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SUMMARY
In some cases, occurrence of binary data may vary in different spatio-temporal situations. The logistic regression fails to model binary data from 

clustered, multi-level and longitudinal studies, because of dependency among the observations. Under such situation, random effects can be included 
in the linear predictor of the logistic regression model in order to allow for correlated responses. The estimation of parameter of the binary logistic 
regression with random effects (LRRE) is not straight forward due to the fact that the likelihood involves multiple integrals and the explicit derivation 
of the integrals is not possible. The Bayesian paradigm provides a natural approach to inference in mixed models. In this paper we modeled the 
occurrence of aphid populations in two different locations in India using logistic regression with random effects in Bayesian paradigm. We consider 
that the response variable is binary in nature. The weather variables i. e. temperature, relative humidity and their interaction are taken as covariates. 
We assume different prior distributions for the random intercepts parameters. As we know odds ratio depends on random intercepts, so it is also shown 
that odds ratio is random. Hence median odds ratio is calculated and it is shown that median odds ratio is robust and better measure than odds ratio. 
SAS software version 9.4 has been used for present analysis.
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1.	 INTRODUCTION

Study of binary response data become frequent 
in several field of research including medical, social, 
psychological, economics and agricultural research. In 
many research areas like epidemiologic and biological 
studies logistic regression is an important tool for 
analysis of binary and categorical response data. 
Different designs are adopted for this kind of studies, 
such as, for longitudinal studies response are measures 
on same subject repeatedly over time, in genetic 
studies where family members are closely related and 
in agricultural studies naturally defined clusters are 
correlated within clusters. Study of occurrence of pests 
and diseases is very important in agriculture. Various 
models are developed for studying various aspects of 
pests and diseases. Mainly multiple linear regression 
models are used for the purpose. In these models, 
pest/disease infestation is taken as dependent variable 

and some weather variables are taken as independent 
variables. Off course, some non-linear models are also 
reported. In these multiple linear regression models, 
dependent variable, i.e., pest/disease infestation is 
quantitative. However, there occurs some situations 
where we do not get quantitative data rather some 
gradation. For example, pest/disease population is 
categorized like severe, mild etc. or occurrence or 
nonoccurrence of pest/disease population instead of 
having actual quantity. Under such situations, logistic 
regression model is a good choice. It becomes a 
standard tool for the analysis of binary data. Moreover, 
logistic regression has a nice interpretation in terms of 
odds ratio (OR). 

In some cases, occurrence of binary data may vary 
in different spatio-temporal situations. For example, 
occurrence or non-occurrence of pest/disease may 
vary for a prolonged period of time, say several weeks. 
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If a logistic model is fitted with whole set of data, then 
the parameters estimates particularly, the intercept 
term may be upward biased. As a result the estimated 
odds ratio will no longer reflects the true scenario 
of the situation. Actually logistic regression fails to 
model binary data from clustered, multi-level and 
longitudinal studies, because of dependency among 
the observations. Under such situation, inspired by 
the theory of linear normal models, random effects 
can be included in the linear predictor of the logistic 
regression model in order to allow for correlated 
responses (Larsen et al. 2000, Diggle et al. 2002, 
Paulino et al. 2005). Here the model accounts for 
the covariance among the measures in a relatively 
parsimonious way. Such models are also known as 
multi-level logistic regression model which comes 
under the broad category of Linear Mixed Models 
(LMM). In multi-level logistic regression model, 
intercept term is no longer fixed. It becomes a random 
effect in the next higher level making odds ratio a 
random variable. Thus such logistic regression models 
with random intercept term also helps to measure the 
heterogeneity present among the groups or states with 
the help of random odds ratio. 

