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SUMMARY
In this article, the concept of O’Brien’s GLS test for repeated measure design has been introduced in heteroscedastic case. The paper is devoted to 

modify O’Brien’s test statistic and propose a methodology to analyze treatment effect using Kronecker product structure where multiple responses are 
recorded repeatedly over time. Additionally, unbalanced data can also be easily modeled with the proposed methodology. The proposed methodology 
is illustrated using orthopedic dataset. The size and power of the new test statistic is computed using bootstrap methodology for different parametric 
configurations. A comparison with doubly repeated measure design is also performed with existing methodology. It is concluded that the proposed 
methodology is better than Minimum Variance Quadratic Unbiased Estimation (MIVQUE) method and Restricted Maximum Likelihood (REML) 
procedure. 

Keywords:	Bootstrap, Doubly repeated measure design, Heteroscedasticity, Kronecker product, O’Brien’s GLS test,  Multiple responses.

1.	 INTRODUCTION

Most of the trials in biomedical, pharmaceutical, 
agricultural and animal sciences are conducted 
to compare the test group with a control group to 
evaluate the relative efficacy of the treatment over the 
control for longer periods of time. Very often, lots of 
information is to be collected on multiple responses 
and the treatment is expected to have a positive 
effect on all responses. In the interest of controlling 
the overall type I error rate at α level, an adjustment 
for multiple comparison is necessary. Where a 
multiple adjustment is required; various methods viz. 
Bonferroni or Hochberg & Tamhane are available in 
literature. However, these methods do not consider the 
correlation among endpoints. Multivariate techniques 
would be more appropriate to test the treatment effect 
when it has any effect on multiple responses. Hotelling’s 
T2 test can be applied to solve this problem but it has 
less power because it does not consider the direction 
of a response which is known in advance. O’Brien 
(1982) proposed more powerful ordinary least squares 

(OLS) and generalized least squares (GLS) tests to 
demonstrate an overall positive treatment effect on 
all multiple responses. Pocock et al. (1987) proposed 
an ad-hoc extension of O’Brien’s GLS test statistics 
to heteroscedastic case assuming that covariance 
matrices are known in advance for treatment groups. 
Logan and Tamhane (2004) derived the extension of 
O’Brien’s OLS and GLS statistics in heteroscedastic 
condition and investigated a better approximation to 
the degrees of freedom of the t-distribution. Dallow et 
al. (2008) set up the concept of an operational effect 
size to evaluate power using different correlation 
matrices. They also extended O’Brien statistics to 
handle covariates as well as missing data.

In common practice, multiple measurements of a 
single response is repeatedly collected over time on 
each subject or unit. This type of design is commonly 
known as univariate repeated measure design. In 
doubly repeated measure data, multiple measurements 
are collected over time on more than one response 
variable on each subject or unit (Khattree and Naik 
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1999). Multivariate longitudinal data provides a 
unique opportunity in studying the joint evolution of 
multiple response variables over time. The analysis 
of multivariate longitudinal data can be challenging 
as compare to traditional univariate longitudinal 
data because not only error variances are likely to 
be different for different response variables but also 
errors are likely to be correlated for the same response 
variable measured at different occasions, and errors are 
also likely to be correlated among response variable 
measured at the same time. Galecki (1994) introduced 
the Kronecker product structure for modelling 
covariance structures for repeated measures specified 
by more than one repeated factor. Naik and Rao 
(2001) discussed the method to analyze unbalanced 
data with Kronecker product structure under double 
repeated measure design. Using Satterthwaite type 
approximation they developed the multivariate tests 
for testing the hypothesis. Rao and Khattree (2005) 
developed an alternative algorithm for likelihood 
ratio test statistics to consider the convergence 
problem of testing the Kronecker product structured. 
Alosh and Fritsch (2002) proposed an extension of 
O’Brien method for longitudinal setup by reducing the 
dimension of data. They reduced the k-dimensional 
data on each subject to a single value and finally 
applied MANOVA for repeated measure design.

The objective of this paper is to extend O’Brien 
methodology in doubly repeated measure design under 
heteroscedastic set up i.e. treatment and reference 
has different covariance structure. In Section 2, the 
O’Brien’s OLS and GLS tests are explained. Doubly 
repeated measure design also describe in this section in 
brief. The estimation procedure of repeated measures 
with multiple endpoints using Kronecker product 
structure is discussed in Section 3. Simulation results 
are presented in Section 4. In Section 5, application of 
the methodology is illustrated using an orthopedic data 
set. Finally, the concluding remarks are represented in 
Section 6 on the merits of the proposed methodology 
and delineation of some problems for future research 
work.

