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SUMMARY
The present paper proposes shrinkage testimators for the variance of a Normal Distribution when both the parameters are unknown. The choice 

of shrinkage factor is no longer arbitrary as it is made to dependent on test statistic. The risk properties of these testimators have been studied using the 
asymmetric loss function proposed by Basu and Ebrahimi (1991). It is observed that the proposed testimators dominate the usual best available pooled 
estimator for various degrees of asymmetry and different levels of significance. Recommendations regarding its applications have been attempted.
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1. INTRODUCTION

In 1962 Katti proposed the estimation of mean using 
double sample information; this study was extended 
later by many other authors in different contexts. Shah 
(1964) used this method in estimating the Variance of 
Normal distribution. Later Srivastava (1976), Pandey 
(1979) among others studied the problem of estimation 
of Variance of Normal distribution when a guess value 
for the same is available.

Waiker et al. (1984) have proposed two stage 
shrinkage testimator(s) for the mean of a Normal 
distribution when the population Variance may be 
known or unknown. Pandey et al. (1988) have studied 
some shrinkage testimators for the Variance of Normal 
distribution under Mean square error criterion.

Pandey et al. (2007) have studied shrinkage 
estimators for the Variance of Normal distribution 
under an asymmetric loss function for selected 
range of degree of asymmetry. Srivastava and Tanna 
(2007, 2012) studied the risk properties of mean of 
an exponential distribution using asymmetric loss 
function. In all the above mentioned studies using 

asymmetric loss functions the proposed estimators and 
testimators perform better than the usual estimators 
under squared error loss function criterion with this 
motivation the present paper tries to study some 
double stage shrinkage testimators for the Variance of 
a Normal distribution using more general asymmetric 
loss function. In section-2 some shrinkage testimators 
for the Variance of Normal distribution have been 
prpoposed. Section-3 deals with the derivation of 
risk(s) of the proposed testimators, while section-4 
is devoted to the risk comparison of the proposed 
ones with the best available estimators under the 
asymmetric loss function. The paper concludes with 
section-5 providing conclusions and applications. 

1.1 Double Stage Estimation

The first stage sample is used to test the null 
hypothesis about the prior information and if it is not 
rejected, it is suggested to incorporate this information 
being supported by a test, in estimating the parameter. 
However, if the null hypothesis is rejected we do not 
use this prior information and obtain a second sample 
of size n2 = (n – n1) to make up the loss of prior 
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knowledge and estimate the parameter using both 
samples.

1.2 Asymmetric Loss Function

While estimating a parameter θ by θ̂ the asymmetric 
loss function is given by

 (1.2.1)

where ∆ = 


1θ
θ
 

−  
 

 or ∆ = (θ̂ – θ) depending upon 

whether the scale or the shape parameter is being 
estimated.

The sign and magnitude of a represents the 
direction and degree of asymmetry respectively and 
b is the factor of proportionality. The positive value 
of a is used when overestimation is more serious than 
underestimation, while a negative value of a is used in 
reverse situations. This loss function was proposed by 
Basu and Ebrahimi (1991) which is more suitable to 
estimate the scale parameters.

2. SHRINKAGE TESTIMATORS

Let X be normally distributed with mean μ and 
variance  σ 2, both unknown. It is assumed that the 
prior knowledge about σ2  is available in the form of an 
initial estimate σ 20

 .  We are interested in constructing 
an estimator of  σ 2  using the sample observations and 
possibly the guess value σ 20.  We define a double stage 
shrinkage testimator of  σ 2 as follows:

1. Take a random sample x1i (i = 1,2,...,n1) 
of size n1 from N(μ, σ 2) and compute 

x1 = n1
1 Rx1i, s12 = n1 - 1

1 R(x1i - x1)2 . 

2. Test the hypothesis H0 : σ 2 = σ 20 against the 
alternative H1 : σ 

2 ≠ σ 20 at level α using the 

test statistic 
v02
v1s12 , which is distributed as  χ2 

with ν1 = (n1 – 1) degrees of freedom.

