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SUMMARY
Autoregressive fractionally integrated moving average (ARFIMA) is widely employed model for long memory time series forecasting in 

divergent domain from several decades. One of the main pitfall of this model is the presumption of linearity. As many long memory time series data in 
real world are not purely linear, therefore there is an opportunity to enhance the prediction ability of ARFIMA models by fusing with other nonlinear 
models. With this reasoning, the present article attempts to estimate the parameters of ARFIMA model by maximum overlap discrete wavelet 
transform (MODWT) and long memory time series prediction was made by combining ARFIMA-MODWT and ANN for forecasting spot prices of 
mustard. Experimental study justified the superiority of the proposed hybrid model over ARFIMA model in terms of several measurement indices.
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1.	 INTRODUCTION 

The sample autocorrelation function (ACF) of 
the time series is expected to disappear rapidly as the 
observations are distance apart in time, for example in 
ARMA model (Box and Jenkins 1970) the ACF exhibit 
short range dependence or decreases exponentially as 
the time lag increases and in some series the decay 
can occur at much slower hyperbolic rate and the 
correlations remain positive for long lags. Such series 
are said to have long memory and commonly prevail 
in stock market prices, economic growth rate, inflation 
rate, oil price and GDP figures etc. Classical time series 
models namely ARIMA models cannot describe such 
long memory phenomenon.  Therefore, to overcome 
this difficulty set of models has been established, among 
which most popular is autoregressive fractionally 
integrated moving average (ARFIMA) model given by 
Granger and Joyeux (1980). Ramalingam (2010) made 

overall review of long-term memory independently. 
Long memory studies in housing prices were carried 
out by Gil-Alana et al. (2014), Lima and Xiao (2010) 
and Tzouras et al. (2015) in financial time series. Not 
much research work has been done in long memory 
time series pertaining to agriculture. Paul 2014 and 
Paul et al. 2015 carried out long memory studies in 
pigeonpea and mustard for price forecasting.

As far as parameter estimation of ARFIMA model 
is concerned, GPH method of Geweke and Porter-
Hudak (1983) and the Gaussian semi parametric 
method developed by Robinson (1995) are widely 
used. Sowell (1992) gave maximum likelihood 
estimation for stationary univariate fractionally 
integrated time series model, Mohamed (2009) made 
comparison of non-parametric and semiparametric 
tests in detecting long memory. Hsua and Tasib (2009) 
gave semiparametric estimation methods for seasonal 
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long memory time series using generalized exponential 
models. In recent years, wavelet method has also been 
used for estimation of long memory parameter. Based 
on the discrete wavelet transform (DWT) coefficients; 
Jensen (1999) developed estimation technique for long 
memory parameters, Nielsen and Frederickson (2005) 
applied wavelet estimators in fractional integration 
model, Lu and Guegan (2011) estimated long memory 
parameters in time varying series using wavelet 
method and Paul et al. (2015), estimated parameters 
of ARFIMA model using Maximal overlap discrete 
wavelet transform (MODWT). 

Sometimes the time series often contain both linear 
and nonlinear components, rarely they are pure linear 
or nonlinear under such condition neither ARFIMA 
nor artificial neural network (ANN) are adequate in 
modeling and forecasting of long memory time series 
(Gooijer and Kumar 1992). Since the ARFIMA model 
cannot deal with nonlinearity, while the ANNs are 
alone not able to capture both linear and nonlinear 
behavior equally. To overcome these difficulty, 
hybrid methods were evolved. Applications of hybrid 
methods in the literature (Khashei et al. 2003, Zhang 
2003, Faruk 2010, Asadi et al. 2012, Khashei et al. 
2012, Pektas and Cigizoglu 2013, Chaabane 2014, Jha 
and Sinha 2014, Shan et al. 2015, Ray et al. 2016) 
show that combining different methods can be an 
effective and efficient way to improve forecasts. 

In this paper, attempt has been made to investigate 
the structure of long memory in daily wholesale price 
of mustard in Mumbai market, India during the period 
1st January, 2009 to 31st December, 2012. The data 
is collected from Ministry of Consumer’s Affairs, 
Government of India. 

