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SUMMARY
Richards four-parameter nonlinear growth model, which is a generalization of the well-known logistic and Gompertz models, is a very versatile 

model for describing many growth processes. However, one limitation of the corresponding Richards nonlinear statistical model is that it is applicable 
only when the data are available at equidistant epochs, which is not always possible. The other limitation is that it is not able to describe the underlying 
fluctuations of the system satisfactorily particularly for longitudinal data, as merely an error term is added to the deterministic model to obtain it.  
Accordingly, in this article, the general approach of ‘Stochastic differential equations’ is considered. Specifically, the methodology for Richards 
growth model in random environment is developed. The optimal predictor of untransformed data along with prediction error variance is also derived. 
Relevant computer programs for its application are written and the same are included as an Appendix. Finally, as an illustration, pig growth data are 
considered and superiority of our proposed model is shown over the Richards nonlinear statistical model for given data.
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1.	 INTRODUCTION

It is well recognized that any type of statistical 
inquiry in which principles from some body of 
knowledge enter seriously into the analysis is likely 
to lead to a ‘Nonlinear model’ (Seber and Wild 
2003).  Such models play a very important role in 
understanding the complex inter-relationships among 
variables. Nonlinear growth models describe the 
development of variable of interest and are applicable 
in almost all disciplines related to plants, animals, 
fisheries, etc. (See, e.g. Gupta and Iannuzzi 1998). 
Richards four-parameter nonlinear growth model, 
which is a generalization of the well-known logistic 
and Gompertz models, is generally able to describe  
many  growth  processes.  A  large  number  of  research  
papers  in research  dealing with various aspects of this 
model, if nothing else, is a testimony to the important 
role played by it (See e.g.  Iquebal et al. 2009, Matis 
et al. 2011, Ghosh et al. 2011, Wang et al. 2012,  Lv et 
al. 2015, and Roman-Roman and Torres-Ruiz 2015). 

Therefore, in this article, we shall confine our attention 
to only the Richards growth model.

Richards four-parameter nonlinear growth model 
arises as a result of making assumptions about the type 
of growth and expressing them in terms of a differential 
equation. A heartening feature of this model is that the 
underlying nonlinear differential equation is soluble by 
means of a transformation. In  order  to  fit  the  same  
to  data,  usual  practice  is to assume  an  additive 
error  term on  the  right  hand  side  of the functional 
form of the model. The errors are generally assumed 
to be independently and identically distributed (iid). 
Nonlinear estimation procedures, are then employed 
to estimate the underlying parameters. Further, 
they can also be estimated efficiently, if the errors 
are autocorrelated. A good description of Richards 
growth model and various procedures for estimation 
of its parameters is available in Seber and Wild 
(2003). It may be emphasized that, unlike Gompertz 
and logistic models, it is extremely difficult to fit 
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Richards model due to its high nonlinearity. Further, 
Nonlinear estimation procedures are applicable only 
when the data are available at equidistant epochs. 
However, collection of growth data over time involves 
constraints of time, personnel, and budgets, etc. that 
do not always satisfy this requirement. The data 
that do exist in studies with missing data or data at 
unequal time-intervals are potentially informative, 
and precluding such data from analysis could affect 
conclusions adversely (Dennis and Ponciano 2014). 
The other limitation is that, by simply adding an error 
term, a nonlinear statistical model is not capable of 
describing the underlying fluctuations of the system 
satisfactorily, particularly for longitudinal data.

