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SUMMARY
Regression analysis is a widely used technique for studying the relationship between variables. In this paper, an attempt has been made to study 

the estimation of regression coefficient in the context of two-stage survey data using single auxiliary variable. The theory of calibration approach is 
used to develop the estimators based on assumption that auxiliary information is available at primary stage unit (psu) level, and at both psu and second 
stage unit level. The expression for variance and variance estimator is obtained. The performance of the developed estimators is evaluated through a 
real data based simulation study.
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1. InTRoduCTIon

Survey data are collected to draw inference 
about the population parameters. Usually, the simple 
parameters like mean, total or proportion is of main 
interest. But, many a times when the objective is to 
establish the pattern of relationship between variables, 
then regression analysis is an important tool. 
Regression coefficient is a complex and non-linear 
population parameter. In the context of estimation of 
regression parameter, the well-known ordinary least 
squares (OLS) method is used which is based on 
the assumptions that sample observations are drawn 
independently. This assumption of independence 
only holds if survey data are collected through simple 
random sampling with replacement (SRSWR) scheme. 
Now a day, most of the surveys are complex in nature 
involving clustering, unequal probability of selection, 
multi-stage, multi-phase and auxiliary information, 
which violates the independence assumption required 
for OLS estimation. Modified approaches such as 
use of sampling design weights in the estimation 
procedure were suggested by Kish and Frankel 
(1974). Estimation of regression coefficient based on 
the method of maximum likelihood estimation was 

proposed by Holt, Smith and Winter (1980). Scott and 
Holt (1982) rather than using inclusion probabilities 
as weights incorporated the effect of clustering in the 
error structure resulting in heteroscedastic variance-
covariance matrix of error terms. They suggested 
weighted least squares method for the estimation of 
regression coefficient.

Calibration is a widely used methodology 
of survey estimation that incorporates auxiliary 
information into the estimation procedure (Deville 
and Särndal, 1992). So far, many works has been 
done using calibration approach for the estimation of 
parameters like mean, total, variance, covariance etc. 
in the context of unistage or multi-stage design, see 
for example Aditya et al. (2016), Basak et al. (2014a, 
2014b, 2016, 2017), Plikusas and Pumputis (2007, 
2010), Wu and Luan (2003). Here, an attempt has 
been made to estimate the finite population regression 
coefficient using calibration approach in the context 
of two-stage sampling design where single auxiliary 
variable related to the study variable is available. 

In Section 2, we discuss the general notations 
used for the development of estimator under two-stage 
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sampling design. Section 3 presents the proposed 
estimators. In Section 4 variance estimation of the 
developed estimators is discussed. Section 5 provides 
empirical evaluation of the developed estimators. 
Finally, Section 6 presents concluding remarks.

2. ThE noTaTIons

Let U=(1,2,…,k,…,N) be a finite population 
of size N which is grouped into IN  clusters as 
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primary stage units (psus) and units within the clusters 
are second stage units (ssus). The population of clusters 
is denoted by IU . At the first stage, a sample of psus Is  
of size In  is drawn from IU  by using any probability 
sampling scheme. Then at the second stage, a sample 
of units is  of size in  is drawn from the ith selected 
psus, iU  of size iN  by using any probability sampling 

scheme. Thus, 
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, where s is the 

two-stage sample and sn  is the two-stage sample 
size. Let, Iiπ  and Iijπ  be the first and second order 
inclusion probability at the first stage, whereas for the 
second stage it is /k iπ  and /kl iπ  respectively.

Let, y be the dependent variable and x be the 
independent variable under study. Here, it is assumed 
that auxiliary variable z is associated with dependent 
variable y. Let, ,   and  ik ik iky x z  be the values of 
variables y, x, and z corresponding to the jth unit of 
ith selected psu. The population total of y is given by 
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total of y. Similarly, population total of x is given 

by 
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psu total of x. Let iZ  be the ith psu total of auxiliary 

variable z. Thus, 
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Here, the parameter of interest is population 
regression coefficient B, defined by
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The π-estimator of population regression 
coefficient is given by
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where, 1 /Ii Iia = π , / /1 /k i k ia = π
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The π-estimator defined in (1) can also be 

expressed as
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where ika  is the design weight 
corresponding to kth unit of ith selected psu. Thus, 

/ , 1,...,  and 1,...,ik Ii k i I ia a a i n k n= ∀ = = .

3. ThE PRoPosEd EsTImaToRs 

Here, we have assumed two different cases of 
availability of auxiliary information:

Case 1: psu level information is available for 
single auxiliary variable z 

Case 2: psu and ssu level information is available 
for single auxiliary variable z 

3.1 Calibration Estimation under Case 1 

Here, it is assumed that population level 
auxiliary information is available at psu level, i.e., 

 is known 1, 2,...,i IZ i N∀ = . In this case, the calibration 

constraint is defined as 
1 1

I In N

Ii i i
i i

w Z Z
= =

=∑ ∑ , where Iiw  

is the calibrated weight corresponding to the design 
weight Iia . The chi-square distance function measuring 
the distance between Iiw  and Iia  is given by
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Thus, the objective function for minimization is 
given by

( )2 1
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The calibrated weight Iiw  is obtained by 
minimizing this objective function using Lagrange 
multiplier approach. Finally the calibrated weights are 
obtained as

{ }1 ; 1, 2,...,Ii Ii Ii i Iw a q Z i n= + =λ

where, 2
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Here, Iiq  is a positive constant and for the 
particular case 1,Iiq =  the calibrated weights 
are obtained as {1 }Ii Ii iw a Z= + λ , where, 
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Now, the calibrated estimators of population total 

of y is obtained as (1)
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3.2 Calibration Estimation under Case 2 

