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SUMMARY
The conventional calibration approach is appropriate when study and auxiliary variables are linearly related. However, when study and auxiliary 

variables are non-linearly related model based calibration technique is appropriate. In this article two model based calibration estimators along with 
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via a simulation study vis-à-vis design based calibration estimator and an estimator which doesn’t consider auxiliary information at estimation stage. 

Keywords: Calibration estimator, Generalized linear model, Successive sampling, Superpopulation. 

Received 25 July 2016; Revised 24 October 2016; Accepted 09 December 2016

Corresponding author: Nirupam Ghosh
E-mail address: nirugh4846@gmail.com 

1. INTRODUCTION

In sample surveys, auxiliary information on the 
finite population is often used to increase the precision 
of estimators of finite population total or mean or 
distribution function. In the simplest settings, ratio 
and regression estimators incorporate known finite 
population means of auxiliary variables. The calibration 
approach is one of the approaches being used for 
building estimators based on auxiliary information. 
The calibration approach focuses on the weights given 
to the units for the purpose of estimation. Calibration 
implies that a set of starting weights (usually the 
sampling design weights) are transformed into a 
set of new weights, called calibrated weights. The 
calibrated weight of a unit is the product of its initial 
weight and a calibration factor. The calibration factors 
are obtained by minimizing a function measuring the 
distance between the initial weights and the calibrated 
weights, subject to the constraint that the calibrated 
weights yield exact estimates of the known auxiliary 
population totals. This population total is estimated 
by a linear estimator whose weights are as close as 
possible to some benchmark weights and which at the 
same time satisfy some calibration constraints with 
respect to some suitable auxiliary variables. 

Deville and Sarndal (1992) formulated the 
calibration approach to estimate the finite population 
parameters as (a) a computation of weights that 
incorporate specified auxiliary information and are 
restrained by calibration equation(s), (b) the use of 
these weights to compute linearly weighted estimates 
of totals and other finite population parameters: weight 
times variable value, summed over a set of observed 
units, (c) an objective to obtain nearly design unbiased 
estimates. It can be said that this procedure adjusts the 
sampling weights by multipliers known as calibration 
factors that make the estimates agree with known 
totals. The resulting weights are called calibration 
weights or final estimation weights. These calibration 
weights result in estimates that are design consistent 
and that have a smaller variance than the Horvitz 
-Thompson estimator. We have used the notations of 
Deville and Sarndal (1992) for calibration in sampling, 
Rueda et al. (2009) for calibration in successive 
sampling and Wu and Sitter (2001) for model based 
calibration approach in successive sampling. In this 
paper an attempt is made to estimate the population 
total using model based calibration approach when 
study and auxiliary variable are non-linearly related. 
In the next Section, we introduce the general notations 
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used under successive sampling design. In Section 
3, we discuss design based calibration estimation of 
population total under successive sampling design. 
Section 4 presents model based calibration estimation 
of population total under successive sampling design. 
In Section 5, simulation results of the developed 
estimators are provided. Finally, Section 6 presents 
concluding remarks.

2.  GENERAL NOTATIONS UNDER 
SUCCESSIVE SAMPLING

Consider sampling on two occasions from a finite 
population {1,2,..., ,..., }U k N=  of size N. We assume 
that population retains its composition over two time 
periods but values of units change over occasions. The 
study variable is observed on two occasions but not 
necessarily for the same set of elements. 

A sample s′  of size n′  is drawn on the first occasion 
according to a sampling design d1, such that 

1
( )dp s′  

is the probability that s′  is chosen. The respective 
first and second order inclusion probabilities for 
unit k and pair of units k, l in the sample s′  of size 
n′  associated with the design 

1
( )dp s′  are ( ) k k U∀ ∈π  

and (  )kl k l U∀ ≠ ∈π . So the sampling weight for 
the kth unit, 1 1k ka = π . To the sample s′  drawn at 
the first occasion corresponds a complementary 
sample, cs U s′ ′= −  containing all those units of U 
not surveyed on the first occasion.  Let ( ) c

k k U∀ ∈π  
and (  )c

kl k l U∀ ≠ ∈π  be the first and second inclusion 
probabilities, respectively for unit k and pair of units 
k, l induced by the sampling design ( )