The estimation of parameter of the binary logistic 
regression with random effects (LRRE) is not straight 
forward due to fact that the likelihood involves multiple 
integrals and the explicit derivation of the integrals 
is not possible (Zeger and Karim 1991, Breslow 
and Clayton 1993, Hedeker and Gibbons 1996). 
The Bayesian paradigm provides a natural approach 
to inference in mixed models. The random effects 
are treated as parameters to be estimated. In case of 
Bayesian analysis, a natural approach to inference in 
mixed models was proposed by Paulino et al. (2005). 
They estimated the random effects which were treated 
as parameters in the presence of misclassified data. 
They also showed that if the posterior distribution 
was not possible to be obtained analytically, Markov 
Chain Monte Carlo (MCMC) method could be used to 
approximate them. Souza and Migon (2010) proposed 
that inference problem could be solved in easier way if 
the random effects of the mixed models are distributed 
as Student-t or finite mixture of normal distributions. 
Lui and Dey (2008) used prior distributions like 
skew-normal and non-parametric distribution. Ten 
Have and Localio (1999) used an empirical Bayes 
approach for logistic regression with random effects 

models. Santos et al. (2013) provided different prior 
and posterior interpretations for the parameters in 
the logistic regression model with random intercepts 
when skew normal distribution are assumed to model 
random effects. They obtained the prior distributions 
for the different parameters and showed odds ratio 
and median odds ratio under skew normality for the 
random effects. They showed the misspecifications of 
the random effects distributions for estimating of odds 
ratio. They finally concluded that the misspecification 
of the random effects parameters gives poor estimates.

 Zeger et al. (1988) showed that when random 
effects are introduced in the model, fixed effects 
parameters do not maintain their interpretational 
features. Parameter interpretation in logistic regression 
with random effects (LRRE) was first considered by 
Larsen (2000). Larsen and Marlo (2005) showed that 
LRRE does not inherit the interpretational features 
of the standard logistic regression model. Larsen et 
al. (2000) examined the interpretation of both fixed 
effects and random effects parameters and showed 
that the random effects parameters are not easily 
interpreted in LRRE model in case of heterogeneity. 
They showed that odds ratio depends on the random 
effects parameters. In that case, Median odds ration 
which is the function of the original random effects 
parameters are used as an alternative to odds ratio.  

In this paper, we model the occurrence of aphid 
populations of mustard crop in two different locations 
in India using logistic regression with random effects 
in Bayesian paradigm. We consider that the response 
variable is binary in nature i.e. response variable 
assumes value 1 if the average number of population 
is greater than the threshold value i.e. ≥ 30 (Saunakiya 
and Tiwari 2014) and otherwise it takes 0. The weather 
variables i.e. temperature, relative humidity and their 
interaction covariates are taken as covariates. Main 
focus is to interpret the parameters of this model. We 
assume different prior distributions for the random 
intercepts parameters. As we know odds ratio depends 
on random intercepts, so it is also shown that odds 
ratio is random. Hence median odds ratio is calculated 
and it is shown that median odds ratio is robust and 
better measure than odds ratio.

This paper is organized as follows. Section 2 
describes the logistic regression with random effects in 
general. Section 3 discusses the estimation procedure 
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of the model parameters and odds ratio with Markov 
Chain Monte Carlo technique. In Section 4, an 
illustration is made to interpret the parameters of the 
models and odds ratio. The paper is concluded with a 
section on Conclusion. 

2.	 �LOGISTIC REGRESSION WITH RANDOM 
INTERCEPT

Logistic regression with random intercept model 
can be described by using mixed effect model 
approach. The linear mixed-effect models are the 
generalization of linear regression model by including 
random intercept other than random error component. 

For controlling some factors, we generally fit a 
linear regression model. Single level regression model 
is given by

0 1       i i i iy x e e= + +β β ~ N(0, 2
eσ  )� (2.1)

Here both the parameters 0β  and 1β  are fixed. The 
random part is the only error term which is assumed to 
follow normal distribution. But when the observations 
are clustered, it is not possible to identify the variations 
at each level. Let ijy  be the ith observation in the jth 
cluster or group and variations can be explained by the 
following model

0
2     0, )(ij eij j ij ey u Ne+ ∼= +β σ , 2(0, ) j uNu ∼ σ � (2.2)

where, the variation at the two levels i.e. the between 
and within is given as ju  and ije . To see the effects of 
them, some explanatory variables can also be included 
in this model. By combining the models (2.1) and 
(2.2), random intercept model is given as

0 1i ij j ijy x u e= + + +β β � (2.3)

The random intercept model is mainly divided 
in two parts. 0 1 ijx+β β  is called as fixed part i.e. 
the intercept and the coefficient of the explanatory 
variable times the explanatory variable and j iju e+ is 
the random part. So the parameters for the fixed part 
are the coefficients β0, β1 and so on and the parameters 
for the random part are the variances, 2

uσ  and 2
eσ , 

both are assumed to be normal distributed generally.