Both the above issues can, however, be handled by 
employing the more general approach of ‘Stochastic 
differential equations’. These are generally obtained 
by adding a stochastic term to the differential equation 
form of deterministic model. In a physical situation, 
random environmental fluctuations due to variations 
in parameters, such as Birth and death rates generally 
occur with great rapidity as compared to the time-scale 
of population growth. Therefore, the stochastic term is 
generally taken to be a Gaussian white noise stochastic 
process. The heartening aspect of this prescription 
is that the resultant process becomes Markovian. 
However, the price to be paid is that the sample paths 
are very irregular and do not admit of derivatives in the 
conventional sense. To handle this situation, two types 
of stochastic calculi due respectively to Stratonovich 
and Itô have been developed in the literature. In the 
former, usual rules of calculus continue to apply 
whereas in the latter, these are suitably modified. 
However, for the present article, both these calculi 
yield identical results as we are concerned only with 
the case of additive noise which is independent of state 
variable. Standard Itô formula is applied to solve these 
stochastic differential equation (SDE) models through 
their equivalent Itô stochastic integral representations. 
The present research paper is organized as follows. 
In Section 2, deterministic and statistical versions 
of Richards growth model are discussed along 
with stabilization of variances using appropriate 
transformation. Linearized Richards SDE (LRSDE) 
model is proposed for transformed data and the same 
is described. The optimal predictor of untransformed 
data along with prediction error variance is also 
derived. In Section 3, the methodology is applied 

to real data and it is shown that, for given data, the 
proposed LRSDE model performs better compared to 
Transformed Richards nonlinear statistical (TRNS) 
model for both modelling and forecasting purposes. 
The entire data analysis is carried out in SAS software 
package, Ver. 9.4 and salient codes are written in C++ 
and included as an Appendix.

2.	 METHODOLOGY

2.1	 Deterministic Model

Richards growth model is expressed by the 
nonlinear differential equation 

,� (1)

where μt denotes the variable of interest at time t,  r is 
intrinsic growth rate, K is carrying capacity, and m is a 
parameter. To solve eq.(1), let ; then

,

which is a linear differential equation. Solving it, we 
get

� (2)

where μ0 indicates the initial value of μt at time t = 0. The 
graph of μt versus t  is generally sigmoid, i.e. elongated 
S-shaped. There are four parameters in this model, viz. 
r, K, μ0 and m. The ranges of the first three parameters 
are positive, while that for the last parameter is from 
-∞ to +∞. Further, eq. (2) reduces respectively to 
monomolecular, Gompertz, and logistic models when 
m = –1, 0, 1. The point of inflexion of Richards model 
is at , and occurs at 

 

Thus, Richards model is very flexible as the point 
of inflexion is not fixed but can occur at any fraction of 
the carrying capacity K depending on the value of m. 

2.2	 Nonlinear Statistical Model

In order to apply eq. (2) to data (yt), the usual 
practice is to assume an additive error term on its right 
hand side. Thus, the corresponding Richards nonlinear 
statistical model is given by 

�(3)
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where the error term εt is assumed to be independently 
and identically distributed with  mean zero and variance 
σ2. The parameters of the model given by eq. (3) are then 
estimated through Nonlinear estimation procedures, 
such as Levenberg-Marquardt procedure. Most of 
the standard statistical software packages, such as 
SPSS and SAS contain computer programs for fitting 
nonlinear statistical models. It may be highlighted that 
the assumption of homoscedastic errors is quite often 
violated in practice due to the presence of increase in 
variation of growth curve as time increases. However, 
the square-root transformation of μt is quite often 
able to achieve homoscedasticity. Accordingly, in our 
further discussion, we shall confine our attention to the 
case m = –1/2. Thus, from eq. (3),  the model to be 
considered reduces to 

 
	   � (4)

where εt are heteroscedastic. To tackle the realistic 
situation of a data set having  heteroscedastic errors in 
the model given by eq. (4), there is a need to  consider 
the following transformation

� (5)

where the error terms ηt are homoscedastic. From 
eq.  (5), note that the error term εt in eq. (4) is 

 whose variance depends on t, and the 
mean-equation of eq. (4) is retained. Thus, the square-
root transformation of eq. (5) leads to Transformed 
Richards nonlinear statistical (TRNS) model given by

� (6)

The confidence-intervals for parameters K and r 
may be obtained as follows. Consider a fixed-regressor 
nonlinear statistical model with known functional 
relationship , where  

 and the true value θ* of θ is known 
to belong to , which is a subset of  . Let 

 be the iterative least-squares estimator of θ 
based on Gauss-Newton method of minimizing 

. Under appropriate 
regularity conditions, 
where  is a  matrix of first-order 
derivatives of regression function For TRNS 

model,  is estimated at , where 
. Assuming 

that the process  is Gaussian white noise, the 
100  confidence-interval for the ith element 
of θ is , where  

and . Note that the tth 
row of . Finally, 
interval estimation for carrying capacity K is obtained 
by squaring the lower and upper limits of interval 
estimator of θ1.