1

c
dp s′ . Here we 

denote the sampling weight for kth unit into sample cs′  
by, 1 1 /c c

k ka = π . For the second occasion, a sample sm of 
size m, called matched sample, is drawn from s′  with 
a design d2, such that ( )

2
|d mp s s′  is the conditional 

probability of choosing sm. The first and second 
order inclusion probabilities induced by the sampling 
design ( )

2
|d mp s s′  are denoted by ( )|  k s k s′ ′∀ ∈π  and 

| (  )kl s k l s′ ′∀ ≠ ∈π , respectively. From the sample cs′  
another sample su of size u, called unmatched sample, 
is drawn with a design d3, such that ( )

3
| c

d up s s′  is the 
conditional probability of choosing su. The first order 
and second order inclusion probabilities under the 
design ( )

3
| c

d up s s′  are respectively ( )|
 c

c
k s

k s
′

′∀ ∈π  
and |

(  )c
c

kl s
k l s

′
′∀ ≠ ∈π . The overall sampling weights 

for the selected kth unit in the matched sample sm will 

be |1k k k sa ′= π π , and that for the unmatched sample 
2 |

1 c
c

k k k s
a

′
= π π . 

We consider the auxiliary variable at population 
level denoted by z. The value of z for the unit k 
is denoted by zk. The variables x and y denote the 
first occasion and second occasion observations, 
respectively and for kth unit the values are xk and yk, 
respectively.

3.  DESIGN BASED CALIBRATION 
ESTIMATION IN SUCCESSIVE SAMPLING

The purpose of this section is to modify the 
design weights for different samples using calibration 
approach and produces calibrated weights { }:k mw k s∈
and { }2 :k uw k s∈  respectively for design weights ak 
and a2k corresponding to matched and unmatched 
samples respectively. Consider the auxiliary variable 
at population level denoted by z. The value of z for the 
unit k is denoted by zk. The variables x and y denote 
the first occasion and second occasion observations, 
respectively and for kth unit the values are xk and yk, 
respectively. 

In this case, for the matched sample the weight 
wk is obtained by following a two-step procedure. 
In the first step determine the weight w1k as solution 
to the weighted least square minimization problem 
Min ( )2

1 1 1 1k k k ks
w a q a

′
−∑  subject to the calibration 

equation 1k k ks U
w z z
′

=∑ ∑  and in the second step 
determine the weight wk as solution to the weighted least 

square minimization problem Min ( )2

m
k k k ks

w a q a−∑  
subject to the calibration equation 1

m
k k k ks s

w x w x
′

=∑ ∑ .  
For the unmatched sample we obtain the weight w2k 
by following a single-step procedure. Determine the 
weight w2k as solution to the weighted least square 

minimization problem Min ( )2
2 2 2 2

u
k k k ks

w a q a−∑  
subject to the calibration equation 2

u
k k ks U

w z z=∑ ∑ .  
Here we consider 1 2 1k k kq q q= = = . The estimators 
constructed with the derived weights are given by.

( ) ( )

( ) ( )

, 1 :

1 :

ˆ ˆ

ˆ
m

m

m cal k k k k k xB zs U s

k k k k y xs s

Y a y z a z B

a x a x B

′

′

= + −

+ −

∑ ∑ ∑
∑ ∑  (3.1)

( ) ( ), 2 2 :
ˆ ˆ

u u
u cal k k k k k y zs U s

Y a y z a z B= + −∑ ∑ ∑  (3.2)

respectively for matched and unmatched sample. 
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Where,

( )
( )
( )

( )
( )

1
: 2 2

1

ˆ ,m

m

k k kk k k ss
xB z

k k k ks s

a x ya z x
B

a z a x
′

′

=
∑∑

∑ ∑

 ( )
( )
( ): 2

ˆ m

m

k k ks
y x

k ks

a x y
B

a x
=
∑
∑

 and ( )
( )
( )

2

: 2
2

ˆ u

u

k k ks
y z

k ks

a z y
B

a z
=
∑
∑

.