Estimation of long memory parameter of ARFIMA 
model is done by wavelet method using MODWT and 
daily wholesale price of mustard in Mumbai market 
are forecasted. In the next step; the residuals obtained 
from ARFIMA models are modelled and forecasted 
using ANN. Finally, forecasted values obtained from 
ARFIMA model and forecasts of residuals obtained 
from ANN are combined and forecasting accuracies 
are compared between ARFIMA and hybrid model. 

In Section 2, a brief description of model has been 
given following the procedure of hybrid methodology 
in Section 3. Data description, Results and discussions 

are reported in Section 4. Finally, Section 5 includes 
the concluding remarks. 

2.	 METHODOLOGY

Methodology section comprises the long memory 
process and its detection, ARFIMA model and its 
parameter estimation by MODWT method, testing of 
stationarity and fundamentals of ANN model.

2.1	 Long Memory Process

Long memory in time-series can be defined 
as autocorrelation at long lags (Robinson 1995). 
Mathematically, time series Xt is said to be long 
memory series if the autocorrelation function ρt 
satisfies the condition:

� (1)

where, n is the sample size, for detection of long 
memory many statistical tests are available in literature 
viz., the classical rescaled range series test commonly 
represented as R/S test, the modified R/S test, KPSS 
(Kwiatkowski, Phillips, Schmidt and Shin) method, 
logarithmic diagram method also known as GPH 
method, and Gauss semi-parametric estimation (GSP) 
method (Aarthi et al. 2012). Among them R/S analysis 
method is most popular one. A brief description of the 
test is given below.

Let us consider the time series Xt of the sample 
length T which is divided into k sub intervals of 
length n and the average of n series observed values is  
X n  =  . The range of each subinterval is 
defined as

� (2)

and the standard deviation is

� (3)

For a given n there exists a statistic

� (4)

which is equivalent to

� (5)
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where C is a constant, and H is Hurst index, so we can 
get approximate estimate of H as follows:

� (6)

In general, the R/S analysis method holds 
following relationship 

� (7) 

where, R is rescaled range, S is the standard deviation, 
H is Hurst index i.e. the parameter that relates mean 
R/S values for subsamples of equal length of the series 
to the number of observations within each equal length 
subsample, C is a constant, and n is sample observation 
number. The logarithmic form of equation (7) can be 
expressed as follows. 

� (8)

When 0.5<H<1, the long memory structure exists. 
If H ≥ 1, the process has infinite variance and is non-
stationary. If 0<H<0.5, anti-persistence structure 
exists. If H=0.5, the process is white noise thus the 
trend is gradually becoming random. The relationship 
between Hurst exponent and long memory parameter 
(d) is: H=1–d.  Positive values of d indicate sort of 
long memory known as persistence may have infinite 
conditional variance. An application of long memory 
model in agriculture can be found in Paul et al. (2015).

2.2	 The ARFIMA Model 

ARFIMA model (Granger and Joyeux 1980) is 
given as follows

 , –0.5<d<0.5� (9)

where, B is the back-shift operator such 
that BXt=Xt-1 and et is a white noise process 
with  and variance is . The  
polynomials  and 

 have orders p and q 
respectively with all their roots outside the unit circle. 
The process is stationary if d=0 and the effect of shock 
to et on X(t+j) decays geometrically as j increases. For 
d=1, the process is non-stationary. 