Further, to test the suitability of TRNS model, 
comparative study of “pure error”  vis-a-vis “lack 
of fit” may be carried out. To this end, the design 
framework of nonlinear regression model is given by

� (7)

where . Using partition of error sum 
of squares into “pure error” and “lack of fit” sum of 
squares, least squares estimators of θ are obtained by 
minimizing the latter. The normal equations for  are

.

It may be noted that . 
Replacing μi by , residual sum of squares 
QH is split into a “pure” sum of squares Q and a “lack 
of fit”  sum of squares QH – Q. Using asymptotic linear 
approximation for a nonlinear function, following test 
statistic may be used to test the null hypothesis of 
nonlinear regression function under independent error

� (8)

which follows  distribution. 

2.3	 Stochastic Differential Equation Model

It may be pointed out that errors in relative growth 
rate are closer to have constant variance than those in 
growth rates. Accordingly, models of the following 
form have been considered in the literature (Seber and 
Wild 2003)

� (9)

Even when the errors in eq. (9) are independent, 
the process {yt} is dependent with changing variance. 
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However, it suffers from the drawback that it may not 
be able to allow conditional variance of yt to depend on 
past growth data. To this end, corresponding to eq. (1) 
with m = –1/2 under random environment, the SDE  
version of Richards growth model is given by

( ){ } ( ){ }1 1 1 1 1
2 2 2 2 22 / ( )t t t t tdy ry k y k dt dW r k y− − −= − − + σ −

� (10)

Using Markov property of the solution 
yt, note that expected value of the error term 

1/2 1/2 1/2 1/2 1/22 ( ) / ( )t t t tdW k k y k y− −ε = − σ − −  = 1/22 t tdW y −σ  is 
zero. Further, it may be noted that conditional variance 
of  depends on past growth data due to the fact 
that εt is a function of yt. Therefore, using the variance 
stabilization transformation  and 
using chain rule of differentiation, linear SDE in 
transformed variable Zt may be obtained. Hence, 
advantage of the nonlinear SDE model given in eq. (10) 
is that it is capable of yielding closed form solution by 
getting solution of SDE in transformed variable. Thus, 
after necessary simplification, eq. (10) is reduced to 
Linearized Richards SDE (LRSDE) model, given by 

� (11)

where  and Wt is the Brownian or Wiener 
process with variance parameter unity. Given 

, solution of the LRSDE model, 
obtained by using Ito calculus, is given by (Filipe et 
al. 2013)

 

		  � (12)

Note that solution of the above LRSDE 
model is Markovian and follows Gaussian 
process with conditional mean and variance given  
by  

and  
respectively. The mean-value function of  {Zt}, i.e. 

 is a sigmoid curve, 
whereas the transition probability is homogeneous and 
homoscedasic.  It may be noted that variance-function of 
{Zt} depends on time, which allows the variance of {yt} 
to change over time. The process is also asymptotically 

stationary with mean and variance given by α and 
σ2/(2r). Further, 12t t tdW Z −ε = σ . As in TRNS model, 
note that 1 1

t t{ } {2 } 2 [ ( | )]t t t tE E dW Z E Z E dW F− −ε = σ = σ =
1

t t2 [Z { | }] 0,tE E dW F− σ =  due to the fact that Zt is  
function of . Using same argument, 
variance of error term εt is obtained as 

2 2{ } 4 E[ {( ) | }]t t t tV Z E dW F−ε = σ ≈ 2 2 2 14 { / (2 r) }−σ σ + α  
which is constant. Therefore, modelling of error 
structures as given in eqs. (5) and (10) is capable to 
fit heteroscedastic growth data to TRNS model and 
its stochastic analogue, viz. LRSDE model given 
respectively by eqs. (6) and (11). 