Finally, we consider the following combined 
estimator,

1 , 2 ,
ˆ ˆ ˆ
cal m cal u calY Y Y= +α α  (3.3)

where α1 and α2 are non-negative constant weights to 
be determined such that α1 + α2 = 1.

4.  MODEL BASED CALIBRATION 
APPROACH IN SUCCESSIVE SAMPLING

This section is devoted to obtain calibration 
estimators when there is a non-linear relationship 
between study and auxiliary variable. Assume that 
the relationship between study variable and auxiliary 
variable can be described by two superpopulation 
models for two occasions through the first and second 
moments,

( )( ) ,hk k h k h hkE y z z= =ξ µ θ µ ; 2( )hk k hk hV y z =ξ ν σ ; 
 h = 1,2; k = 1,2,..., N (4.1)

where hθ  and 2
hσ  are unknown super population 

parameters, ( ),h hzµ θ  is a known function of z and hθ ,  
the vh is a known function of z. Eξ  and Vξ  denote 
the expectation and variance with respect to the 
superpopulation model, where h denotes the number 
of occasion. Note that the first occasion sample and 
second occasion matched sample are linearly related 
as they are taken on the same units. The first occasion 
population is denoted by x and for the second occasion 
as y.

Under the models (4.1), auxiliary information 
should be used through the fitted values ( )ˆ,h k hzµ θ ;  
h = 1, 2, k = 1, 2..., N. To do this we define the calibration 
estimator for both matched and unmatched samples 
and then combine those estimators to obtain the desired 
estimator. For matched sample in the first step we obtain 
the weights w1k as minimizing the distance function 

in ( )2
1 1 1 1k k k ks

w a q a
′

−∑ subject to the constraints, 

1ks
w N
′

=∑  and ( ) ( )1 1 1 1 1
ˆ ˆ, ,k k ks U

w z z
′

=∑ ∑µ θ µ θ . One 
should note that in the original formulation of calibration 
estimator, the constraint 1ks

w N
′

=∑  is not present. If 
this constraint is added, the resulting estimator in no 
auxiliary information is, ˆ

k k ks s
Y a y a=∑ ∑  and not 

ĤT k ks
Y a y=∑ . It was illustrated in Rao (1966) and 
later in the more well-known Basu (1971) elephant 
example that even though the first estimator estimates 
the population size N and the second uses its known 
quantity, the first has the better properties. This is 
true for calibration generally. In the second step, we 
obtain the weights wk as minimizing the distance 
function given in ( )2

m
k k k ks

w a q a−∑  subject to 
the constraint 1

m
k k k ks s

w x w x
′

=∑ ∑ . For unmatched 
sample we obtain the weights w2k as minimizing the 

distance function given in ( )2
2 2 2 2

u
k k k ks

w a q a−∑  
subject to the constraints 2

u
ks

w N=∑  and 
( ) ( )2 2 2 2 2

ˆ ˆ, ,
u

k k ks U
w z z=∑ ∑µ θ µ θ . Here we consider 

1 2 1k k kq q q= = = . The estimators constructed with the 
derived weights are given by

( ) ( )

( ) ( )

1, 1 1 1 ˆ:

1 :

ˆ ˆˆ ˆ

ˆ
m

m

m cal k k k k k xBs U s

k k k k y xs s

Y a y a B

a x a x B

′

′

= + −

+ −

∑ ∑ ∑
∑ ∑

µµ µ

 (4.2)

( ) ( )2, 2 2 2 2 ˆ:
ˆ ˆˆ ˆ

u u
u cal k k k k k ys U s

Y a y a B= + −∑ ∑ ∑ µµ µ  (4.3)

where,

( )
( ) ( )

( )1

1 1 1
ˆ: 2 2

1 1 1

ˆˆ
ˆ

m

m

k k kk k k ss
xB

k kk k ss

a x ya x x
B

a xa
′

′

− −
=

−

∑∑
∑∑µ

µ µ

µ µ
,

( )

( ) ( )
( )2

2 2 2

ˆ: 2
2 2 2

ˆ
ˆ

ˆ
u

u

k k ks
y

k ks

a y y
B

a

− −
=

−

∑
∑µ

µ µ

µ µ
, and ( ):

ˆ
y xB  are 

defined earlier.