2.3	 �Maximal Overlap Discrete Wavelet Transform 
(MODWT)

Wavelets are fundamental building block 

functions, analogous to the trigonometric sine and 
cosine functions. A good description of wavelets can 
be found in Percival and Walden (Percival and Walden 
2010).  Some applications of this method can be found 
in Ghosh et al. (2010), Paul et al. (2011, 2013). The 
MODWT is a linear filtering operation that transforms 
a series into coefficients related to variations over a set 
of scales. It is similar to the discrete wavelet transform 
(DWT) in that both are linear filtering operations 
producing a set of time-dependent wavelet and scaling 
coefficients. The MODWT is well defined for all 
sample sizes n, whereas for a complete decomposition 
of J levels the DWT requires N to be a multiple of 
2J. For a time-series  with arbitrary sample size n, 
the jth level MODWT wavelet ( )jW   and scaling ( jV ) 
coefficients are defined as,

1

, , mod
0

jL

j t j l t l N
l

W h X
−

−
=

≡ ∑ 
  and 

1

, , mod
0
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V g X
−

−
=

≡ ∑

 � (11)

where   the jth level wavelet filters, and 

  are the jth level scaling filters. Lj is 
the width of jth level filter. 

2.3.1 Estimating long memory by wavelets

For estimating the long memory parameter of 
ARFIMA model, the algorithm based on wavelet 
(Jensen 1999) is followed. Let Xt be a mean zero I(d) 
process with 0<d<1/2.  Using the autocovariance 
function of the I(d) process, Jensen (Jensen 1999) 
found that as j → 0, the wavelet coefficients, Wjk 
associated with a mean zero I(d) process are distributed 
as , where  is a finite constant. 
The wavelet coefficients from an I(d) process have a 
variance that is a function of the scaling parameter, 
j, but is independent of the translation parameter, k. 
The correlation of the wavelet coefficients from an 
I(d) process decay exponentially over time and scale. 
Hence, define R(j) to be the wavelet coefficients 
variance at scale j, i.e.  . Taking the 
logarithmic form of R(j), we obtain the relationship  

 where ln R(j) is linearly 
related to ln 2-2j by the fractional differencing 
parameter d. Hence, the unknown parameter d of a 
fractionally integrated series can be estimated by the 
OLS estimator . 
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2.4	 Testing of Stationarity

For testing of stationarity most popularly used 
methods viz., Augmented Dickey Fuller (ADF) unit 
root test and Phillips-Perron unit root tests are used. 
The details of these tests are found in many literature 
(Dickey and Fuller 1979, Phillips and Perron 1988). 

2.5	 Fundamentals of ANN Model

Artificial neural networks (ANNs) are nonlinear 
model that are able to capture various nonlinear 
structures present in the data set. ANN model 
specification does not require prior assumption of the 
data generating process, instead it is largely depending 
on characteristics of the data. Single hidden layer 
feed forward network is the most popular for time 
series modeling and forecasting. The ANN model is 
characterized by a network of three layers of simple 
processing units, and thus termed as multilayer ANNs. 
The first layer is input layer and the last layer is output 
layer of dependent variable. The remaining layer in 
the model is called as hidden layer. The relationship 
between the output (Xt) and the inputs (Xt-1, Xt-2,…, Xt-p) 
can be mathematically represented as follows:

� (12) 

where, αj (j = 0,1,2, ... ,q) and βij (i = 0,1,2, ... , p, 
j = 0,1,2, ... , q) are the model parameters often called 
the connection weights, p is the number of input 
nodes and q is the number of hidden nodes. Activation 
function defines the relationship between inputs and 
outputs of a network in terms of degree of the non-
linearity. Most commonly used activation function 
is   logistic function which is often used as the hidden 
layer transfer function, i.e.  

� (13)

Thus ANN model performs a nonlinear functional 
mapping between the input and output which 
characterized by a network of three layers of simple 
processing units connected by acyclic links

� (14) 

where, w is a vector of all parameters and f is a 
function of network structure and connection weights. 

Therefore, the neural network resembles a nonlinear 
autoregressive model. Expression (12) indicates one 
output node in the output layer which is commonly 
used as one-step-ahead forecasting in out of sample 
forecast (Zhang et al. 1998). Graphically, the ANN 
model can be expressed in Fig.1. 