Since the transformation  is monotonically 
non-decreasing, therefore, approximate 
mean-value function of process {yt} viz. 

 is  
also monotonically non-decreasing and tends to 
α2 as t → ∞. However, an attempt is made here 
to obtain exact conditional expectation of {yt} 
following LRSDE model. Note that, given ,  

   is normally distributed with 
variance unity and means  and . Write 

, where 
inner conditional expectations are taken with respect 
to information sets  The expressions 
for   are evaluated as   and  

 when information about the processes 
{Zt} are  with  and   with 

 respectively. Note that

 
	 � (13)

 
	 � (14)

The outer conditional expectation may be carried 
out based on density at  of the stationary 
distribution of Zt, which is Gaussian with mean  
and variance . Finally, conditional 
expectation of yt given , i.e.  is obtained 
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by weighted means of two conditional expectations 
and is given by

� (15)

To evaluate conditional variance using 
conditioning principle, note that

 

			        

Along similar lines as above definition of 
information sets at time tk, the inner conditional variance 
expression in the first expression of  may 

be evaluated at two realized values of Zt,  viz. ,  
and writing

 

			      

			   

higher moments of Ut are expressed in terms of central 
moments. Thus, expected conditional variance of yt is 
given by

� (16)

Finally, obtaining variance of conditional 
expectation, i.e.  from eq. (15), and  
evaluating conditional variance of yt given  we 
get

 
			       .

� (17)

It may be noted that,  depends on 
past growth data thus conforming to LRSDE model 
given in eq. (10).

3.	 AN ILLUSTRATION

As an illustration, pig growth data, reported 
in Das (2015) and collected at the piggery farm of 
ICAR-Indian Veterinary Research Institute, Izatnagar, 
Bareilly, India, are considered for data analysis. 
An attempt is made to fit various types of Richards 
growth models to this data and to study their relative 
performances through computations of goodness-
of-fit and forecast accuracy criteria. To this end, 
variance stabilization of the error terms in TRNS 
model is carried out by square-root transformation 
of raw data for weights of 210 pigs. The weights of 
each pig are observed at ages 0,1,2,…,8 months and 
thereafter at ages of 12, 16, 20, and 24 months. As 
discussed in Section 2, under the condition that error 
in yt is proportional to λt, TRNS model is fitted to the 
data. Since these are equispaced for the age ranging 
from month zero up to eighth, variances of the error 
terms in the above model are estimated by computing 
observed variances, viz.  of estimated error series 

,  and the same are 
reported in Table 1. From this table, it is noticed that 
the error variances remain more or less constant in 
case of TRNS model. Therefore, from the viewpoint 
of inference about interval estimates of parameters of 
TRNS model, an attempt is made to estimate Kernel 
densities of estimated error distributions from Richards 
growth model at various time-epochs ranging from 
zero to eight and some of them are exhibited in Figs. 1 
and 2. It is observed that error distribution resembles 
Gaussian distribution only for TRNS model. Further, 
from eq. (5), parameters of Richards nonlinear growth 
model are estimated by using NLIN procedure 
available in SAS package, Ver. 9.4. Subsequently, 
non-parametric Run test is applied to estimated 
residual series and it is found that all the calculated 
values are coming out to be less than 1.96, implying 
thereby that the assumption of independence of error 
terms is not violated at 5% level of significance. It 
may be highlighted that this assumption is violated 
at 5% level of significance for fitted untransformed 
Richards nonlinear statistical model given by eq. (4). 
Further, using the methodology discussed in Section 
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2, interval estimates of parameters, viz. carrying 
capacity K and growth rate r are obtained for all the 
210 pigs and the same, to save space, are reported 
in Table 2 for randomly selected 07 pigs only. From 
Table 2, it is observed that the interval estimates of 
carrying capacity are not capable to describe observed 
maximum weights of pigs under consideration. 