If the constraint 1ks
w N
′

=∑  is dropped, then we 
have the calibration estimators as follows, 

( ) ( )

( ) ( )

1, 1 1 1 ˆ:

1 :

ˆ ˆˆ ˆ

ˆ
m

m

m cal k k k k k xBs U s

k k k k y xs s

Y a y a B

a x a x B

∗ ∗
′

′

= + −

+ −

∑ ∑ ∑
∑ ∑

µµ µ

 (4.4)

( ) ( )2, 2 2 2 2 :
ˆ ˆˆ ˆ

u u
u cal k k k k k ys U s

Y a y a B∗ ∗= + −∑ ∑ ∑ µµ µ  (4.5)
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where,

( )1

1 1
ˆ: 2 2

1 1

ˆˆ
ˆ

m

m

k k kk k k ss
xB

k k k ks s

a x ya x
B

a a x
∗ ′

′

=
∑∑

∑ ∑µ

µ
µ

,

( )2

2 2

ˆ: 2
2 2

ˆ
ˆ

ˆ
u

u

k k ks
y

k ks

a y
B

a
∗ =

∑
∑µ

µ

µ
, and ( ):

ˆ
y xB  are defined earlier

Finally we consider the following combined 
estimators,

, 1 , 2 ,
ˆ ˆ ˆ
MC A m cal u calY Y Y= +β β  (4.6)

where 1β  and 2β  are non-negative constant weights to 
be determined such that 1β  + 2β  = 1, and

, 1 , 2 ,
ˆ ˆ ˆ
MC B m cal u calY Y Y∗ ∗= +γ γ  (4.7)

where 1γ  and 2γ  are non-negative constant weights to 
be determined such that 1γ  + 2γ  = 1.

4.1  Asymptotic Properties of the Model Based 
Calibration Estimators

In this section, we establish the asymptotic 
behavior of the estimators proposed in the previous 
sections. The design based calibration estimators in 
(3.1) and (3.2) are asymptotically unbiased, and their 
asymptotic variances and covariance between them 
are given by,

( ) 1 1
, 1 |

| |

ˆ k l k l
m cal kl kl sU s

k l k k s l l s

e e e eV Y E ′′
′ ′

 
= ∆ + ∆  

 
∑∑ ∑∑π π π π π π

 (4.1.1)

( ) 2 2 2 2
, 1 |

| |

ˆ
cc

c c

c k l k l
u cal kl c c c ckl sU s

k l k lk s l s

e e e eV Y E
′′

′ ′

 
 = ∆ + ∆
 
 

∑∑ ∑∑π π π π π π

 (4.1.2)

( ) 1 2
, ,

ˆ ˆ, k l
m cal u cal kl cU

k l

e eC Y Y = − ∆∑∑ π π  (4.1.3)

respectively. With kl kl k l∆ = −π π π , 

| | | |kl s kl s k s l s′ ′ ′ ′∆ = −π π π , c
kl kl∆ = ∆ , 

| | | |c c c ckl s kl s k s l s′ ′ ′ ′
∆ = −π π π ,

( )y:xk k ke y B x= − , 
( )

( )
( ): 2

k kU
y x

kU

x y
B

x
=
∑
∑

, 
( )1 :k k kxB ze y B z= − ,  

( )2 y:k k kze y B z= − , ( ): 2 2
k k k kU U

xB z
k kU U

z x x y
B

z x
= ∑ ∑
∑ ∑

, ( ): 2
k kU

y z
kU

z y
B

y
= ∑
∑

.