3. If H0 is accepted at α level of significance i.e. 
x 21 < 

v02
v1s12  < x 22 , where x 21 and x 22 refer to 

lower and upper critical points of the unbiased 
portioning of the test statistic at a given level 
of significance α, take k1s 21 + (1  – k1)σ 

2
0 as 

the shrinkage estimator of σ 2 with shrinkage 
factor k1 dependent on the test statistic.

4. If H0 is rejected, take a second sample 
x2j (j = 1,2,...,n2) of size  n2 = (n – n1) compute 

2 2
2 22 2 2

2 2

1 1, ( )
1j jx x s x x

n n
= ∑ = ∑ −

−
 and take 

(v1s 21 + v2s 22)/(v1 + v2) where v2 = (n2 – 1) as the 
estimator of  σ 2.

To summarize, we define the double-stage 
shrinkage testimator σ̂ 2DST1 of  σ 2 as follows:

2 2
1 1 1 0 0

2 2 2
1 2 1 1 2 2

0
1 2

(1 ) , if  is accepted

( ) , if  is rejected
( )

DST
p

k s k H

v s v ss H
v v

σ
σ

+ −
= +

=
+

where  
2

1 1
1 2 2

0

v sk
σ χ

=

Estimators of this type with  k arbitrary and lying 
between 0 and 1 have been proposed by Katti (1962), 
Shah (1964), Arnold and Al-Bayyati (1970), Waiker 
and Katti (1971), Srivastava (1976), Pandey (1979) 
among others. Later on the arbitrariness in the choice of 
shrinkage factor was removed by making it dependent 
on the test statistics by Waiker et al. (1984) for the mean 
in Normal distribution. Here we propose an estimator 
for the Variance when the choice of shrinkage factor is 
no longer arbitrary as above. Further it is observed in 
many studies that the testimators perform better when 
the shrinkage factor approached to zero more rapidly, 
so we define another double stage shrinkage testimator  
σ̂ 2DST2 of σ 2 by taking square of the shrinkage factor as 

k2 = k 21 = 
22

1 1
2 2
0

v s
σ χ
 
 
 

 which tends to zero more rapidly 

than k1  as follows
22 2

2 21 1 1 1
1 0 02 2 2 22

0 02

2
0

1 , if  is accepted

, if  is rejected

DST

p

v s v ss H

s H

σ
σ χ σ χσ

     + −    =     

3. RISK OF TESTIMATORS

In this section we derive risk of the two proposed 
testimators which are defined in the previous section.

3.1  Risk  of   

The risk of   under L (∆) is defined by  

( )2 2
1 1ˆ ˆ( ) [ ]DST DSTR E Lσ σ ∆=       
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( )
2

2 2 2 21 1
1 1 1 0 1 22

0
1 sE k s k

 
= + − < < 

 

υσ χ χ
σ

   
( )

2
2 2 2 21 1

1 1 1 0 1 22
0

1 sE k s k
 

= + − < < 
 

υσ χ χ
σ

2 2
2 2 21 1 1 1
1 22 2

0 0
p

s sp E s
 

⋅ < < + < 
  

υ υχ χ
σ σ

2 2 2
2 2 2 21 1 1 1 1 1
1 2 1 22 2 2

0 0 0

s s sp
  

> ⋅ < >  
  

 

υ υ υχ χ χ χ
σ σ σ  

 (3.1.1)

 

( )
2

2 2 21 1
1 0 02 22 2 02 0 2

1

2 2
1 0

1

2 2
1 1( )

s s
a

ae e f s d s

υ σ σ
σ χχ σ

συ

χ σ
υ

 
− + 

 
 
 

−   = ∫

( )
2 2
2 0

1

2 2
1 0

1

2
2 2 21 1

1 0 02 2
2 20

1 12 1 ( )

s s
a f s d s

χ σ
υ

χ σ
υ

υ σ σ
σ χ

σ

 
− + 

 − −
 
 
 

∫
 

2 2
2 0

1

2 2
1 0

1

2 2
1 0 2

1 2

2 2
1 1

2 2 2 2
1 2 1 2

0 0

( )