Fig.1. Neural network structure

The selection of appropriate number of hidden 
nodes as well as optimum number of lagged 
observation p for input vector is important in ANN 
modeling for determination of the autocorrelation 
structure present in a time series. Though there are no 
established theories available for the selection of p and 
q, various training algorithms have been used for the 
determination of the optimal values of p and q. The 
objective of training is to minimize the error function 
that measures the misfit between the predicted value 
and the actual value. The error function which is widely 
used is mean squared error which can be written as

	 ( )( ){ }2

0 01 1 1

1 ( )N Q p
t J j ij t it J i

X w w g w w X
N −= = =

= − + +∑ ∑ ∑
� (15) 

where N is the total number of error terms. The 
parameters of the neural network ijw  are changed by 
an amount of changes in ij  as 

� (16)

where, η  is the learning rate. The error surface of 
multilayer feed forward neural network with non-
linear activation function is complex in nature and 
believed to have many local and global minima.
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3.	 PROPOSED HYBRID METHODOLOGY

ARFIMA models are well suited for modeling 
linear relation in a data generating process and may not 
be appropriate for nonlinear problems. On the other 
hand, ANN models may not be useful for modeling 
linear behavior present in a data. In real life it is difficult 
to completely understand the characteristics of data, 
for such problems hybrid methods can be an effective 
and efficient alternative. Schematic representation of 
proposed methodology is expressed in Fig. 2.

Fig. 2.  Proposed methodology

Hybrid methodology consists of both linear and 
non-linear components which can be a good platform 
for practical purposes. The model can be written as 
follows

� (17)

where Xt is the original time series, Lt denotes the linear 
part and Nt denotes the non-linear part. In this work 
the linear component (Lt) is estimated by ARFIMA 
model using MODWT and residuals obtained from the 
ARFIMA model are considered as non-linear part (Nt) 
and which are obtained as follows

� (18) 

are examined for linearity assumption of the model. 
The linearity of the residuals is tested using BDS test 
(Brock et al. 1996). If the residuals are found to be 
non-linear then ANN model can be used for modeling 
and prediction of these residuals. The ANN model for 
the residuals can be written as

� (19)

where, f is a non-linear function obtained by ANN and 
 is the random error. The estimation of equation (19) 

will result in prediction of non-linear component of 
time series. Finally, the residuals predicted from ANN 
are summed with forecasts obtained from ARFIMA 
model. Therefore, the combined forecast will become

� (20) 

The technique of hybrid methodology has the 
strength of unique characteristics of ARFIMA and 
ANN model to capture the linear and non-linear 
patterns present in the data set.   

4.	 RESULT AND DISCUSSION 

For the present study, the daily spot price (Rupees/
Quintal) of agricultural commodity; mustard in 
Mumbai market for the period 1st January, 2009 to 14th 
February, 2012 are used. The data is collected form 
Ministry of Consumer’s Affairs, Government of India. 
Out of 1140 total observations, 1080 have been used 
for model estimation and remaining 60 observations 
are used for validation. Summary statistics of 
mustard spot price is given in Table 1. To validate the 
stationarity of the series, two tests namely Augmented 
Dickey-Fuller test and Philips-Peron test are used. 
Results of the stationarity tests are reported in Table 2. 
The result indicate that spot price time series data of 
mustard in Mumbai is stationary. 

Table 1. Summary statistics of mustard spot price

Statistic Series Statistic Series

Observation 1140 Standard Deviation 320.41

Mean 2849.89 Kurtosis 1.60

Median 2900.00 Skewness -0.75

Mode 2750.00 Coefficient of Variation 
(%)

11.24

Table 2. Testing for stationarity
ADF test statistic PP test statistic

Single 
mean

With 
trend

Probability Single 
mean

With 
trend

Probability

Single 
mean

With 
trend

Single 
mean

With 
trend

-6.24 -8.44 <0.001 <0.001 -7.65 -7.81 <0.001 <0.001

 The autocorrelation function (ACF) and partial 
autocorrelation function (PACF) for the actual price 
series were investigated and it has been found that 
though the stationarity tests validated that the series 
is stationary, but plot of ACF shows a slow decay 
towards zero indicating the possible presence of long 
memory (Paul et al. 2015). Therefore, presence of 
long memory is tested as discussed in Section 2.1. 