Here, E1 denotes the expectation value with 
respect to the first occasion design d1. The estimators 

of the variances and covariance are given by,

( ) |1 1
,

| | | |

ˆ ˆ ˆ ˆˆ ˆ
m m

kl skl k l k l
m cal s s

kl kl s k l kl s k k s l l s

e e e eV Y ′

′ ′ ′ ′

∆∆
= +∑∑ ∑∑π π π π π π π π π

 (4.1.4)

( ) |2 2 2 2
,

| | | |

ˆ ˆ ˆ ˆˆ ˆ c

u u
c c c c

c
kl skl k l k l

u cal c c c c cs s
kl k l k lkl s kl s k s l s

e e e eV Y ′

′ ′ ′ ′

∆∆
= +∑∑ ∑∑π π π π π π π π π

 (4.1.5)

( ) 1 2
, ,

|

ˆ ˆˆ ˆ ˆ,
m

kl k l
m cal u cal cs

kl kl s k l

e eC Y Y
′

∆
= −∑∑ π π π π  (4.1.6)

with ( ):
ˆˆk k ky xe y B x= − , ( )1 :

ˆˆ k k kxB ze y B z= −  and 

( )2 :
ˆˆ k k ky ze y B z= −  where ( ):

ˆ
y xB , ( ):

ˆ
xB zB  and ( ):

ˆ
y zB  are 

defined earlier.

Denoting the values ( ),m̂ calV Y , ( ),û calV Y  and
( ), ,

ˆ ˆ,m cal u calC Y Y  by V1, V2 and C respectively, the 
variance of (3.3) can be expressed as,

 

( ) ( )

[ ]

1 , 2 ,

2 2
2 1 2

1 2 1
1 2 1 2

ˆ ˆ ˆ

2
2 2

cal m cal u calV Y V Y Y

V C VV CV V C
V V C V V C

= +

 − −
= + − − + + − + − 

α α

α

   ( )
2

1 2
min

1 2

ˆ
2 cal

VV C V Y
V V C

−
≥ =

+ −  (4.1.7)

Because ( )1 2
ˆ2 0calV V C V Y Y+ − = − ≥ , equality 

holds if and only if

2
1 2

1 2

1
2

V C
V V C

−
= − =

+ −
α α  (4.1.8)

This value can be estimated by using the estimators 
given by (4.1.4), (4.1.5) and (4.1.6).

The model based calibration estimators (4.2) and 
(4.3) are asymptotically unbiased, and their asymptotic 
variances and covariance between them are given by,

( ) 1 1
,

1 |
| |

ˆ k l
m cal klU

k l

k l
kl ss

k k s l l s

e eV Y

e eE ′′
′ ′

= ∆

 
+ ∆  

 

∑∑

∑∑

π π

π π π π  (4.1.9)

( ) 2 2
,

2 2
1 |

| |

ˆ

cc

c c

c k l
u cal kl c cU

k l

k l
c ckl ss
k lk s l s

e eV Y

e eE
′′

′ ′

= ∆

 
 + ∆
 
 

∑∑

∑∑

π π

π π π π  (4.1.10)
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( ) 1 2
, ,

ˆ ˆ, k l
m cal u cal kl cU

k l

e eC Y Y = − ∆∑∑ π π  (4.1.11)

with kl kl k l∆ = −π π π , | | | |kl s kl s k s l s′ ′ ′ ′∆ = −π π π ,  
c
kl kl∆ = ∆ , | | | |c c c ckl s kl s k s l s′ ′ ′ ′

∆ = −π π π , ( )y:xk k ke y B x= − ,  

( )
( )
( ): 2

k kU
y x

kU

x y
B

x
=
∑
∑

, ( )11 1:k k kxBe y B= − µ µ ,

 ( )
( ) ( )

( )1

1 1
: 2 2

1 1

k k k kU U
xB

kk UU

x x x y
B

x
− −

=
−

∑ ∑
∑∑µ

µ µ

µ µ
, ( )22 2y:k k ke y B= − µ µ ,  

( )
( ) ( )

( )2

2 2
: 2

2 2

k kU
y

kU

y y
B

− −
=

−
∑
∑µ

µ µ

µ µ
.