For binary responses, ( ) Pr( 1)ij ij ijE y y= = =π  and 
1

0 1( )ij ij jF x u− = + +π β β , where F-1 is the link function. 
By using logit link function, it can be written as

( )
( ) 0 1

Pr 1
log

1 Pr 1
ij

ij j
ij

y
x u

y

 =
  = β +β +
− =  

� (2.4)

 In matrix notation, the model can be written as 

y = Xβ + Zu + ε� (2.5)

where y is a n×1 vector of responses, X is a n×p design 
matrix of covariates of fixed effects β, Z is the n×q 
design/covariate matrix for the random effects u, ε 
is n × 1 vector of errors assumed to be multivariate 
normal with mean 0 and variance matrix 2Rεσ .

The equation 2.5 has two parts, Xβ is the fixed 
part which is analogous to the linear predictor from 
a standard OLS regression model where β is the 
regression parameters and Zu + ε is the random part. 
Let u has a variance covariance matrix Σ and it is 
assumed that u is orthogonal to ε such that

2

0u
   

0 R
Var

ε

Σ  
=   ε σ    

� (2.6)

Here, the random effects u are not directly 
estimated but although they may be predicted. The 
variance of random effects is characterized by the 
variance component Σ that is estimated with the 
overall residual variance 2

εσ .

For the clustered observations, instead of taking 
all n observations at once, these observations are 
organized in k independent groups or clusters.

yi = Xiβ + Ziui + εi� (2.7)

For i=1,2,…, k with cluster i consisting of ni 
observations, yi is the response corresponding to the ith 
cluster. ui is the q×1 random effects which is normally 
distributed with mean 0 and q×q covariance matrix 
Σ. Here the matrix Zi is the ni×q design matrix for ith 
cluster random effects. 

According to Larsen et al. (2000), the response 
variable yi follows Bernoulli distribution with 
probability distribution 

exp( )( 1 | )
1 exp( )

y           x z ui
i i i i i

i
P η

= η = η = β +
+ η � (2.8)

where, β is the parameters vector of fixed effects, xi is 
the ith row of n×p design matrix X for the fixed effects, 
u is the vector of random effects which are normally 
distributed with mean 0 and variance-covariance 
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matrix Σ and zi is the ith row of n × q design matrix of 
random effect Z.

Logistic regression with random effects yields the 
same result and same interpretation by conditioning 
the random effects in terms of odds ratio as in the case 
of ordinary logistic regression model. As the random 
effects are unobservable so in general it is not possible 
to condition the random effects. It is assumed that for 
a sample of n individuals where β, u are the parameter 
vector of fixed effects, vector of random effects 
respectively and X is n × p matrix with information 
related with covariates of all observations, then the 
response | , ,Xijy β γ  follows independent Ber( )ijπ . 
The likelihood function is given by

( )
( ) ( )

1

1 1

exp 1( | , , )
1 exp 1 exp

 u X
ij iji y ynk

ij
ij

ij iji j

f y
−

= =

   =  + +   
∏∏

η
β

η η

� (2.9)

where, ( )111 1 1, ,, , , ,y
kn k kny y y y
′

=


  .

As mentioned earlier that the population is divided 
in k clusters and a sample of ni is selected into the 
ith cluster. Let yij be the response variable (yij is 1 if 
success occurs and 0 otherwise) for ith cluster and jth 
individual (Larsen et al. 2000). 