Here, it is assumed that auxiliary information 
is available at both psu and sssu level. Thus, the 

calibration constraint is defined as 
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where ikw  is the calibrated weight corresponding to 
the design weight ika . In this case, the chi-square 

distance function is given by 
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is minimized to obtain the calibrated weights, 
ikw . Lagrangian multiplier approach is used for 

minimization. Finally, the calibrated weights are 
obtained as { }11ik ik ik ikw a q z= + λ

where, 2
1
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Here, we have assumed 1ikq =  as a particular case. 
Thus, the calibrated estimator of population regression 
coefficient under case 2 is given by
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4. VaRIanCE EsTImaTIon

The developed calibrated estimators are nonlinear 
in nature. Thus, Taylor series linearization approach is 
used for variance estimation.

4.1 Variance Estimation under Case 1

The calibrated estimator, (1)ˆ
cBπ  can also be 

expressed as
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Let us write, 2
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the estimator (1)ˆ
cBπ , defined in (3), is approximated by



4 Pradip Basak et al. / Journal of the Indian Society of Agricultural Statistics 72(1) 2018  1–6
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The approximate variance of the estimator is 
given by
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4.2 Variance Estimation under Case 2

Now, (2)ˆ
cBπ  can also be expressed as
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Now, the Taylor linearized estimator of (2)ˆ
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5. EmPIRICal sTudy

In this study, we considered the following three 
estimators of population regression coefficient: 

 (i) π-estimator, B̂π  given by (1) (denoted as 
Est-π), 

 (ii) Calibrated estimator, (1)ˆ
cBπ  given by (3) 

(denoted as Est-CAL1), 

 (iii) Calibrated estimator, (2)ˆ
cBπ  given by (4) 

(denoted as Est-CAL2).

The estimators were evaluated based upon the 
criteria of percentage absolute relative bias (ARB) and 
percentage relative root mean squared error (RRMSE), 
defined by
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B

−
=

 −
= ×  

 
∑

where ˆ
iB  denotes the predicted value of population 

regression coefficient at simulation run i, with true 
value B. Here, M denotes the number of simulation 
run.

The MU284 population dataset (Särndal 
et al., 1992) was used for simulation. It consists of 
284 municipalities of Sweden which are grouped into 
50 clusters each containing 5 to 9 municipalities. The 
aim was to estimate population regression coefficient 
between variables revenues from the 1985 Municipal 
taxation (RMT85, measured in millions of kronor) 
and total number of seats in the municipal council 
(S82). Here, the number of municipal employees 
in 1984 (ME84) was used as the auxiliary variable 
related to the dependent variable, RMT85. From this 
population, four different combinations of sample: 
i) 20,  4,  80,I i sn n n= = = ii) 20,  2,  40,I i sn n n= = =

iii) 10,  4,  40,I i sn n n= = = iv) 10,  2,  20,I i sn n n= = =  
were drawn by using simple random sampling without 
replacement (SRSWOR) at the both stage. Then the 

values of different estimators were computed using 
the sample data. The simulation was repeated to a 
total number of 5000 times. The values of percentage 
absolute relative bias and percentage relative root 
mean square error of different estimators are presented 
in Table 1.

The results in Table 1 indicate that the gain in 
efficiency in terms of RRMSE increases with decease 
in number of sampled psu for both Est-CAL1 and 
Est-CAL2. However, for a fixed number of sampled 
psu, the relative gain in efficiency decreases for Est-
CAL1 while increases for Est-CAL2 with the increase 
in the number of sampled ssu. These results clearly 
show that both Est-CAL1 and Est-CAL2 estimators 
outperform the existing π-estimator for all the 
combinations of sample sizes. Further, between two 
calibration based estimators, the calibration estimator 
Est-CAL2 performs better than the Est-CAL1 for all 
the situations in terms of both the criteria. 
Table 1. Percentage absolute relative bias (ARB, %), percentage 

relative root mean square error (RRMSE, %) of different 
estimators and percentage relative gains in ARB and RRMSE 

with respect to the π-estimator

Estimators Est- π Est-Cal1 Est-Cal2

20,  4,  80I i sn n n= = =

ARB, % 36.4495 32.5624 30.1201
RRMSE, % 41.4177 37.4416 34.9051

Relative gain in ARB - 11.9374 21.0139
Relative gain in 

RRMSE
- 10.6195 18.6580

20,  2,  40I i sn n n= = =

ARB, % 53.8858 49.9855 40.8169
RRMSE, % 59.7347 55.3386 45.1114

Relative gain in ARB - 7.8029 32.0184
Relative gain in 

RRMSE
- 7.9440 32.4160

10,  4,  40I i sn n n= = =

ARB, % 54.1550 47.2779 43.1806
RRMSE, % 59.6381 52.3364 47.9050

Relative gain in ARB - 14.5461 25.4151
Relative gain in 

RRMSE
- 13.9515 24.4924

10,  2,  20I i sn n n= = =

ARB, % 64.4190 59.5207 51.8965
RRMSE, % 77.2630 69.2377 57.8493

Relative gain in ARB - 8.2296 24.1298
Relative gain in 

RRMSE
- 11.5909 33.5591
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6. ConCludIng REmaRks

This paper describes different estimators of 
finite population regression coefficient based on the 
availability of auxiliary information on single variable 
at psu and at both psu and ssu level. The calibration 
estimator based on both psu and ssu level information 
on single auxiliary variable is found to be superior on 
the basis empirical evaluation through real data based 
simulation study.
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