In the earlier article of Paul et al. (2015) the 
classical parameter estimation methods like GPH, 
semiparametric methods are compared with Wavelet 
methods. The study was performed in both simulation 
as well as in real data set and found that wavelet 
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methods of parameter estimation outperformed the 
conventional parameter estimation methods, based on 
these results, the wavelets methods used for parameter 
estimation in the present study. The estimate of long 
memory parameter d by wavelet method is found to be 
0.372 (sd=0.19). The fractional differenced series with 
parameter (d) as 0.372 is computed. 

Here we estimated different ARFIMA 
specifications for the data under consideration. On 
the basis of smallest values of AIC, BIC and absolute 
log-likelihood, the best ARFIMA model was chosen 
(Table 3). The estimate of the parameters along with 
z-statistics for the selected ARFIMA models are given 
in Table 4, which indicates evidence of long memory 
in the series with 0<d<0.5. Therefore, empirical 
evidence shows that as the lag length increases the 
autocorrelations decay hyperbolically to zero. 

Table 3. Log likelihood, AIC and BIC values of different 
ARFIMA models

Models Log-likelihood AIC BIC

ARFIMA(1,d,1) -5695.16 11398.3 14950.3

ARFIMA(0,d,1) -5789.37 11498.0 14986.0

ARFIMA(1,d,0) -5700.48 11407.0 14961.0

ARFIMA(2,d,0) -5996.86 11401.7 15953.7

ARFIMA(0,d,2) -5950.90 11909.8 16461.8

ARFIMA(2,d,2) -6075.70 11973.2 16489.1

Table 4.  Parameter estimates of ARFIMA model
Parameters Estimates Std. Error z-value Pr(>|z|)

Constant 2849.9 43.255 65.886 <0.001

AR1 0.913 0.0141 64.838 <0.001

MA1 0.132 0.039 3.324 <0.001

As we discussed in hybrid methodology in section 
3 the model contains both linear and non-linear 
components. The linear components of the model 
are estimated by ARFIMA model and for nonlinear 
components, residuals are needed to check for their 
linearity assumption (Zhang 2003). Plot obtained in 
Fig. 1 indicates that the residuals of ARFIMA model 
are nonlinear and the BDS test is confirmed the 
presence of nonlinearity (Table 5). 

Table 6. ANN parameters
Particulars ANN parameter

Cross validation 10 fold

Optimum lag 3

Optimum hidden node 2

learning algorithm Gradient descent 

Network type (3,2,1)
Feed forward

Activation function Linear Sigmoidal

Learning rate 0.0005

Momentum 0.004

Converge at 112 epochs

Total no. of parameters 19

Table 5.  BDS test for linearity

Dimension (m) Epsilon (ε) Statistic Probability Dimension (m) Epsilon (ε) Statistic Probability

2 eps(1) 160.26 65.71 <0.001 3 eps(1) 160.26 90.27 <0.001

eps(2) 320.52 48.63 <0.001 eps(2) 320.52 54.22 <0.001

eps(3) 480.78 42.73 <0.001 eps(3) 480.78 44.10 <0.001

eps(4) 641.03 44.05 <0.001 eps(4) 641.03 43.7 <0.001

Fig. 1. Plot of residuals of ARFIMA model
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According to hybrid methodology, as the residuals 
are found to be nonlinear, they can be estimated and 
predicted individually by ANN model. The optimum 
parameters of the ANN are given in Table 6 where, 
optimum number of lags are 3, number of hidden 
nodes are 2 and 1 is number of output.  Forecast values 
of ARFIMA and Residuals predicted by ANN model 