In statistical analysis, the choice of likelihood 
is very important. Normal likelihood is not the 
appropriate choice of distribution to model the data, 
when the researcher is looking at success/failure data 
or even count data. For discrete data set, binomial 
likelihood is used to model the counting the number 
of successes in a sequence of n independent Bernoulli 
trials with the corresponding probability p, which is 
the probability of success of each experiment. It is 
known that the odds for an experiment are found as 

1
p

p− . The log of the odds will be set equal to the 

regression line with an intercept and coefficients for 
each of the covariates,

0 1 1log
1 p p

p x x
p

 
= β +β + +β − 

 � (2.10)

But here using the random effects it can be 
represented as

log exp( )
1 i

p
p

 
= − 

η  where x zi i= +η β

The logit transformation allows for values in the 
regression equation along the entire real line, but also 
keeps p in its restricted interval. Thus, p is transformed 
from the real line to the interval 0 1p≤ ≤  and the 
parameter space is preserved i.e. Logit transformation 
allows the β’s to be in real line, while preserving 
the parameter space of the parameter p. Hence logit 
transformation is used because this function keeps 
things in their proper domain. It links the regression 
line to the binomial probability p.

In the usual logistic regression model, the fixed 
effects can be interpreted by odds ratio between 
the highest and the lowest risk individuals. In the 
LRRE model Larsen et al. (2000) firstly discussed 
the interpretation of the fixed effects. They showed 
that the odds ratio depends on both the fixed and 
random effects. Consequently, several other useful 
interpretations are drawn from such quantity. Let j1 
and j2 be two individuals of the different clusters i1 and 
i2, respectively. Then the odds ratio is given by

( ) ( ){ }1 1 2 2 1 2
exp x x z z ui j i j i iOR ′ ′ ′ ′= − + −β � (2.11)

If the comparison is between individuals in 
the same cluster say, i1 = i2 = i, but having different 
covariates, then

( ){ }1 2
exp x xij ijOR ′ ′= − β � (2.12)

which depends only on the fixed effects and is exactly 
the same as for the usual logistic regression model.

To quantify the random effects, the comparison is 
done assuming that two individuals, j1 and j2 belong to 
different clusters with same covariate vectors i.e., the 
individual jk

 belongs to cluster ik, k = 1, 2. In this case, 
the odds ratio depends on the random effects only and 
is given by 

( ){ }1 2
exp z z ui iOR ′ ′= − � (2.13)

The odds ratio in equation 2.11 also permits the 
comparison between the individuals with the highest 
risk in two different clusters, among others.

Under the classical approach for inference, the 
OR is a random quantity only when the comparison 
depends on the random effects. Since it is random, 
Larsen et al. (2000) propose to interpret the OR in 
terms of the median of its distribution. The so-called 
median odds ratio is named here MOR. According to 
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Larsen et al. (2000), the MOR quantifies appropriately 
the heterogeneity among the different clusters. For the 
general case, whenever we are comparing individuals 
with different covariates in different clusters, the 
median odds ratio is defined as

( ) ( ){ }1 1 2 2 1 2
exp ,x x z z u Xi j i j i iMOR ′ ′ ′ ′= − + −β � (2.14)

Larsen et al. (2000) shows that if u ~ ( , )0N Σ , 
then 1 2i iu u− ~ 2

12(0, )N σ , where 2
12σ  is the variance of

1 2i iu u− .

3.	 �BAYESIAN ESTIMATION AND 
INFERENCE IN LOGISTIC REGRESSION 
MODELS WITH RANDOM INTERCEPT

To simplify the inferential process in the logistic 
regression with random intercept, the random effects 
are usually assumed to be independent with a common 
normal distribution. Such an assumption, however, 
is questionable in some biological data as shown in 
Liu and Dey (2008), for instance. However, there are 
instances where other types of distributions are also 
used like Skewed Normal (SN) distribution. Again, 
the random effects can be considered as independent 
as well as correlated. 