( ) ( )
psa

a

f s ds

e e f s f s ds ds

χ σ
υ

χ σ
υ

χ σ
υ

σ
 ∞   −  

−

+

∫

∫ ∫

( )2

2

2 2
2 0

1

2 2
1 0

1

2 2
2 0

1

2 2 2 2
1 2 1 2

0

2 2 2 2
1 2 1 2

0 0

2 2 2 2
1 2 1 2

0

1 ( ) ( )

( ) ( )

( ) ( )

psa f s f s ds ds

f s f s ds ds

f s f s ds ds

σ
χ σ
υ

χ σ
υ

χ σ
υ

∞ ∞

∞

∞ ∞

− −

−

−

∫ ∫

∫ ∫

∫ ∫  (3.1.2)
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Straight forward integration of (3.1.2) gives

 (3.1.3)  

where ( ) 1

0

( ; ) 1
x

x pI x p p e x dx− −= Γ ∫  refers to the 

standard incomplete gamma function,  and

 

    

 

   

3.2  Risk of  

Again, we obtain the risk of 2
2ˆ DSTσ  under L(∆), 

given by

( )2 2
2 2ˆ ˆ( ) [ ]DST DSTR E Lσ σ= ∆
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4. RELATIVE  RISK OF  

A natural way of comparing the risk of the 
proposed testimators, is to study its performance with 
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respect to the best available estimator s 2p in this case. 
For this purpose, we obtain the risk of s 2p under L(∆) 
as:

2 2 2 2ˆ( ) [ ( , ) ]E p pR s E s L σ σ=    
2
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A straightforward integration of (4.1) gives
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Now, we define the Relative Risk of  2ˆ , 1,2DSTi iσ =  
with respect to s 2p under 2 2ˆ( , )L σ σ  as follows:

2
p

1 2
1

(s )
ˆ( )

E

DST

R
RR

R σ
=  (4.3)

Using (4.2) and (3.1.3) the expression for RR1 
given in (4.3) can be obtained; it is observed that RR1 
is a function of ‘v1’, ‘v2’, ‘λ’, ‘α’ and ‘a’.

Finally, we define the Relative Risk of 2
2ˆ DSTσ  by

2
p

2 2
2

(s )
ˆ( )

E

DST

R
RR

R σ
=  (4.4)

The expression for RR2 is given by (4.4) which 
can be obtained by using (4.2) and (3.2.3). Again we 
observe that RR2 is a function of ‘v1’, ‘v2’, ‘λ’, ‘α’ and 
‘a’.

4.1 Recommendations for 2
1ˆ DSTσ

It is observed that the above expressions (4.3) and 
(4.4) are functions of  α, λ, v1, v2 and the degrees of 
asymmetry ‘a’. For the comparing the performance 
of proposed testimators with the pooled Variance 
estimator  we have considered several values for these 
viz. (v1, v2) = (6,6), (6,9), (6,12), (6,15), (6,18); (8,8), 
(8,12), (8,16), (8,20), (8,24) and (10,10), (10,15), 
(10,20), (10,25), (10,30) ; α = 1%, 5% and 10%, and 
a = -3, -2, -1, 1, 1.25, 1.50 and λ = 0.2 (0.1) 2.0. For 
all these values taken to study the risk behavior there 
will be several tables for the relative risks of the two 
testimators however we have not presented all the 
tables here. Some of the tables are shown below.

Our recommendations based on all the tables of 
relative risks are summarized as follows.

 (i) The proposed testimator 2
1ˆ DSTσ  performs 

better than the pooled estimator s 2p for almost 
all the values considered as above. However 
some of the best performances are outlined 
specifically.

 (ii) 2
1ˆ DSTσ  dominates the usual estimator when 

(v1, v2) = (6,6) ; α = 1% ; a =  +1 or -1 the 
range for its better performance is 0.2 ≤ λ ≤2.0  
which is quite large as compared to other 
reported ranges in case of squared error loss 
function.