Table 7. Forecast accuracy of ARFIMA and Hybrid (ARFIMA + ANN) method

Lead 
Period

Actual 
Price ARFIMA % 

deviation
ARFIMA 

+ANN
% 

deviation
Lead 

Period
Actual 
Price ARFIMA % 

deviation
ARFIMA 

+ANN
% 

deviation

1 3000 3140.48 4.68 2985.83 0.47 31 2900 3085.94 6.41 2788.37 3.85

2 3000 3131.22 4.37 3002.29 0.08 32 2700 3061.28 13.38 2997.07 11.00

3 3000 3127.28 4.24 3000.94 0.03 33 2700 2952.69 9.36 2700.91 0.03

4 3100 3125.66 0.83 3000.88 3.20 34 2900 2905.48 0.19 2829.17 2.44

5 3100 3174.01 2.39 3097.12 0.09 35 2900 2982.94 2.86 2751.16 5.13

6 3300 3195.17 3.18 3127.89 5.22 36 2900 3016.77 4.03 2982.49 2.84

7 3300 3302.42 0.07 3166.44 4.05 37 2900 3031.61 4.54 2925.83 0.89

8 2760 3349.23 21.35 3270.34 18.49 38 2900 3038.16 4.76 2992.27 3.18

9 2760 3105.3 12.51 2681.40 2.85 39 2900 3041.11 4.87 2923.66 0.82

10 2780 2999.12 7.88 2764.47 0.56 40 2700 3042.48 12.68 2928.81 8.47

11 2780 2962.75 6.57 2795.32 0.55 41 2900 2945.24 1.56 2428.92 16.24

12 2700 2946.99 9.15 2820.10 4.45 42 2900 3000.9 3.48 2887.14 0.44

13 2780 2901.05 4.35 2722.88 2.05 43 3100 3025.24 2.41 2970.45 4.18

14 2700 2920.3 8.16 2807.98 4.00 44 3100 3133.87 1.09 2821.42 8.99

15 2700 2889.61 7.02 2770.70 2.62 45 2900 3181.29 9.7 3135.53 8.12

16 2900 2876.33 0.82 2778.79 4.18 46 3000 3104.11 3.47 2872.79 4.24

17 2900 2968.57 2.36 2963.54 2.19 47 2900 3119.54 7.57 3021.09 4.18

18 2900 3008.85 3.75 2937.09 1.28 48 2900 3077.39 6.12 2863.50 1.26

19 2700 3026.49 12.09 2927.93 8.44 49 2900 3059.12 5.49 2869.56 1.05

20 2700 2936.34 8.75 2635.00 2.41 50 2900 3051.25 5.22 2877.02 0.79

21 2810 2897.15 3.1 2762.40 1.69 51 2900 3047.91 5.1 2935.57 1.23

22 2900 2934.04 1.17 2851.72 1.66 52 2900 3046.55 5.05 2903.79 0.13

23 2900 2994.27 3.25 2815.39 2.92 53 2900 3046.04 5.04 2478.50 14.53

24 3100 3020.6 2.56 2937.24 5.25 54 2900 3045.92 5.03 3158.59 8.92

25 3100 3130.1 0.97 2945.17 4.99 55 2900 3045.95 5.03 2869.38 1.06

26 3300 3177.9 3.7 3256.80 1.31 56 2900 3046.06 5.04 2778.28 4.20

27 3300 3296.75 0.1 2840.36 13.93 57 2900 3046.2 5.04 2721.91 6.14

28 3100 3348.62 8.02 3235.89 4.38 58 2900 3046.35 5.05 2917.68 0.61

29 2900 3273.38 12.88 2983.85 2.89 59 2900 3046.5 5.05 2947.72 1.65

30 2900 3142.76 8.37 2866.33 1.16 60 3000 3046.66 1.56 2833.57 5.55

MAPE 5.41 MAPE 3.99 MAPE 5.41 MAPE 3.99

are summed and prediction efficiency of ARFIMA 
and Hybrid model are compared (Table 7).  Mean 
absolute percentage error (MAPE) of the models are 
computed and it is found that MAPE of the proposed 
methodology is less as compared to the ARFIMA 
model. The graphical comparison between both the 
models are presented in Fig. 2. 
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5.	 CONCLUSION

Long memory time series has been analyzed by 
using ARFIMA models which are based on linear 
structure. ARFIMA models are not always adequate 
for long memory time series that have both linear 
and non-linear structures. In this context, the hybrid 
method which combines both linear and nonlinear 
part can be an effective way to improve forecasting 
performance. Based on the results obtained in this 
work one can infer that a hybrid model of ARFIMA 
and ANN increase forecasting accuracy. This is also 
an important result for the ANN studies in the future. 
This approach can be further extended by using 
some other machine learning techniques for varying 
autoregressive and moving average orders so that 
practical validity of the model can be well established.