From the Bayesian point of view, inference for 
mixed models is simpler since the random effects 

( )1 2, ,...,u ku u u ′=  are considered as unknown quantities 
to be estimated. Assuming the likelihood in 2.9, we 
should elicit prior distributions for the parameters β 
and u. We assume i.i.d random effects follow univariate 
normal distribution. We also center the normal 
distribution on zero to avoid non-identifiability. The 
prior distributions for the fixed effects i.e. β is assumed 
as normal with mean zero and constant variance,  

2σ . The hyperparameter i.e. 2σ  is assumed as inverse 
Gamma (IG) distribution, 2σ ~IG(a, d), where a 
is the scale parameter and d is the shape parameter. 
Thus ui~N(0, 2σ ). IG(a, d) distribution will have now  
E( 2σ ) = d(a − 1)−1 and V( 2σ ) = d[(a − 1)2(a − 2)]−1.

The posterior distribution under the present 
situation does not have any closed form. So analytically, 
it is a hard task to obtain the posterior distribution of 
odds ratio (OR) as well as the parameter estimates. 
Therefore Markov Chain Monte Carlo (MCMC) 
scheme is considered to sample from it. 

Once the parameter estimates are obtained, the 
distribution of odds ratio can be obtained and hence its 
estimate. Odds ratio depends on both the parameters 
β and the random effects u. MCMC methods provide 
good approximation for posterior distribution of OR 
as follows:

Step1: Generation of sample ( )( ) ( ),  ul lβ  from the 
posterior distributions at the lth iteration:

	 (i)	 Consider the 2-level normal response model

		  0 1ij ij j ijy x u e= + + +β β ; 
2 2~ (0, ), ~ (0, )j u ij eu N e Nσ σ

	 (ii)	 MCMC algorithms usually work in a Bayesian 
framework and there is need to add prior 
distributions for the unknown parameters and 
the set of unknown parameters is (β, u, 2

uσ , 
2
eσ ).

	 (iii)	 One possible MCMC algorithm for the model 
involves simulation from the sets of conditional 
distributions, i.e., ( ) 2 2( ), , ( ), ( ) u u ep p p pσ σβ .

	 (iv)	 Initialize the values for each group of unknown 
parameters (0) (0) 2(0) 2(0), , ,u u eσ σβ .

	 (v)	 For getting (1)β , sample from the following 
conditional distributions	

		
(0) 2(0) 2(0)( | , , , )y u u ep σ σβ

Now similarly takes more samples from 
(1) 2(0) 2(0)( | , , , ),u y u ep σ σβ  2 (1) (1) 2(0)( | , , , )y uu ep σ σβ  and 

2 (1) (1) 2(1)( | , , , )y ue up σ σβ  to get (1)u , 2(1)
uσ  and 2(1)

eσ  
respectively.

Now updating the all unknown parameters to 
the model, the process need to be repeated until 
convergence criterion is met. Each time using the 
previously generated parameter values to generate the 
next set.

Step 2: Finally odds ratio is computed

{( ) }1 1 2 2 1 2
exp xl l l l

i j i j i iOR x u u
′

= − + −β

Steps 1 must be repeated until all parameters 
has attained convergence and obtain samples from 
the posterior distributions of reasonable size. The 
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expression of Step 2 may vary according to the interest 
of the researcher as discussed earlier.

By this approach it is easy to compute posterior 
odds ratio summaries and we can also compute Highest 
Posterior Density (HPD) interval. For comparing 
two subjects from two randomly selected clusters 
Odds ratio is used. To test the signifi cance of OR in 
Bayesian framework HPD interval is frequently used. 
HPD interval have natural interpretations in terms of 
probability. Here our main interest is to test the null 
hypothesis 0 12: OR 1 H =  which will be accepted if the 
value one is in the HPD interval. 