 (iii) As ‘v2’ increases the RR1 values are still 
greater than unity for (6,9) set but these 
values decrease in magnitude also the range 
of ‘λ’ changes slightly as  now it becomes 
0.6 ≤ λ  ≤ 1.8 for negative values of ‘a’. 
A similar pattern of relative risk values is 
observed when ‘a’ is positive for almost 
0.6 ≤ λ  ≤ 1.8 indicating that the proposed 
testimator perform better in both the situations 
of over as well as underestimation.
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Table 4.1.1. Relative Risk of 2
1ˆ DSTσ , α = 1% , (v1, v2) = (6, 6)

λ a = -3 a = -2 a = -1 a = 1 a = 1.25 a = 1.50

0.20 1.059 1.531 1.229 1.835 1.884 1.890

0.40 1.257 1.649 2.081 2.06 1.984 1.975

0.60 1.658 2.618 3.714 3.514 3.762 3.509

0.80 3.484 4.013 5.103 5.913 4.623 3.974

1.00 4.433 5.486 6.834 7.02 5.153 4.851

1.20 4.086 5.332 6.08 6.884 4.774 3.368

1.40 3.753 4.414 5.827 4.499 3.213 2.336

1.60 2.357 3.417 4.518 2.909 2.087 1.541

1.80 1.637 2.339 3.117 1.911 1.354 0.999

2.00 1.239 1.735 2.236 1.295 0.899 0.654

Table 4.1.2. Relative Risk of 2
1ˆ DSTσ  α = 5% , (v1, v2) = (6, 6)

 λ a = -3 a = -2 a = -1 a = 1 a = 1.25 a = 1.50

0.20 1.379 1.831 1.813 1.49 1.692 1.057

0.40 1.972 1.912 2.436 2.592 2.54 1.536

0.60 1.339 2.021 3.939 2.855 2.711 2.676

0.80 2.271 3.074 4.42 3.909 3.568 3.334

1.00 3.593 4.462 5.081 5.001 4.111 4.67

1.20 4.153 4.172 5.051 3.563 2.842 2.267

1.40 3.549 3.736. 4.476 2.299 1.837 1.472

1.60 2.754 2.888 3.762 1.634 1.294 1.034

1.80 2.182 2.166 3.133 1.212 0.945 0.748

2.00 1.815 1.658 2.649 0.926 0.707 0.551

Table 4.1.3. Relative Risk of 2
1ˆ DSTσ  α = 1% , (v1, v2) = (8, 8)

λ a = -3 a = -2 a = -1 a = 1 a = 1.25 a = 1.50

0.20 1.486 1.74 1.481 1.775 1.792 1.851

0.40 1.989 1.839 1.861 2.693 2.606 2.56

0.60 1.617 2.722 2.195 3.211 3.123 3.249

0.80 3.301 3.041 3.476 4.793 4.437 4.311

1.00 4.105 5.296 6.005 6.403 5.446 5.405

1.20 4.077 4.315 5.212 5.968 4.572 3.507

1.40 3.886 3681 4.75 3.679 2.869 2.256

1.60 2.5 2.75 3.089 2.326 1.797 1.413

1.80 1.782 2.675 2.395 1.534 1.159 0.897

2.00 1.392 2.069 2.338 1.059 0.779 0.589
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Table 4.2.1. Relative Risk of 2
2ˆ DSTσ  α = 1% , (v1, v2) = (6, 6)

λ a = -3 a = -2 a = -1 a = 1 a = 1.25 a = 1.50

0.20 0.647 1.117 1.897 1.214 1.164 1.156

0.40 0.652 1.997 2.725 1.452 1.347 1.299

0.60 1.381 2.054 3.202 2.629 2.496 3.603

0.80 3.826 4.273 4.73 4.669 3.67 4.078

1.00 5.225 5.732 5.933 5.684 5.396 6.077

1.20 4.882 4.758 4.747 4.077 4.857 4.248

1.40 3.444 3.075 3.385 3.59 3.369 2.531

1.60 2.035 2.952 3.022 2.702 1.951 1.464

1.80 1.397 1.976 2.755 1.68 1.181 0.871

2.00 1.06 1.463 2.735 1.103 0.752 0.541

Table 4.2.2. Relative Risk of 2
2ˆ DSTσ  α = 1% , (v1, v2) = (8, 8)

