive the model variance of 1̂T  as

( ) ( )
2

2
1 1 2

1

ˆ ˆ
i i N

i s
i i i

ii s i s i
i s

Y x
V T E T T E Y x y

x
ε

ε ε =
ε

 
 

= − = + − 
 
  

∑
∑ ∑ ∑∑

( )
( )

( )2
1

.
i i i i N

i s
i i i i i i

ii s i s i
i s

x e v x
E x e v x x e

x
∈

∈ ∈ =
∈

 β + +
 

= β + + + − β + 
 
  

∑
∑ ∑ ∑∑

( ) ( ) i i
i s i s

, A x xi i i i i i
i s i s i

E e v A e v x e
ε ∈ = ε ε

 
= + + + − = 

  
∑ ∑ ∑ ∑ ∑

Squaring the above expression and taking model 
expectation as per model assumptions, we get the 
required expression of the variance after little algebraic 
simplification as fallows

2 2

2 2
2

2 2

2
i i i

i s i s i s
e v i

ii s
i i i s

i s i s

x x x
N n x n

x
x x

∈ ∈ ∈

∈
∈

∈ ∈

                        = σ + − + σ + +
      
                  

∑ ∑ ∑
∑ ∑∑ ∑

 
� (2.1.4)

It can easily be verified that the first term of the 
above expression in (2.1.4) is the model variance of 

1̂T  when there is no measurement error in y under 
model-I. 

The above variance expression (2.1.4) can further 
be written as 

( )

2 2

2
1 2

2 2

ˆ 2
i i i

i s i s i s
e i

ii s
i i i s

i s i s

x x x
V T N n x n

x
x x

∈ ∈ ∈

∈
∈

∈ ∈

                     
       = σ + − + δ + +

       
                     

∑ ∑ ∑
∑ ∑∑ ∑

,

2

2
v

e

σ
δ =

σ
 � (2.1.5)

This proves the theorem. 

Remarks: It is obvious that the model variance of 
1̂T  has increased by the second term of the expression 

(2.1.4), when there is measurement error in y.

2.2	 Estimation of finite population total under 
Model-II:

An estimator of T for a given sample s of size n 
units from the population consisting of N units can be 
written as 

2
ˆˆ

i i
i s i s

T Y x
∈ ∈

= + β∑ ∑  � (2.2.1)

where ˆ
i

i s

i
i s

Y

x
∈

∈

β =
∑
∑

 is blue of β, which is obtained 

after the fitting of the Model-II with data contained 
in s by least square technique. We state and prove the 
following theorem.

Theorem (2.2.1): The estimator 2̂T  is the unbiased 
estimator of T with model variance

( )
2

2
2̂

i
i s

e
i i

i s i s

X x
XV T n

x x
∈

∈ ∈

    
 = σ + δ 
      

∑
∑ ∑

Proof: We take the model expectation of the 
estimator 2̂T  as follows

( )2
1

ˆ .
i N

i s
i i i

ii s i s i
i s

Y
E T T E Y x y

x
∈

∈ ∈ =
∈

 
 

− = + − 
 
  

∑
∑ ∑ ∑∑
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( )
( )
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x
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 β + +
 

= β + + + − β + 
 
  

∑
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1

0
N

i i i
i s i s i

x x x
∈ ∈ =

  
 = β + −β =     
∑ ∑ ∑ , as per assumptions 

of the model. � (2.2.2)

This prove that the estimator 2̂T  is model unbiased 
estimator of T.

The model variance of 2̂T  is derived as fallows

( ) ( )
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2
2 2

1

ˆ ˆ
i N

i s
i i i

ii s i s i
i s

Y
V T E T T E Y x x
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ε

ε ε =
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∑
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( )
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1 2 1 2

1

.
i i i i N
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i i i i i i i i

ii s i s i
i s

x e x v
E x e x v x x e x

x
∈

ξ
∈ ∈ =

∈

 β + +
 

= β + + + − β + 
 
  

∑
∑ ∑ ∑∑

( ) ( )1 2 1 2 1 2

1

. i i
i s i s

 , B x x
N

i i i i i i i i
i s i s i

E e x v B e x v e x
∈ ∈ = ε ε

 
= + + + − = 

  
∑ ∑ ∑ ∑ ∑

Squaring the above expression and taking model 
expectation as per assumptions of model-II, we obtain 
the required model variance of 2̂T  after little algebraic 
simplification as fallows.