Table 1. Estimated variances of  TRNS model
Age Untransformed Transformed  

0 0.03 0.002

1 0.02 0.004

2 0.06 0.007

3 0.05 0.005

4 0.07 0.006

5 0.06 0.005

6 0.11 0.008

7 0.10 0.003

8 0.05 0.005

Here,  and calculated 
value of F, using eq. (8), is 55.57, which is significant 
at 5% level of significance, implying thereby that there 

is a need to employ SDE approach. Rejection of null 
hypothesis is plausibly caused by an unpredictably 
varying environment due to period of bad nutrition, 
bout of sickness, and so on, which may affect growth 
patterns for some time into the future; these may not 
just be perturbations of the current measurements. 
Therefore, using eq. (9), parameters of LRSDE model 
are estimated by maximizing likelihood function, 
which is the product of conditional distributions of Zt 
given Zt–1. Subsequently, estimated conditional mean 
and variance of yt given  are computed to study 

(a)  (b) (c)

Fig. 1. Kernel density estimates of error distribution under untransformed TRNS model at: (a) age 0 months, (b) age 3months, and (c) age 8 months

(a)  (b) (c)

Fig. 2. Kernel density estimates of error distribution under TRNS model at: (a)  age 1 month, (b) age  4 months, and (c) age 6 months

Table 2. Interval estimation for carrying capacity and growth rate 
parameters for randomly selected 7 pigs using TRNS model

Pig Nos.
Carrying capacity Growth rate

Lower limit Upper limit Lower limit Upper limit

1 11.90   23.00 0.08 0.16

2 09.53   14.70 0.13 0.24

3 07.14   23.37 0.04 0.26

4 10.80   24.34 0.07 0.20

5 17.03   29.00 0.09 0.17

6 14.40   31.41 0.08 0.19

7 10.41   16.60 0.15 0.30



133Himadri Ghosh et al. / Journal of the Indian Society of Agricultural Statistics 71(2) 2017   127–137

fitting and forecast performance for various models 
and the same are reported in Table 3. It is to be noted 
that, estimates of parameters r and α are used in eq. (7) 
to estimate relative growth rate  for 
evaluating the estimated variance of age specific error 
term  for the model given by eq. (10). 
To this end, predicted values of Zt at missing points, 
viz. at ages 13,14,15,17,18,19,21,22,23 are obtained 
and used to calculate naïve estimate of relative growth 
rate. The estimated variance of εt is reported in Table 
3. It is noticed that the variance of estimated variance 
of εt becomes stable due to the fact that said variance 
during initial age up to 10 months is computed as 
0.002, whereas it is computed only as 3.3 × 10–7 during 
later ages till age 24 month. Therefore, stochastic 
relative growth model with error term having constant 

variance is capable to explain the observed growth 
data. Also, the age-specific variance of yt is computed, 
which has a non-decreasing trend, thereby explaining 
the need to consider LRSDE model given by eq. (12).

The fitted and four-step ahead forecast values 
for pig weights at ages 12, 16, 20, and 24 months 
for fitted TRNS model are obtained using first-order 
Taylor series approximation of  
and those for fitted LRSDE model are obtained 
using eq. (15).  To save space, the same are reported 
for 2 pigs in Table 4. Further, for fitted TRNS and 
LRSDE models, the standard deviations of prediction 
errors are respectively computed using Taylor series 
approximation and formula of conditional variances 
given by eq. (17) for observed as well as 4 hold-
out data points. These standard deviations are also 
reported within brackets ( ) in Table 4. To get a visual 
idea, the fitted and four-step ahead forecast values 
for the fitted models are exhibited in Figs. 3 and 4. 
Evidently, the fitted values by both the models are seen 
to be quite close to actual data, implying thereby that 
both the TRNS an LRSDE models are able to describe 
the given data satisfactorily. However, it may be 
pointed out that that fitting of TRNS model is a curve 
fitting approach which attempts merely to minimize 
the distance between observed and fitted values. On 
the other hand, the advantage of LRSDE model is 
that it is mechanistically developed by modelling the 
dependent error processes given by eq. (12). 