λ a = -3 a = -2 a = -1 a = 1 a = 1.25 a = 1.50

0.20 0.74 1.306 1.328 1.143 1.074 1.036

0.40 0.61 1.962 2.865 1.177 1.173 1.909

0.60 1.285 2.009 4.475 3.825 3.595 3.514

0.80 3.539 4.15 5.735 4.962 4.863 3.643

1.00 6.627 7.176 7.917 6.658 5.38 4.939

1.20 4.728 5.556 5.968 4.261 4.945 3.906

1.40 3.439 3.151 4.721 3.488 2.737 2.179

1.60 2.076 2.192 3.519 2.069 1.577 1.233

1.80 1.466 1.692 3.76 1.313 0.968 0.736

2.00 1.151 1.406 2.141 0.885 0.631 0.465

Table 4.2.3. Relative Risk of 2
2ˆ DSTσ  α = 5% , (v1, v2) = (6, 6)

λ a = -3 a = -2 a = -1 a = 1 a = 1.25 a = 1.50

0.20 0.848 1.521 1.017 1.577 1.549 1.582

0.40 0.957 1.87 2.343 1.947 1.967 1.927

0.60 1.987 1.302 2.97 2.942 2.777 2.698

0.80 3.798 2.522 4.836 4.478 3.225 3.658

1.00 4.434 4.561 5.914 5.711 4.446 5.626

1.20 3.403 3.652 4.607 3.579 2.887 2.326

1.40 2.456 3.585 3.919 2.183 1.751 1.413

1.60 1.887 2.773 2.884 1.487 1.171 0.936

1.80 1.555 2.272 2.015 1.065 0.818 0.641

2.00 1.357 1.964 1.388 0.79 0.589 0.45



36 Rakesh Srivastava et al. / Journal of the Indian Society of Agricultural Statistics 71(1) 2017  29–37

 (iv) As the other quantity of interest is the level 
of significance in addition to the degrees of 
asymmetry. We change ‘α’ to 5% and 10%  and  
it is observed that still the proposed testimator 
performs better for the ‘ranges’ mentioned 
as above. i.e. when ‘a’ is negative the range 
is 0.2 ≤ λ  ≤ 2.0 and when ‘a’ is positive it 
becomes 0.2 ≤ λ ≤ 1.6 indicating that range 
shrinks slightly for the overestimation case.

 (v) Now, we have considered the other values of 
(v1, v2) as mentioned above and it is observed 
that RR1 values are still higher than unity for 
these different data sets, with almost the same 
ranges of ‘λ’ mentioned as above for positive 
as well as negative values of ‘a’. Again as 
v2 increases the magnitude of RR1 values 
decreases but does not fall below 1, indicating 
a better performance.

 (vi) Overall recommendations are: v1 should be 
small i.e. v1  10 and  v2 ≤ 3v1, α = 1%  i.e. a 
smaller level of significance be taken, different  
degrees of asymmetry could be taken as it is 
observed that even ‘a’ could be as extreme 
negative as a = -3 or it could be considerably 
positive i.e. a = 1.5. However the suggested 
best values of ‘a’ could be a = -1 or a = +1.

 (vii) When these RR1 values are compared with 
the Mean Square values of 2

1ˆ DSTσ  proposed 
by Pandey et al. (1988) it is observed that the 
magnitude of RR1 values are HIGHER, the 
range of ‘λ’ increases considerably as it was 
(0.5 – 1.5) and now it becomes almost (0.2 
– 2.0) earlier it was recommended that v2 ≤ 
2v1 now it becomes v2 ≤ 3v1   a considerable 
increase in the choice of v2. Implying that the 
use of ASL not only allows to take account for 
various degrees of asymmetry (i.e. choose ‘a’ 
accordingly when over / under estimation is 
more serious) but also facilitates increase in 
the range of ‘λ’, v2 etc. which could be more 
useful for practical purposes.