( )
22

2
2̂

e i
i s

v
i i

i s i s

X x
Xv T n

x x
∈

∈ ∈

 σ
 

= + σ 
  
 

∑
∑ ∑ , where 

1

N

i
i

X x
=

=∑  

� (2.2.3) 

It may also be noted that the first term of (2.2.3) is 
the model variance of 2̂T  when there is no measurement 
error in y under model-II. The expression (2.2.3) can 
further be written as

( )
2

2
2̂

i
i s

e
i i

i s i s

X x
XV T n

x x
∈

∈ ∈

    
 = σ + δ 
      

∑
∑ ∑

 � (2.2.4)

This proves the theorem.

Remarks-1: The variance of 2̂T  has obviously 
increased by the second term in equation (2.2.3) when 
the study variable is subject measurement error.

Remarks-2: Although there is no sense of 
comparison of 1̂T  and 2̂T  as these have been developed 
under different models, but it may be worth to see that 
under which model the loss in precision of the estimator 
is more. Assuming 2

vσ  is same for both the models, the 
increased variance in 1̂T  due to measurement error is 
the second term in the expression (2.1.4) and let it be 
denoted as

2

2
1 2

2

2
i i

i s i s
v i

ii s
i i s

i s

x x
V x n

x
x

∈ ∈

∈
∈

∈

        = σ + +
  
      

∑ ∑
∑ ∑∑

 � (2.2.5)

Similarly, let V2 be the increased variance of 
the estimator 2̂T  due to measurement error, which is 
second term in the expression (2.2.3), i.e.

( )

2

2
2 v

i
i s

X
V n

x
∈

 
 
 

= σ  
        
∑

 � (2.2.6)

Comparing V1 and V2 by taking their difference 
we get that 1 2V V> . This implies that if the population 
under study satisfies the model-I, the loss in the 
efficiencies of estimator under this model is expected 
to be more when there is measurement error in y.

3.	 A limited simulation study

A limited simulation study has been conducted 
to examine the effect of measurement error on the 
precision of the estimators under both the model-I and 
II as given below

,  i 1,2,.....,Ni i iy x e= β + = � (3.1)

with ( ) 2
i eV y = σ

and model-II
1 2 ,  i 1,2,.....,Ni i i iy x e x= β + = � (3.2)

with ( ) 2
i e iV y x= σ

It is assumed that xi follows chi-square with 5 
degree of freedom in both the models. Therefore, the 
values of xi were generated from chi-square with 5 
degree of freedom. It is also assumed that ei’

s
 follow 

independently normal distribution with mean zero and 



11Amar Singh et al. / Journal of the Indian Society of Agricultural Statistics 72(1) 2018   7–13

variance 2 2eσ = . Therefore, random effect ei’
s were 

generated from normal distribution with mean zero and 
variance 2. The value of β  is assumed to be 0.5. Using 
these models along with their defined parameters, 
the populations of y of size N=1500 were generated 
using the both models. Fifty thousands samples of 
size n=150 were drawn by simple random sampling 
without replacement from both populations generated 
from the model-I&II. The simulation study was done 
using R- software. The values of 2 2

v eδ = σ σ  have been 
considered as 0.75, 1.00 and 1.25. The variances of the 
estimators with and without measurement error in y for 
each simulation run (i=1,2,…,L) have been computed 
under both the models. Let Vi be the variance of the 
estimator without measurement error in y for ith run 
of simulation (i=1,2,…,L). Similarly, let '

iV  be the 
variance of the estimator with measurement error in y 
for ith run of simulation. Here L=50,000.

Let us define 

1

1 L

i
i

V V
L =

= ∑ , the average variance of the estimator 

without measurement error

1

1 L

i
i

V V
L =

′ ′= ∑ , the average variance of the estimator 

with measurement error

The effect of measurement error on the precision 
of the estimator has been computed as percent relative 
increase (%R.I.) in the standard error of the estimator 
with measurement error over that of the estimator 
without measurement error,

i.e. 	% . . 100V VR I
V

′ −
= ×  � (3.3)

The results of simulation in terms of average 
variances of the estimators under model-I &II with 
and without measurement error are presented in the 
table 4.1

It is obvious from the results of the Table 3.1, 
that variances of the estimators of finite population 
total have increased when there is measurement 
error in y. The increase in variance depends on the 
value of 2 2

v eδ = σ σ . It clearly shows that variances 
increases with increase in δ . However, if variability 
in measurement error is smaller as compared to 
variability in the model error (ei), then increase in 

variances would be marginal one. It is also obvious 
that V V ′=  for 0δ =  i.e. 2 0vσ = . This is also obvious 
from the variance expression (2.1.5) and (2.2.4) that 
they reduces to the variance of the estimators, when 
there is no measurement error in y in other words 
when 0δ = , i.e. if 2 0vσ = .