ACKNOWLEDGMENTS

The authors would like to thank ICAR-IASRI 
New Delhi, SSIU-ISI Bangalore and Arnab Datta, 
Bangalore for helping in this work. 

The authors would like to thank the anonymous 
reviewer for his/her valuable comments which are 
important in improving the quality of manuscript. 

REFERENCES
Aarthi, R.S., Muralidharan, D. and Swaminathan, P. (2012). Double 

compression of test data using Huffman code. J. Theo. Appl. 
Inform. Tech., 39(2), 104-113. 

Asadi, S., Tavakoli, A. and Hejazi, S.R. (2012). A new hybrid for 
improvement of auto-regressive integrated moving average 
models applying particle swarm optimization. Expert Sys. Appl., 
39(5), 5332-5337.

Box, G.E.P. and Jenkins, G.M.  (1970). Time Series Analysis: 
Forecasting and Control. Holden-Day, San Francisco.

Brock, W.A., Dechert, W.D., Steinman, J.A. and Lebaron, B. (1996). 
A test for independence based on the correlation dimension. Eco. 
Rev., 15, 197-235. 

Chaabane, N. (2014). A hybrid ARFIMA and neural network model 
for electricity price prediction. Inter. J. Elect. Power Energy Sys., 
55, 187-194.  

De Gooijer, J.G.  and Kumar, K. (1992). Some recent developments in 
non-linear time series modelling, testing, and forecasting. Inter. 
J. Forecast., 8, 135-156. 

Dickey, D. and Fuller, W. (1979). Distribution of the estimators for 
autoregressive time series with a unit root. J. Amer. Statist. 
Assoc., 74, 427-431.

Faruk, D.O. (2010). A hybrid neural network and ARIMA model for 
water quality time series prediction. Engg. Appl. Artif. Intell., 23, 
586-594.  

Geweke, J. and Porter-Hudak, S. (1983). The estimation and 
application of long-memory time-series models. J. Time Series 
Anal., 4, 221-238. 

Ghosh, H., Paul, R.K. and Prajneshu (2010). Wavelet frequency 
domain approach for statistical modeling of rainfall time-series 
data. J. Statist. Theo. Prac., 4(4), 813‑825.

Gil-Alana, L.A., Barros, C. and Peypoch N. (2014). Long memory and 
fractional integration in the housing price series of London and 
Paris. Appl. Eco., 46(27), 3377-3388. 

Granger, C.W.J. and Joyeux, R. (1980). An introduction to long-
memory time-series models and fractional differencing. J. Time-
Series Anal., 4, 221-238. 

Hsua, N.J. and Tsaib, H. (2009). Semiparametric estimation for 
seasonal long-memory time series using generalized exponential 
models. J. Statist. Plann. Inf., 139, 1992-2009. 

Jensen, M.J. (1999). Using wavelets to obtain a consistent ordinary 
least squares estimator of the long-memory parameter, J. 
Forecast., 18, 17-32.

Proposed Method

Fig. 2. Plot of ARFIMA v/s proposed methodology



111Santosha Rathod et al. / Journal of the Indian Society of Agricultural Statistics 71(2) 2017   103–111

Jha, G.K.  and Sinha, K. (2014). Time-delay neural networks for time 
series prediction: an application to the monthly wholesale price 
of oilseeds in India. Neural Comp. Appl., 24(3), 563-571.

Khashei, M., Bijari, M., and Raissi, A. (2009). Improvement of auto-
regressive integrated moving average models using fuzzy logic 
and artificial neural networks (ANNs). Neurocomputing, 72, 
956‑967. 