Table 3. Estimated variances
Age Variance Age Variance

1 0.14495 13 0.00005

2 0.02930 14 0.00022

3 0.01544 15 0.00082

4 0.01268 16 0.00096

5 0.00148 17 0.00010

6 0.00424 18 0.00009

7 0.00270 19 0.00008

8 0.00769 20 0.00575

9 0.00009 21 0.00004

10 0.00199 22 0.00004

11 0.00222 23 0.00018

12 0.00113 24 0.00457

Fig. 3. Comparison of fitting performance of LRSDE model along with data ( ) for Pig 1 and  
Pig 2 (Solid lines indicate LRSDE model, Dotted lines indicate TRNS model).
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12 16 20 24 12 16 20 24

Age (months) Age (months)

Fig. 4. Comparison of forecast performance of LRSDE model along with data ( ) for Pig 1 and Pig 2 (Solid lines indicate LRSDE model, Dotted lines 
indicate TRNS model).

Table 4. Fitted and forecast values of pig data for various models

Age Pig 1 Pig 2

TRNS model LRSDE  model

Pig 1 Pig 2 Pig 1 Pig 2

Fitting Forecast Fitting Forecast Fitting Forecast Fitting Forecast

0 0.9   0.8 0.93
(0.17)

- 0.71
(0.05)

- - - - -

1 2.0 1.3 2.05
(0.28)

- 1.42
(0.07)

- 1.66
  (0.08)*

- 1.25
(0.05)

-

2 3.6 2.4 3.35
(0.46)

- 2.29
(0.12)

- 2.99
(0.15)

- 1.93
(0.08)

-

3 4.8 3.3 4.69
(0.64)

- 3.29
(0.17)

- 4.77
(0.24)

- 3.14
(0.13)

-

4 6.0        4.6 6.00
(0.82)

- 4.37
(0.22)

- 6.06
(0.30)

- 4.20
(0.17)

-

5 6.9    5.4 7.24
(0.98)

- 5.52
(0.28)

- 7.32
(0.37)

- 5.62
(0.24)

-

6 8.2    6.6 8.37
(1.14)

- 6.69
(0.34)

- 8.25
(0.41)

- 6.48
(0.27)

-

7 9.4    7.8 9.40
(1.28)

- 7.88
(0.40)

- 9.59
(0.48)

- 7.76
(0.33)

-

8 10.6  9.2 10.31
(1.41)

- 9.08
(0.46)

- 10.80
(0.54)

- 9.30
(0.38)

-

12 14.4   11.2 - 15.32
(409)

- 13.04
(267)

- 16.27
(2.75)

- 14.75
(2.33)

16 17.0    15.6 - 20.04
(535)

- 18.39
(377)

- 19.88
(3.36)

- 17.30
(2.69)

20 22.6   23.0 - 24.25
(647)

- 23.94
(491)

- 22.26
(3.76)

- 21.87
(3.46)

24 31.6   32.4 - 27.87
(744)

- 29.49
(605)

- 27.21
(4.60)

- 29.70
(4.70)

*Figures in parentheses indicate corresponding standard deviations of prediction errors 
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Undoubtedly, the main purpose of developing a 
model is to make reliable and accurate forecasts. To 
this end, the Root mean square error values for four-
step ahead forecasts in respect of 7 randomly selected 
pigs are computed and the same are reported in Table 
5. A perusal of this table shows that the fitted LRSDE 
model has performed better than the fitted TRNS model 
for the data under consideration. Finally, the interval 
estimates of carrying capacities and growth rates for 
fitted LRSDE model in respect of all the 210 pigs are 
computed by extensive simulation of trajectories of Zt, 
but to save space, the results for 07 randomly selected 
pigs are reported in Table 6. Evidently, a heartening 
aspect of fitted LRSDE model is that the estimated 
intervals of carrying capacities are able to contain the 
actual weights of pigs at the age of 24 months. In view 
of all this, it may be concluded that LRSDE model 
is nt only best for forecasting given data but is also 
capable of satisfying other desirable features.
Table 5. Root mean square error for four-step ahead forecasting 

for various models
Pig Nos. TRNS model LRSDE model

1 06.68 3.37

2 05.13 4.20

3 04.70 4.54

4 10.35 5.34

5  08.01 6.56

6 03.40 3.33

7 14.22 5.44

Table 6. Interval estimation of carrying capacity and growth rate 
using LRSDE model

Pig 
Nos.