2.	 O’BRIEN’S TEST STATISTICS

O’Brien (1984) used the sample correlation 
matrix of responses to compute OLS as well as GLS 
statistics. Let xijk denotes the measurement on the kth 
endpoint for the jth subject in the ith treatment group and 

 where k = 1, …, m; j = 1,…, ni; 
i = 1, 2 are assumed to be independent and identically 
distributed random vectors from a multivariate normal 
distribution with mean vector  μi and covariance matrix 
Σi. In case of homoscedastic covariance structure, let 
Σ1 = Σ2 = Σ (say) and the corresponding correlation 
matrix be denoted by R j, j=1,2. The OLS test statistic 
proposed by O’Brien’s is

� (2.1)

Where j is a vector of 1’s of an appropriate 
dimension,  and 

. 

The O’Brien’s GLS test statistic is

� (2.2)

The test statistics (2.1) and (2.2) are standardized 
weighted sums of individual t-statistics for the m 
endpoints. The OLS statistic uses equal weights, while 
GLS statistic uses unequal weights determined by the 
sample correlation matrix R . In both the test statistics, 
it is necessary to standardize the data in common 
units via a transformation to relative deviates. The 
convergence of tGLS to the standard normal distribution 
is slower than the tOLS because of the use of estimated 
sample correlation matrix R . O’Brien (1984) proposed 
to approximate the OLS and GLS test statistics by 
t-distribution with n1 + n2 – 2md.f. However, for large 
sample sizes, the standard normal distribution may be 
used as an approximation. 

Let yijkt denotes the measurement on the tth visit 
of kth response for the jth subject in the ith treatment 
group. The data for different subjects are assumed to 
be independent but different responses for the same 
subject are assumed to have multivariate normal 
distribution. Let  and then yij 
is mt × 1 random observational vector corresponding 
to the jth observation in the ith group for j = 1,…, ni; 
i = 1, 2, …, g. Let cov (yij) = (say )i i iψ ⊗Σ Ω

 , where 
both  and  are 
unknown but it is assumed that  is a positive definite 
matrix where ⊗ denotes Kronecker product. Using 
a general linear model of the form Y = Dθ + E, any 
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linear hypothesis about the effect of treatment factor, 
time factor, or the interaction between them i.e. the 
elements of D can be formulated in the form of general 
linear hypothesis H0: FDG =0, with F and G known 
and full rank matrices. Using Wilks’ Λ or any other 
standard multivariate tests, the null hypothesis H0 can 
be tested. In the above linear model, Y represents the 
observation vector, D is a known design matrix, θ is 
collection of unknown parameters and assuming E 
independently follow multivariate normal distribution 
with zero mean and covariance matrix  (say );  
where ⊕ denotes direct sum operator.

3.	 METHODOLOGY

Without losing the generality, we assume that 
two treatment groups are to be compared with 
repeated measurement design for multiple responses. 
Additionally, we assume n1 individuals receive one 
treatment and n2 individuals receive the other and 
on each of whom m responses are measured for T 
visits. As per the common practice, it is presumed 
that the realization of repeated measurement for both 
treatment groups is same as well as both groups are 
homogenous relating to all essential prognostic factors 
for a response variable of interest.

O’Brien (1984) considered a simplified version 
of testing the treatment effects using a univariate 
regression framework after re-parameterizing in the 
design matrix (D) to obtain a full-rank model. For 
our proposed methodology, O’Brien’s design matrix 
structure is followed to estimate the effects; however, 
it is not full-rank matrix hence, Moore-Penrose inverse 
is used instead of ordinary inverse. The standardization 
is performed by subtracting the pooled mean from 
each observation and dividing by the pooled standard 
deviation within responses and visits group. We 
formulate the design matrix for first group as

,

and, for the second group, it is

Finally, the design matrix (D) is

D 

Where j and I are the vectors of 1’s and identity 

matrix with appropriate dimension respectively. The 
GLS estimate of θ is given by , 
where  is the covariance matrix of  E which has a 
block diagonal structure given by

Where . Let the correlation 
structure of  be denoted as Λ.