Here, E1 denotes the expectation value with 
respect to the first occasion design d1. The estimators 
of variances and covariance are given by,

( ) 1 1
,

|

|

| | |

ˆ ˆˆ ˆ

ˆ ˆ

m

m

kl k l
m cal s

kl kl s k l

kl s k l
s

kl s k k s l l s

e eV Y

e e
′

′

′ ′ ′

∆
=

∆
+

∑∑

∑∑

π π π π

π π π π π  (4.1.12)

( ) 2 2
,

|

| 2 2

| | |

ˆ ˆˆ ˆ

ˆ ˆ

u
c

c

u
c c c

c
kl k l

u cal c c cs
kl k lkl s

kl s k l
c cs
k lkl s k s l s

e eV Y

e e

′

′

′ ′ ′

∆
=

∆
+

∑∑

∑∑

π π π π

π π π π π  (4.1.13)

( ) 1 2
, ,

|

ˆ ˆˆ ˆ ˆ,
m

kl k l
m cal u cal cs

kl kl s k l

e eC Y Y
′

∆
= −∑∑ π π π π  (4.1.14)

with ( )11 1ˆ:
ˆˆ ˆk k kxBe y B= − µ µ , ( ):

ˆˆk k ky xe y B x= − , 
( )22 2ˆ:

ˆˆ ˆk k kye y B= − µ µ  and ( )1ˆ:
ˆ

xBB µ , ( ):
ˆ

y xB , ( )2ˆ:
ˆ

yB µ  are defined 
earlier. Similar results hold for ,M̂C BY  if we replace 

( )1:xBB µ  by ( )1:xBB∗
µ , ( )1ˆ:

ˆ
xBB µ  by ( )1ˆ:

ˆ
xBB∗

µ , ( )2:yB µ  by ( )2:yB∗
µ  

and ( )2ˆ:
ˆ

yB µ  by ( )2ˆ:
ˆ

yB∗
µ .

The variance of the two model based calibration 
estimators (4.6) and (4.7) can be easily obtained in the 
similar way as given by (4.1.7) and (4.1.8).

Remark 4.1: Let us consider the design used in a 
simulation study. The design consists of drawing 
samples using SRSWOR at each occasion. Suppose 
that the first occasion sample s′  is drawn from the 
population U with simple random sampling without 
replacement (SRSWOR) with sample size n′ . Thus

k
n
N
′

′ =π ; ( )
( )

1
1kl

n n
N N
′ ′ −

′ =
−

π .

Also the complementary sample cs U s′ ′= −  is a 
simple random sample without replacement of size 
N n′− . Then

c
k

N n
N

′−′ =π ; ( ) ( )
( )

1
1

c
kl

N n N n
N N
′ ′− − −

′ =
−

π .

Suppose the matched sample sm is drawn from s′
with SRSWOR of size m and so

|k s
m
n′ = ′

π ; ( )
( )|

1
1kl s

m m
n n′

−
=

′ ′ −
π .

Finally, the unmatched sample su is drawn from 
cs′  with SRSWOR of size u. Thus

| ck s

u
N n′

=
′−

π ; ( )
( ) ( )|

1
1ckl s

u u
N n N n′

−
=

′ ′− − −
π .

It is easy to show that for this design the 
approximate variances and covariance for ĉalY  are 
given as follows,

( ) ( ){ }

( ) ( ){ }

2 2 2 2
1 : :

2 2
y:x y:x

1 1 1 1 2

1 1 2

y z yzxB z xB z

x yx

V N S B S B S
m N n N

B S B S
m n

   = − + − −    ′   
 + − −  ′  

( ) ( )
2 2 2 2

2 : :
1 1 2y z yzy z y zV N S B S B S
u N

   = − + −    

( ) ( ) ( ) ( ){ }2 2
: : : :y z yzxB z y z xB z y zC N S B B S B B S = − + − + 
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For this design the approximate variances and 
covariance for ,M̂C AY  are given as follows,

( ) ( ) ( ){ }

( ) ( ){ }

1 11 1

2 2 2 2
, : :