Carrying capacity Growth rate

Lower limit Upper limit Lower limit Upper limit

1 25.22 60.00 0.02 0.07

2 22.32 50.01 0.02 0.09

3 24.41 57.98 0.03 0.08

4 28.03 65.26 0.02 0.07

5 32.45 68.94 0.05 0.09

6 25.11 46.66 0.05 0.10

7 28.87 69.78 0.02 0.10

4.	 CONCLUDING REMARKS	

Purpose of this article is to develop the methodology 
for application of Richards four-parameter model in 
random environment. However, a particular value of 
the fourth parameter, viz. m is considered. Work is 
in progress to extend this type of research work for 
general value of  m, and the same shall be reported 

separately in due course of time. The possibility of 
developing the methodology when the noise term is 
coloured (Behera and O’Rourke 2008) also needs to 
be explored.
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APPENDIX

Bootstrap estimation of variances of estimates of 
carrying capacity and growth rate

proc iml;

�do i=k1 to k2; /*k1= random positive value, k2= 
k1+size_of_data*/ 

seed = i; 

c = j(size_of_column-1,1,seed); 

b = normal(c); 

b1=b1||b;

end;

print b1;

quit;

%macro data;

proc optmodel;

�/*n1=last age for equi-spaced data, n2= serial 
number of last data point */

set l={1..n2};

set j=2..n1;

set k=n1+1..n2;

number y{l};

read data abc_&kk. into [_n_] y;

number n init n2+1;

var z{1..3}>=0;

�max f=sum{i in j}log((sqrt((z[1]/(2*z[2]))*(1-
exp(-2*z[2])))**(-1)))-sum{i in j}(((z[1]/z[2])*(1-
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exp(-2*z[2])))**(-1))

�* ( ( y [ i ] - ( z [ 3 ] + ( y [ i - 1 ] - z [ 3 ] ) * e x p ( -
z[2])))**2)+(sum{i in k}log((sqrt((z[1]/
(2*z[2]))*(1-exp(-8*z[2])))**(-1)))

-sum{i in k}(((z[1]/z[2])*(1-exp(-8*z[2])))**(-1))

*((y[i]-(z[3]+(y[i-1]-z[3])*exp(-4*z[2])))**2));

solve;

print z;

run;

quit;

%mend;

%macro iml;

proc  iml;

x={simulated data};

%do  i=1 %to size_of_data;

y1=x[,&i];

y_&i.=(y1);

print y_&i.;

varnames={y};

create abc_&i. from y_&i.[colname=varnames];

append from y_&i.;

close  abc_&i.;

%end;

create x1 from x;

append from x;

close  x1;

%do kk=1 %to size_of_data; 

%data;

%end;

proc iml;

%do kk=1 %to size_of_data;

 use abc_&kk.;

read all into y_&kk.;

use parms_&kk.;

read all into z_&kk.;

use x1;

read all into x;

zz=z_&kk.[,2];

zz1=zz1||zz;

%end;

print zz1;

%mend;

%iml;	

proc iml;

varz2=variance_of_growth_rate;

varz3=variance_of_carrying_capacity;

z={estimates};

do i=1 to size_of_data;

lb=z[2][i]-sqrt(varz2);

ub=z[2][i]+sqrt(varz2);

print lb;

print ub;

end;

do i=1 to size_of_data;

lb=(z[3][i]-1.96*sqrt(varz3))**2;

ub=(z[3][i]+1.96*sqrt(varz3))**2;

print lb;

print ub;	

end;

quit;
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