As we re-parameterize the design matrix, only 
the first row of (D´Λ–1D)– and D´Λ–1Y are required to 
compute the difference of treatment effect. The last 
part of  is

	   

Finally, the above expression is

l 

� (3.1)

Now,

 

�

Finally, it reduces to

� (3.2)

where . 
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But the expression (3.2) does not have full column 
rank. Using QR decomposition, it can be shown that 
the rank of (3.2) will be m + 2T – 1. Let us denote that 
Moore Penrose Inverse of D´Λ–1D is C + and the first 
row of C + is C +1. 

Finally, the GLS estimate of the difference of 
treatment effect (t) is C +1l and its standard deviation 
(SD (t)) equals to [C +1 D´Λ–1D C +1]½.

Hence, the GLS test statistic is

� (3.3)

It should be noted that the above statistic is 
equivalent to (2.2) in homoscedastic setup for a 
single visit. We have shown these facts with one real 
data set in Section 5. O’Brien (1984) evaluated the 
performance of Rank sum, OLS, GLS and modified 
GLS tests in repeated measure setting and concluded 
that GLS procedure was outperformed over Rank sum, 
OLS and modified GLS tests. Readers are requested to 
go through the Technical Report No. 25; Mayo Clinic 
for full discussion of the above findings. The above 
methodology can be used to estimate the treatment 
effect in repeated measure setting for single endpoints 
as described in Technical Report 25. However, to test 
the other effects L can be chosen in such a way that 

� (3.4)

where p is the ratio between rank of  
[L´ (D´Λ–1D)– L] and error d.f.

4.	 SIMULATION RESULTS

In order to compute the size of the test statistic 
100,000 experiments has been conducted for different 
parametric configuration with small to moderate 
sample size. In order to calculate size of the test, 
ni   i.i.d. data vectors for the treatment group yij are 
generated under Null Hypothesis, the active and 
control treatments follow the same distribution i.e. 
Ho:  from an MVN ( , ) distribution 
where ,  and  for i≠j and 
tsr has been computed. In each iteration, 100,000 
datasets are generated by bootstrap method (Efron 
and Tibshirani 1995) and corresponding ,  
b = 1, …, 100,000 are calculated. Now from the 
bootstrap distribution we compute bootstrap p-value 
as  where 

I(.) is an indicator variable and rejection of Ho is 
performed based on the basis whenever ,  
(say, 0.05 or 0.01). The above procedure is repeated 
100,000 times and the proportion of rejection of Ho 
would give the size of the test (Huque and Sankoh 
1997). In Table 1 the simulated type I error of the test 
statistics given in (3.3) has been represented. 

A comparison with doubly repeated measure 
results using SAS Proc Mixed procedure has also been 
made. As in most of the simulation data, the likelihood 
does not converge, therefore, Minimum Variance 
Quadratic Unbiased Estimation (MIVQUE) method 
has been used for comparison. The value of  has 
been compared with the average of 100,000 p-values 
obtained by MIVQUE method for each iteration. 
Finally, we compute the proportions to see the number 
of cases in which the average MIVQUE p-values are 
less than . It is observed that the values more 
than 0.5 in  in Table 1 show better results of our 
proposed methodology.

In order to compute the power of the test, data have 
been simulated under Ho and using bootstrap simulation 
(1-α)th  quantile value (say ) have been computed 
from the bootstrap distribution for different sample 
sizes. In the next step, 100,000 bootstrap estimates  
( ) of tsr under H1 are generated and power of the 

test is calculated as   
(Yuan and Hayashi 2003). However, it is observed 
that only difference in mean vector or adding some 
constant in one group is not enough to generate data 
under H1. O’Brien’s procedure has been followed to 
compute the power of the test for different sample 
size and distributions using the correlation structures 
defined as follows.

,

and

,
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Table 1.  Observed Type I Error of tsr and comparison of p-value with MIVQUE method