4. ILLUSTRATION

The daily data on aphid population from two 
locations namely Bharatpur, Rajasthan (L-I) and 
Mohanpur, West Bengal (L-II) of India was collected. 
In case of Bharatpur (L-I) farm, the observations 
were collected in aphid growing season from 11th 
November to 22nd March, 2001 and at Mohanpur farm, 
the observations was collected from 25th October to 
6th March, 2003. The daily observations are grouped 
in different weeks. Fig. 1 reveals the graphical 
representation of aphid population at Bharatpurand 
Mohanpur locations. The data consists of 16 groups and 
19 groups for Bharatpur and Mohanpur respectively 
and each group has unequal number of observations. 
The response variable is converted to binary by taking 
its value 1 if aphid population exceeds the threshold 
value i.e. 30 otherwise 0 (Saunakiya and Tiwari 

2014). The dataset on the covariates i.e. daily mean 
temperature and relative humidity were also collected 
for the same time period in the studied locations. The 
daily data on weather variables is grouped in different 
weeks. These covariates i.e. temperature, relative 
humidity and their interaction are considered as fi xed 
effects in the model.

A perusal of the Fig. 1 indicates that there might be 
heterogeneity present in the data. Therefore grouping 
of this data is essential and a logistic regression 
with random intercepts is eminent. Considering the 
Bernoulli model it was assumed that the random 
intercepts may follow normal distribution as well 
as beta distribution. The fi tted model differs from 
each other because two different distributions for the 
random intercepts are assumed. The other prior and 
hyperparameter to be selected for the present dataset 
are discussed earlier.

4.1 Results and Discussion

Table 1 represents the posterior estimates and HPD 
intervals with 95% probability for the fi xed effects and 
variance for the random effects parameter. A perusal 
of table 1 indicates that both temperature and relative 
humidity have negative impact on aphid population 
for Bharatpur.  It also shows that temperature and 
relative humidity have the negative effects on the 
aphid population dynamics for Mohanpur. In both the 
locations, the variance of the random effect distribution 
are smaller than 1.0 with high posterior probability.

Fig. 1: Daily Aphid population in (a) Bharatpur and (b) Mohanpur
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Table 1. Posterior estimates of the parameters

Parameter
Estimates S.E. 95% HPD intervals

L-I L-II L-I L-II L-I L-II

β0 8.47 0.23 0.03 9.75 [8.41, 8.52] [-18.71, 19.17]

β1 -0.39 -0.25 0.01 0.47 [-0.41, -0.38] [-1.19, 0.65]

β2 -0.08 -0.05 0.001 0.14 [-0.09, -0.09] [-0.32, 0.22]

β3 0.001 0.002 0.001 0.01 [0,0.01 ] [-0.01, 0.02]

V(u) 0.24 0.45 0.38 0.86 [0.01, 0.88] [0.00, 1.84]

Intercept 1 Intercept 2

Intercept 3 Intercept 4

Intercept 5 Intercept 6

Fig. 2. Random effect densities for Mohanpur under normal distribution
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Here Fig. 2 represents the posterior density graph 
of some random intercepts. Table 2 and 3 provide 
the posterior summaries of the odds ratios and 
median odds ratios of different clusters of different 
observations of the two locations when the intercept 
terms follow Normal distribution and Beta distribution 
respectively. Here each cluster denotes the different 
temperature, relative humidity with different number 
of aphid populations. For example, the odds ratio for 
comparing two individuals of 2nd and 1st cluster is 1.46, 
3rd and 1st cluster is 1.71, hence we can say that these 
clusters are heterogeneous in nature. 

Here in Table 2 and Table 3 provides posterior 
summaries of the odds ratio distributions for some 
particular comparisons of Mohanpur and Bharatpur 
is described with their corresponding 95% HPD 
intervals. Table 2 describes the OR when random 
intercepts follow normal distribution. OR1 compares 
the cluster 1 and cluster 2 which indicates probable 
growth of aphid population in cluster 1 is 1.46 times 

as likely as cluster 2; OR2 compares the cluster 1 and 
3 which indicates probable growth of aphid population 
in cluster 1 is 1.71 times as likely as cluster 3; similarly, 
OR10 compares the cluster 14 and 7 which indicates 
probable growth of aphid population in cluster 14 is 
5.06 times as likely as cluster 7. Table 3 describes the 
OR when random intercepts follow Beta distribution. 
OR1 of Mohanpur compares the cluster 2 and cluster 
1 which indicates probable growth of aphid population 
in cluster 2 is 4.21 times as likely as cluster 1. The 
other comparisons follow similarly.