4.2 Recommendations for σ̂ 2
DST2

We have also proposed 2
2ˆ DSTσ  which is obtained 

by squaring the shrinkage factor. The performance of 
it, is compared with respect to s 2p for the same data 

as considered for 2
1ˆ DSTσ . Again, similar tables of RR2 

will be generated for these data sets only few tables are 
given for reference purpose however recommendations 
based on all these computations are as follows:

 (i) It is observed that the magnitude of RR2 
values is higher than RR1 values implying that 
taking square of shrinkage factor improves the 
performance of  the proposed testimator.  

 (ii) 2
2ˆ DSTσ  dominates s 2p when (v1, v2) = (6,6), 

α = 1% for a = -1, 0.2 ≤ λ ≤ 2.0  and for a = +1,  
0.2 ≤ λ ≤ 2.0 but the magnitude of relative risk 
values is higher in this case, even though the 
data set remains the same.

 (iii) As ‘v2’ increases the RR2 values decrease in 
their magnitude (but still above unity). Here 
the range of ‘λ’ changes little bit as it becomes 
now 0.6 ≤ λ ≤ 1.8 for negative values of ‘a’. 
However when ‘a’ is positive the same range 
of ‘λ’ i.e. 0.2 ≤ λ ≤ 2.0 is observed for the 
better performance.

 (iv) The performance of 2
2ˆ DSTσ  is at its best when 

a = ± 1. As ‘v2’ increases i.e. for the other 
data set (6, 9), (6, 12), (6, 15) or (6, 18) the 
magnitude of RR2 decreases slightly but does 
not go below unity. Again, if we increase v1 
i.e. (8, 8), (8, 12) etc. Similar behaviour of 
RR2 values is observed but their magnitude 
change.

 (v) Again changing the level of significance 
values to α = 5% and α = 10% it is observed 
that values of  RR2  obtained  are ‘good’ in 
the sense of being more than unity. But it is 
also noticed that there is a decrease in the 
magnitude of RR2 values as ‘α’ increase. So, 
a higher value of the level of significance is 
not suggested.

 (vi) We therefore recommend as that: v1 should 
be small i.e. v1  10 and v2 ≤ 3v1, and choose 
α = 1%.   The degree of asymmetry could 
chosen for different degrees of asymmetry 
ranging   from a = -3 to a = 1.5. 

(vi) Comparing these RR2 values with those 
obtained by Pandey and Srivastava (1988) 
under the MSE criterion (or the use of 
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‘SELF’) we find  that these values are ‘better’ 
than those values in terms of their magnitude  
showing that the application of Asymmetric 
Loss Function yields better result. Also in a 
given situation when overestimation is more 
serious than underestimation or vice-versa 
this loss function provides a choice to tailor 
the risk by choosing ‘a’ appropriately. 

5. CONCLUSION
Two shrinkage testimators viz.  2

1ˆ DSTσ  and 2
2ˆ DSTσ

have been proposed for the variance of a Normal 
distribution. It is concluded that (i) use asymmetric 
loss function to study the risk properties. (ii) v1 
Should be small preferably should not exceed 10 
for both the cases. (iii) v2 ≤ 3v1 (iv) take α = 1% and 
take 0.2 ≤ λ  ≤ 2.0   for negative values of ‘a’ and 
take  0.2 ≤ λ ≤ 1.8 for positive values of ‘a’. (v) Take 
‘SQUARE’ of the shrinkage factor.

6. APPLICATIONS 

The proposed method of using an asymmetric loss 
function can be used in many real life situations which 
can be modeled through a Normal distribution such as 
studying the variation in some physical characteristics 
(say) soil fertility or distribution of errors in various 
situations may not have equal consequences, similarly 
estimating the mileage under different traffic conditions 
may show some variation, so underestimating or 
overestimating it may be serious for fuel economy 
suggestions, these are some situations under for which 
the proposed testimators can be used with less risk.
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