Distribution n1 n2 m T

;  =  = 0

;  =  = 0

;  = 0.4;  = 0.4

;  = 0.1;  = 0.1

;  = –0.2;  = 0.5

;  = –0.1;  = 0.1

α = 0.05 α = 0.01 t* α = 0.05 α = 0.01 t* α = 0.05 α = 0.01 t*

Normal 15 15 3 3 0.053 0.011 0.571 0.055 0.023 0.618 0.055 0.015 0.637

30 30 3 3 0.056 0.012 0.680 0.052 0.02 0.606 0.057 0.012 0.575

60 60 3 3 0.048 0.012 0.586 0.048 0.013 0.593 0.047 0.011 0.630

15 30 3 3 0.058 0.014 0.645 0.051 0.012 0.604 0.057 0.012 0.641

30 60 3 3 0.057 0.013 0.599 0.051 0.012 0.543 0.051 0.013 0.589

Normal 15 15 3 4 0.059 0.013 0.613 0.067 0.011 0.572 0.041 0.008 0.605

30 30 3 4 0.057 0.014 0.581 0.076 0.012 0.582 0.051 0.009 0.598

60 60 3 4 0.055 0.012 0.630 0.071 0.012 0.623 0.058 0.012 0.622

15 30 3 4 0.071 0.012 0.583 0.059 0.013 0.498 0.046 0.012 0.660

30 60 3 4 0.057 0.009 0.556 0.079 0.013 0.560 0.049 0.014 0.535

Cauchy 15 15 3 3 0.022 0.001 0.468 0.029 0.001 0.505 0.039 0.001 0.572

30 30 3 3 0.032 0.001 0.554 0.032 0.001 0.615 0.032 0.001 0.497

60 60 3 3 0.027 0.001 0.571 0.032 0.001 0.568 0.032 0.001 0.597

15 30 3 3 0.036 0.001 0.491 0.024 0.003 0.527 0.034 0.001 0.485

30 60 3 3 0.035 0.001 0.581 0.038 0.004 0.564 0.040 0.001 0.531

Note: t* is the average ratio between the  and average p-value computed by MIVQUE.
	 Data is generated under homoscedastic set up with the main aim to compare with MIVQUE method.

Table 2.  Observed power of tsr test statistics

Distribution n1 n2 m T α = 0.05 α = 0.025 α = 0.01

Normal 15 15 2 3 0.881 0.743 0.663

30 30 2 3 0.744 0.576 0.336

60 60 2 3 0.981 0.870 0.764

15 30 2 3 0.727 0.572 0.417

30 60 2 3 0.772 0.522 0.455

Exponential 15 15 2 3 0.881 0.702 0.653

30 30 2 3 0.737 0.618 0.408

60 60 2 3 0.877 0.728 0.688

15 30 2 3 0.742 0.643 0.462

30 60 2 3 0.757 0.658 0.482

Cauchy 15 15 2 3 0.765 0.455 0.397

30 30 2 3 0.669 0.481 0.372

60 60 2 3 0.922 0.875 0.802

15 30 2 3 0.643 0.551 0.340

30 60 2 3 0.745 0.668 0.496

Note: Data is generated under heteroscedastic set up and the computed p-value of likelihood ratio test for equality of covariance matrices is 0.016. 
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To generate the data under H1, 0.5 has added to 
each observation in first group and further, add 0.1k, 
k = 2, 3 and 0.2t, t = 2 to each off diagonal in  and 

 respectively. In most of the literature it has been 
implicitly assumed that for all response variables, the 
covariance matrices among the visits are same and for 
all time points, the covariance structures among all 
response variables are equal (Roy and Khattree 2005). 
The pooled covariance structure can be used for this 
purpose. In this paper, pooled covariance structure 
have formulated as, 

   and 

5.	 REAL DATA ANALYSIS

To illustrate our methodology, data has been 
used from Table 6.6.2 (Timm 2002), which was 
also analyzed by Naik and Rao (2001). Roy and 
Khattree (2005) also applied their algorithm on the 
same dataset. The data was provided by Dr. Thomas 
Zullo in the School of Dental Medicine, University of 
Pittsburgh. Total of 18 subjects were selected from the 
class of dental students and assigned to two orthopedic 
treatment groups with equal allocation. Each group 
was evaluated by studying the effectiveness of three 
measurements (m = 3) over three time points (T = 3).

Univariate as well as multivariate analysis 
have been done for the dental study data set using 
unstructured covariance matrix. It is observed that the 
mean difference vector between the groups is (4.6, 4.0, 
4.4, 1.1, 2.0, 1.6, -0.7, -1.0, -0.8). SAS Proc Mixed 
procedure is used to analyze the data and the results 
are provided in Table 3. None of the responses are 

significant at 5% level of significance. For one tail 
test, only response 1 is significant at 10% level of 
significance for the tests: MIVQUE and REML.