Khashei, M., Bijari, M., and Raissi, A. (2012). Hybridization of 
autoregressive integrated moving average (ARIMA) with 
probabilistic neural networks (PNNs). Comput. Ind. Engg., 
63(1), 37-45.

Lima, L.R., and Xiao, Z. (2010). Is there long memory in financial 
time series. Appl. Finance. Eco., 20(6), 487-500.

Lu, Z. and Guegan, D. (2011). Estimation of time-varying long 
memory parameter using wavelet method. Comm. Statist. - Sim. 
Comput., 40(4), 596-613.

Mohamed, B. (2009). Comparison of non-parametric and 
semiparametric tests in detecting long memory. J. Appl. Statist., 
36(9), 945-972.

Nielsen, M., and Frederickson, P.H. (2005). Finite sample comparison 
of parametric, semiparametric, and wavelet estimators of 
fractional integration. Econ. Rev., 24(4), 405-443. 

Paul, R.K., Prajneshu, and Ghosh, H. (2011). Wavelet methodology 
for estimation of trend in Indian monsoon rainfall time-series 
data. Ind. J. Agric. Sci., 81(3), 96-98.

Paul, R.K., Prajneshu, and Ghosh, H. (2013). Wavelet frequency 
domain approach for modelling and forecasting of indian 
monsoon rainfall time-series data. J. Ind. Soc. Agril. Statist., 
67(3), 319-327

Paul, R.K. (2014).  Forecasting wholesale price of pigeon pea using 
long memory time-series models. Agric. Econ. Res. Rev., 27(2), 
167-176.  

Paul, R.K., Samanta, S. and Gurung, B. (2015). Monte Carlo simulation 
for comparison of different estimators of long memory parameter: 
An application of ARFIMA model for forecasting commodity 
price. Model Assist. Statist. Appl., 10(2), 117-128.

Paul, R.K., Gurung, B. and Paul, A.K. (2015). Modelling and 
forecasting of retail price of arhar dal in Karnal, Haryana. Ind. J. 
Agric. Sci., 85(1), 69-72.

Pektas, A.O. and Cigizoglu, H.K. (2013). ANN hybrid model 
versus ARIMA and ARIMAX models of runoff coefficient. J. 
Hydrology, 500, 21-36. 

Percival, D B. and Walden, A.T. (2000). Wavelet Methods for Time 
Series Analysis. Cambridge University Press, Cambridge.

Phillips, P.C.B. and Perron, P. (1988). Testing for unit roots in time 
series regression. Biometrika, 75, 335-346.

Ramalingam, S.  (2010). A unique book on long memory time series is 
reviewed. J. Statist. Comput. Sim., 80(4), 475-475.

Ray, M., Rai, A., Ramasubramanian, V. and Singh, K.N. (2016). 
ARIMA-WNN hybrid model for forecasting wheat yield time 
series data. J. Ind. Soc. Agril. Statist., 70(1), 63-70.

Robinson, P.M. (1995). Log-periodogram regression of time-series 
with long-range dependence. Ann. Statist., 23(3), 1048‑1072.

Shan, R., Dai, H., Zhao, H. and Liu, W. (2015). Forecasting study of 
Shanghai’s and Shenzhen’s stock markets using a hybrid forecast 
method. Comm. Statist. - Sim. Comput., 44(4), 1066-1077.

Sowell, F. (1992). Maximum likelihood estimation of stationary 
univariate fractionally integrated time series models. J. Econ., 
53, 165-188.

Tzouras, S., Anagnostopoulas, C. and McCoy, E. (2015). Financial 
time series modeling using the Hurst exponent. Physica A: 
Statistical Mechanics and its Applications, 425, 50-68.

Zhang, G.P. (2003). Time series forecasting using a hybrid ARIMA 
and neural network model. Neurocomputing, 50, 159-175.

Zhang, G., Patuwo, E.B. and Hu, M.Y. (1998). Forecasting with 
artificial neural networks: the state of the art. Inter. J. Forecast. 
14, 35-62.