We know that odds ratio depends on the random 
intercepts. So, when odds ratio is computed for 
different clusters of two different models for different 
data sets it is seen that for different models, odds 
ratio varies to a great extent. Similarly we calculated 
median odds ratio and it is seen that median odds 
ratio is more robust that the odds ratio at least for the 
present example.

Table 2. Posterior summaries for some OR and MOR for both locations under Normal distribution

Location: Mohanpur Location: Bharatpur

Odds Ratio Mean Median HPD Odds Ratio Mean Median HPD

OR1 1.46 1.17 [0.08, 7.74] OR1 0.39 0.47 [0.09, 1.31]

OR2 1.71 1.27 [0.03, 6.40] OR2 0.69 0.69 [0.10, 1.14]

OR3 1.90 1.05 [0.06, 6.64] OR3 0.32 0.53 [0.34, 1.62]

OR4 2.61 1.07 [0.02, 6.42] OR4 1.15 1.09 [0.08, 1.16]

OR5 2.46 1.08 [0.01, 7.56] OR5 0.57 0.93 [0.13, 1.29]

OR6 3.36 1.10 [0.05, 7.94] OR6 0.60 0.94 [0.08, 1.17]

OR7 0.40 1.11 [0.01, 7.79] OR7 0.88 0.84 [0.12, 1.06]

OR8 3.71 0.95 [0.02, 7.67] OR8 2.54 2.14 [0.40, 2.94]

OR9 2.99 1.07 [0.05, 7.32] OR9 0.65 0.58 [0.25, 0.99]

OR10 5.06 0.97 [0.05, 7.16] OR10 0.76 0.78 [0.30, 1.08]

Table 3: Posterior summaries for some OR and MOR for both locations under Beta distribution

Location: Mohanpur Location: Bharatpur

Odds Ratio Mean Median HPD Odds Ratio Mean Median HPD

OR1 4.21 5.74 [3.52, 6.46] OR1 0.65 0.64 [0.31, 1.08]

OR2 5.42 4.69 [3.52, 6.44] OR2 0.49 0.46 [0.31, 1.10]

OR3 0.07 0.05 [3.49, 6.45] OR3 0.85 0.87 [0.29, 1.12]

OR4 0.28 0.31 [3.52, 6.42] OR4 1.06 0.95 [0.31, 1.09]

OR5 1.67 1.62 [3.49, 6.51] OR5 0.85 0.90 [0.29, 1.10]

OR6 5.51 5.20 [3.54, 6.47] OR6 0.89 0.82 [0.32, 1.08]

OR7 1.90 1.86 [3.50, 6.48] OR7 0.81 0.31 [0.30, 1.08]

OR8 1.52 1.63 [3.46, 6.39] OR8 0.33 0.64 [0.31, 1.12]

OR9 2.90 2.80 [3.53, 6.50] OR9 0.63 0.75 [0.32, 1.08]

OR10 5.42 5.19 [3.48, 6.47] OR10 0.86 0.87 [0.29, 1.09]



215Himadri Shekhar Roy et al. / Journal of the Indian Society of Agricultural Statistics 71(3) 2017   207–215

5.	 CONCLUSION

In this paper, an attempt has been made to show 
that one can assume a parametric distribution of 
a random effects model. As an illustration, aphid 
population dynamics in two locations namely 
Bharatpur, Rajasthan and Mohanpur, West Bengal 
have been considered. The parameter interpretation of 
logistic regression with random intercepts is carried 
out in Bayesian perspective. In general when we 
compute odds ratio we ignore the randomness of the 
intercept terms. But in the present investigation it is 
shown that odds ratio very much depends on random 
intercepts. Two probability distributions i.e. Normal 
and beta distribution are assumed for prior of random 
intercepts. For different clusters and intercepts different 
odds ratio and median odds ratio is calculated. The 
results show that median OR are robust in comparison 
to mean OR, at least for the present example.
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