2 2
y:x y:x

1 1 1 1ˆ 2

1 1 2

m cal y yxB xB

x yx

V Y N S B S B S
m N n N

B S B S
m n

   = − + − −    ′   
 + − −  ′  

µ µµ µ

( ) ( ) ( )2 22 2

2 2 2 2
, : :

1 1ˆ 2u cal y yy yV Y N S B S B S
u N

   = − + −    
µ µµ µ
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y yxB y
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B S B S
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µ µµ µ
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1 1

1
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=
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µ µ , ( ) ( )
2

2 2

1
k k

y U

y y
S

N
− −
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N
− −
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Similar results hold for ,M̂C BY  if we replace ( )1:xBB µ  
by ( )1:xBB∗

µ  and ( )2:yB µ  by ( )2:yB∗
µ .

5. SIMULATION RESULTS

In this section, a simulation study has been 
performed to reveal the behavior of the proposed 
estimators. Our intention is to point out the most 
efficient estimator. Let us consider the behavior of 
the proposed estimators with baseline estimator as 
Horvitz-Thompson estimator in successive sampling.

For this, an artificial population is created as follows: 
For each unit k, we generate Zk~Gamma(1,1) and 

( )1

2
1 ~ Normal 0,k eε σ ; k = 1,2,…,1000. Then for the first 

occasion a finite population consisting of N=1000 was 
generated as an iid sample from 0 1 1log( ) kx z= + +θ θ ε .  
We choose 0 1 1= =θ θ . Then for the second occasion 
we computed 2 1k k k= +ε ε δ , k=1,2,…,1000 where 

( )2: Normal 0,k δδ σ  and again a finite population 
consisting of N=1000 was generated as an iid sample 
from 0 1 2log( ) ky z= + +θ θ ε , where 0 1 1= =θ θ . Five 
different finite populations were generated for different 
values of 

1

2
eσ , 2

δσ  and 
3

2
eσ  we get different correlation 

0.9, 0.8, 0.7, 0.6 and 0.5 respectively between log(y), 
log(x) and z.

For each finite population, a simple random sample 
of size 300 was taken from population size 1000 at the 
first occasion and a log-linear model 1 1 1log( )k kz= +µ α β ,  
( ) 2

1 1V =µ ν  was fitted using maximum likelihood 
estimation. First occasion calibrated weights were 
computed using the sample values and all the fitted 
values. For the second occasion matched sample a 
sample of sizes 20, 50, 80 respectively were selected 
from first occasion sample and design based calibration 
approach was used to derive the calibrated weights.
For the second occasion unmatched sample, simple 
random samples of sizes 20, 50, 80 respectively were 

taken from remaining population of size 700 and for 
each sample a log-linear model 2 2 2log( )k kz= +µ α β ,  
( ) 2

2 2V =µ ν  was fitted using maximum likelihood 
estimation. Therefore we have the three combinations 
of second occasion samples as (20, 20), (50, 50) and 
(80, 80) respectively. This total process was repeated 
for 10000 times. The following figure shows the 
relationship between study and auxiliary variable in 
the population.

Fig. 5.1. Relationship between study and auxiliary variables

Fig. 5.1 shows the relationships between study 
variable and auxiliary variable. It can be seen that 
study variable on both the occasion x and y respectively 
are non-linearly related with the auxiliary variable 
z. But relationship between the study variables on 
two occasion are linear. To compare the estimators 
we compute Percentage Relative Efficiency (PRE). 
The results are shown in Tables (5.1) and (5.2). The 
expression for Percentage Relative Efficiency is as 
follows:

( ) 100ˆ( )
MSEPRE
MSE

⋅
= ×

θ

where i indexes the ith simulation run. 
2

1

1ˆ ˆ( ) ( )
M

i
i

MSE
M =

= −∑θ θ θ , defines the Mean Square 

Error of the proposed calibration estimators and
( )MSE ⋅  similarly defines the Mean Square Error for 

the estimator which cannot use auxiliary information 
(Horvitz-Thompson estimator). 