To apply our methodology, the estimated 
correlation matrices for both the groups are given by 

,

 

and

,

 

Before applying our methodology in dental study 
dataset, the tsr has been computed for each visit. 
Likelihood ratio test for homogeneity of covariance 
matrix is performed and computed p-values for each 
visit are reported in Table 4.  The p-values of LRT 
for all the visits are highly non-significant and it is 
clearly observed from Table 4 that the computed value 
of tsr is almost same with tGLS given by (2.2) under 
homoscedastic condition. The calculated O’Brien OLS 
(tOLS) test statistic for all the visits are also reported in 
Table 4 and it is seen that it is less than all the other 
test statistics values.
Table 4.  O’Brien tOLS , tGLS and tsr estimates for Dental Study Data

Visit tOLS tGLS tsr

1 0.685 0.979 0.929

2 0.706 0.529 0.513

3 0.661 0.846 0.836

Bootstrap methodology has been used to compute 
the p-value for our proposed test statistics. To compute 
p-value we simulate 100,000 bootstrap samples 
and calculate the p-value as mentioned in section 4. 
We repeat the above experiment for 100,000 times 
and it is observed that among all the experiments, 
maximum and minimum calculated p-value is 0.13 

Table 3.  F-value and P-value of Treatment Effect for Orthopedic 
Data

Responses
MIVQUE REML

F-Value P-Value F-Value P-Value

Response 1 1.73 0.098*, 
0.195**

1.73 0.098*, 
0.195**

Response 2 0.47 0.247*, 
0.494**

0.47 0.247*, 
0.494**

Response 3 0.09 0.384*, 
0.767**

0.09 0.384*, 
0.767**

Overall 0.41 0.262*, 
0.523**

0.12 0.363*, 
0.725**

Note: * represent single-tail and ** represent two-tail P-value. 
Overall represent doubly repeated measure design.
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and 0.01 respectively whereas 0.060, 0.070 and 0.065 
are obtained 850, 780 and 740 times out of 100,000 
iterations. The histogram of the bootstrap p-values 
is depicted in Fig. 1. We recommend the weighted 
average or mid value of the maximum frequency 
class in histogram of the bootstrap p-values should 
be considered to make an inference for hypothesis 
testing. It is found that the weighted average of the 
computed p-values is 0.067 which implies there is no 
evidence to reject Ho at 5% level of significance. The 
above methodology has been implemented in SAS 
ver. 9.1.3 with the main aim to compute the bootstrap 
p-value for easy application of our methodology by 
readers, and computer program can be obtained on 
request from the first author. To this end, user can also 
modify the SAS code to compute tGLS given in (2.3) 
with covariates or can be obtained from authors.

Fig. 1.  Empirical distribution of bootstrap p-value for Dental Data

6.	 CONCLUDING REMARKS

During the last two decades in medical research, it 
has become very common to compare the effectiveness 
of two or more drugs in terms of multiple measurements 
(Dmitrienko et al. 2010). Generally multiple responses 
are required when disease conditions are difficult to 
epitomize by only one response variable. It is not easy 
to select only one single endpoint to entirely reveal the 
unobservable true condition for therapeutic areas like 
anti-viral, photo damage etc. The problem gets more 
complicated when multiple responses are collected 
repeatedly over time. In early phase of clinical trials, 
data is collected on multiple responses in smaller 
number of subjects. In this case, multivariate method 
should be applied to maintain type-I error rate. In this 
paper, the extension of O’Brien GLS test in repeated 

measure design for heteroscedastic covariance structure 
setup has been presented. The main advantage of this 
testing procedure is that no distributional assumptions 
are needed as bootstrap methodology has been used 
for inference. It has been clearly observed that the 
proposed methodology is better than MIVQUE 
method and Restricted Maximum Likelihood (REML) 
procedure. Additionally, unbalanced data can also 
be easily modeled with the proposed methodology. 
Several types of covariance structures are available 
in literature (Hinkelmann and Kempthorne 2008) to 
model longitudinal data. The proposed methodology is 
very much flexible with any kind of covariance structure 
present in the realization. In future research, it would 
be useful to find the distribution of the proposed test 
statistics. We have developed our methodology only 
for the marginal effect model; however future attempts 
would be made to extend it for mixed effect model also. 
Effort can also be directed to apply Newton-Raphson 
technique or more advanced search algorithm viz., 
Genetic Algorithm, Swarm Optimization etc. to search 
the global optima and corresponding estimates.
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