The simulation results in terms of % R.I. under 
model-I&II are presented in the Table 3.2.

Table 3.2. Percent relative increase (%R.I.) in standard error 
of the estimators with measurement error over the estimators 

without measurement error

S. No. Model
Percent relative Increase (%R.I.) for different 

value of δ
0.75 1.00 1.25

1 Model-I 34.36 44.01 53.05

2 Model-II 7.76 10.23 12.65

The results of the Table 3.2 show that the percent 
relative increase (%RI) due to measurement error in y 
is smaller in model-II (up to 12%) than in the model-I 
(up to 53%). It is also very evident that %RI depends 
upon the value of 2 2

v eδ = σ σ . That means smaller the 
value of δ , smaller is the %RI in the variances.

4.	 �An empirical illustration about 
relative increase in variance due 
to measurement error with real 
data

Let 1V  be the variance of the estimator of 1̂T  
without measurement error under model-I, i.e. first 
part of the expression (2.1.4). let '

1V ′  be the variance 
of 1̂T  with measurement error under this model, i.e. 
expression (2.1.4). Similarly, let 2V  and '

2V ′  be the 
variance of 2̂T  without and with measurement error, 
respectively, under model-II. 2V  is the first part of the 
expression (2.2.3) where '

2V ′  is the entire expression 
of (2.2.3).

Table 3.1. Average variances of the estimators

S. No. Model V V ′  for different values of δ
0.75 1.00 1.25

1. Model-I 20365.21
(142.71)

36767.44
(191.75)

42234.85
(205.51)

47702.26
(218.41)

2 Model-II 140364.89
(374.65)

163021.77
(403.76)

170574.06
(413.01)

178126.35
(422.05)

NB: figures in parentheses denote the average standard error of 
the estimators.
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The percent relative increase in standard error of 
the estimators due to measurement error in y under 
model-I and II are, respectively, given by

1 1

1
% . .( ) 100

V V
R I I

V
′ −

= ×  � (4.1)

2 2

2
% . .( ) 100

V V
R I II

V
′ −

= × � (4.2)

Two real populations have been considered..First 
population relates to model-I while second population 
relates to model-II. Description of the populations are 
given below.

Population-I: The Table 4.8 on page 185 of 
Sukhatme and Sukhatme(1970). The variable under 
study variate(y) is area under wheat during the year 
1936, and the auxiliary variable (x) is total cultivated 
area during the year1931 After fitting the regression 
equation of y on x, we find that fitted model satisfies 
the model-I. The population size N= 34. A sample of 
size n=8 has been taken from the population. Various 
statistics have been computed which are as follows:

(2) 2

722.125
778.6538

1 617159.375

765.3529

s

s

s i

x
x

x x
n

x

=

=

= =∑

=

Population-II: The example 4.1 of the Sukhatme 
and Sukhatme (1970), page: 150 and the Table 4.1 and 
5.1 on pages 152 and 205, respectively. The variable 
under study is livestock numbers (y) and auxiliary 
variable is agricultural area (x) in the villages of 
district Eawah, U.P., India. Here the data of the 
Table 4.1 up to column 6 have been considered as the 
data satisfies the model-II as pointed out by Sukhatme 
and Sukhatme(1970). Therefore, the population 
size N=319, n=64 as per Table 5.1. The value of 

367.5348x = , 362.1242sx =  and sx  =389.0926.

The percent relative increase in variance due to 
measurement error have been computed using the 
formula given in (4.1) and (4.2) for different values of 
δ  = 0.75, 1.00 and 1.25. The results are presented in 
the Table 4.1.

The perusal of the results of the Table 3.2 and the 
Table 4.1 reveals that the percent relative increase in 
standard error due to measurement error in y are of the 

almost same order in both the cases of simulation with 
hypothetical data and real data set. Hence, results with 
real data confirm the results of simulation.

5.	 �Discussion and Concluding 
Remarks

The overall results of the Tables 3.1 and 3.2 indicate 
that there would be considerable loss in the precision 
of the estimator developed under both the models if 
there is measurement error or response error in y. The 
results of the Table 4.1 with real data also confirm the 
results of simulation However, these losses would be 
marginal if the variability in measurement error (vi) is 
small as compared to the variability in the model error 
(ei). Therefore, it is imperative to survey statisticians 
that the efforts must be made to collect relible data 
free of measurement or response error in the surveys 
by ensuring proper training and guidance to the field 
investigators to minimize the loss in the precision of 
the estimates of the population parameters
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