Some noteworthy results of the tables are as 
follows:
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Table 5.1. Percentage Relative Efficiency with Constant Correlation between First Occasion Population and Auxiliary Variable

xzρ yzρ yxρ ms us ,M̂C AY ,M̂C BY ĉalY ĤTY

0.7

0.5 0.5

20 20 145.40 124.58 117.09 100.00

50 50 151.03 131.48 119.60 100.00

80 80 175.94 162.23 121.99 100.00

0.6 0.6

20 20 168.10 139.50 123.90 100.00

50 50 175.07 148.73 130.01 100.00

80 80 217.53 172.69 136.48 100.00

0.7 0.7

20 20 172.15 139.83 127.76 100.00

50 50 188.41 151.44 138.69 100.00

80 80 210.50 201.17 151.92 100.00

0.8 0.8

20 20 201.33 167.58 131.79 100.00

50 50 275.36 223.41 151.11 100.00

80 80 290.82 245.03 180.24 100.00

0.9 0.9

20 20 262.74 168.87 134.92 100.00

50 50 277.98 234.92 167.74 100.00

80 80 292.81 274.29 238.14 100.00

Table 5.2. Percentage Relative Efficiency with Constant Correlation between Second Occasion Population and Auxiliary Variable

yzρ yxρ xzρ ms us ,M̂C AY ,M̂C BY ĉalY ĤTY

0.7 0.7

0.5

20 20 112.69 107.63 106.17 100.00

50 50 115.66 113.49 109.89 100.00

80 80 119.56 116.39 112.98 100.00

0.6

20 20 123.78 112.39 109.43 100.00

50 50 127.22 116.94 111.39 100.00

80 80 131.13 122.08 113.22 100.00

0.7

20 20 137.16 122.26 112.16 100.00

50 50 139.72 122.57 114.44 100.00

80 80 142.10 125.85 117.71 100.00

0.8

20 20 140.90 123.23 113.49 100.00

50 50 142.04 124.68 115.66 100.00

80 80 148.41 127.26 119.27 100.00

0.9

20 20 159.26 125.05 117.09 100.00

50 50 162.47 131.39 119.60 100.00

80 80 177.34 140.73 121.99 100.00



102 Nirupam Ghosh et al. / Journal of the Indian Society of Agricultural Statistics 71(2) 2017  95–102

 (i) ,M̂C AY  has the highest percentage relative 
efficiency than any other estimators in all 
the cases followed by ,M̂C BY . ĉalY  is the least 
efficient among the calibration estimators as 
it doesn’t consider the underlying working 
model. 

 (ii) ĉalY  never outperforms any of the model based 
calibration estimators. However, it performs 
well than ĤTY  when there is a strong correlation 
between study and auxiliary variable. 

 (iii) All estimators has increasing efficiency with 
increasing correlation between study and 
auxiliary variable and also with the increasing 
sample sizes.

6. CONCLUDING REMARKS

In practice, it is most important to make the best 
use of the auxiliary information. In case of linear 
relationship between study and auxiliary information, 
design based calibration approach is appropriate 
to use. But when there is a non-linear relationship 
exists between study and auxiliary variable, there is 
no compelling reason to use design based calibration 
approach as it could be inefficient. So a possible 
solution is model based calibration approach which 
incorporates the non-linear relationship through the 
fitted values based on a sample. It can be noted that, in 
case of linear working-model, it is only necessary to 
know the total of the auxiliary variables for the entire 

finite population to construct efficient estimators of 
population total. However, for a non-linear working-
model auxiliary information for all the population 
units are necessary to be known. 

We have proposed model-calibration approach 
to the use of complete auxiliary information in two-
occasion successive sampling to estimate population 
total. The idea involves fitting a general working model 
and then calibrating on the resulting fitted values as 
opposed to on the auxiliary variables themselves. 
With the proposed methodology, we obtained two 
different estimators which incorporates the non-linear 
relationship between study and auxiliary variable. The 
proposed estimators resulting in higher efficiency than 
the estimator which doesn’t consider the non-linear 
relationship. However, the gain in efficiency depends 
upon the appropriateness of the underlying working-
model.
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