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SUMMARY
For studying the relationship between different variables, regression analysis is a widely used technique. The conventional ordinary least square 

estimator of regression coefficient is not suitable for complex survey data. In this paper, a calibration approach based estimator of finite population 
regression coefficient has been developed for survey data involving two-stage sampling design. The expression for its variance and variance estimator 
is also obtained. The improved performance of the proposed estimator is demonstrated through a real data based simulation study.
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1.	 INTRODUCTION

	 Survey statisticians draw sample from the 
population in order to provide inference about the 
population parameters. Survey data are generally 
multivariate in nature and therefore, many a times, the 
objective of the survey is to establish the pattern of 
relationship between variables rather than estimation 
of simple parameters like means or totals. When the 
variables are quantitative in nature and the interest 
is to find causal relationship then regression analysis 
may be an appropriate method. Broadly, in the context 
of survey data, estimation of parameters of finite 
population is based on two approaches. One of the 
approaches is repeated two-step sampling from an 
infinite population which is known as super population 
theory for finite population sampling. Another is 
repeated sampling from a finite fixed population 
which is known as classical finite population sampling 
theory. In the context of estimation of parameters of 
super-population since a linear model is postulated 
the ordinary least squares approach can be used for 
estimation of parameters. A key assumption in this 
approach is that sample elements are independent 
and identically distributed. This assumption of 

independence holds good if the data are collected 
through simple random sampling with replacement. 
But it does not hold good for other sampling schemes. 
Now a days, most of the survey designs are complex 
in nature involving stratification, unequal probabilities 
of selection, clustering, multi-stages and multi-
phases etc. From the regression analysis point of 
view, any deviation from independence assumption 
leads to complications in the form of error variance-
covariance model. Even cluster sampling which 
involves only choice of proper sampling units and 
is relatively a simple sampling scheme is considered 
somewhat complex from regression analysis point 
of view. In case of large scale surveys, stratified 
multistage sampling design is widely used. Here, 
also the units in a stratum are relatively homogenous 
which violates the assumption of independence of 
sample elements required for ordinary least squares 
estimation of finite population regression coefficient. 
One of the alternatives may be to use other method 
of estimation like maximum likelihood estimation as 
suggested by Nathon and Holt (1980). In the classical 
finite population sampling theory, regression analysis 
of survey data requires survey weight of sample 
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elements to be incorporated in the analysis. Modified 
approaches such as to use sampling design weights in 
the estimation procedure has been used by Kish and 
Frankel (1974).

If there is availability of auxiliary information 
along with the variables under study then the theory of 
calibration approach proposed by Deville and Sarndal 
(1992) may be used for estimation of finite population 
regression coefficient in the case of complex survey 
data. For example, there is relationship between 
yield and fertilizer use (FAO 1981). Let yield (y) 
be dependent variable and independent variable 
be fertilizer use (x). Suppose an auxiliary variable 
associated with dependent variable is available 
example; dependent variable yield (y) is correlated 
with auxiliary variable minutes of sunshine or date 
of sowing (Jasemi et al. 2013). Similar to this, there 
may be situation when auxiliary variable associated 
with independent variable may be available example; 
fertilizer use (x) applied is correlated with oil price or 
subsidy in price of fertilizer (Bain 2012). 

In Section 2 we discuss calibration estimation 
of population regression coefficient under two-stage 
sampling design when population level auxiliary 
information is available at both psu and ssu level.  
Section 3 presents variance estimation of the proposed 
estimators. In Section 4 empirical evaluation of the 
developed estimators is provided. Finally, Section 5 
presents concluding remarks.

2.	 THE PROPOSED ESTIMATOR 

Let us consider a finite population U = (1, 2,…, 
k,…, N) which is grouped into N1 clusters as U1, U2, ..., 
Ui ,…, UN1

 with sizes of the clusters as N1, N2 ,…, Ni, 

..., NN1
,  respectively. Thus, 
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These clusters are called primary stage units (psus) and 

the sampling units within the clusters (psus) are called 
second stage units (ssus). At the first stage, a sample 
of psus sI of size nI is selected from a population of 
psus UI of size NI by using any probability sampling 
scheme. 

Let, the first order and second order inclusion 
probability at the first stage be πIi and πIij respectively. 

At the second stage, a sample of units si of size ni 
is selected from the ith psus, Ui  of size Ni , Ii s∀ ∈ by 

using any probability sampling scheme. Thus, 
1

In

i
i

s s
=

= 

and 
1

In

s i
i

n n
=

=∑ , where s is the two-stage sample and ns 

is the two-stage sample size. Let, the first order and 
second order inclusion probability at the second stage 
be πk / i and πkl / i respectively.

Let y and x be the study variables. Let us assume 
that auxiliary variable z is associated with y and 
auxiliary variable p is associated with x. Let yik , xik , zik , 
and pik be values of the variables associated with the 
kth unit of ith selected psu. The population total of y is 

given by 
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psu total of y. Similarly, population total of x is given 

by 
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total of x. Let Zi and Pi be the ith psu total of auxiliary 

variables z and p respectively. Thus, 
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Under this study, the parameter of interest is 
population regression coefficient B, defined by
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Now, the π-estimator of population regression 
coefficient under two-stage sampling is given by
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where, 1 /Ii Iia π= , / /1 /k i k ia π=
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Now, π-estimator of population regression 

coefficient under two-stage sampling may also be 
expressed as
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where aik is the design weight of kth unit of ith selected 
psu. Thus, aik = aIi ak / i , ∀i = 1,...,nI and k = 1,...,ni .

Here, it is assumed that population level auxiliary 
information is available at both psu and ssu level, 
i.e. unit level auxiliary information is known. Thus, 
zik and pik is known ∀i = 1,...,NI and k =  1,...,Ni . In 
this case the calibration constraint are defined as 
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where wik is the calibrated weight corresponding to the 
design weight aik .

Here, the chi-square distance function measuring 
the distance between wik and aik is given by 
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Thus, the objective function for minimization is 
given by 
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This objective function is minimized subject to 
the calibration constraint using Lagrange multiplier 
approach to obtain the calibrated weight, wik . Finally 
the calibrated weights are obtained as

{ }1 21 ( )ik ik ik ik ikw a q z pλ λ= + +
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Here, qik  is a positive constant and for the particular 
case qik = 1, the calibrated weights are given by

( )1 21ik ik ik ikw a z pλ λ= + +

where, 
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Here, the calibrated estimators of population total 

of study variables y and x are given by (3)

1 1

ˆ
iI nn

c
y ik ik

i k
t w yπ

= =

= ∑∑  

and (3)

1 1

ˆ
iI nn

c
x ik ik

i k
t w xπ

= =

= ∑∑  respectively.

Thus, the calibrated estimator of population 
regression coefficient under the availability of both 
psu and ssu level auxiliary information is given by
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3.	 VARIANCE ESTIMATION

The developed calibrated estimator of population 
regression coefficient is non-linear in nature. There are 
two approaches for variance estimation of nonlinear 
estimator: the Taylor series linearization approach 
and sample reuse approach. In this paper, Taylor 
series linearization technique is used to derive an 
approximate variance of the estimator as well as the 
variance estimator.

Under this case the calibrated estimator, (3)ˆ
cBπ  can 

also be expressed as
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Here, U and V are functions of several estimators 
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Since (3)ˆ
cBπ  is a function of the unbiased 

estimators mentioned above. Thus, by using Taylor 
series linearization method, we approximate the 
function (3)ˆ
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4.	 EMPIRICAL EVALUATIONS

In this Section we report the results from simulation 
study that illustrate the performance of the proposed 
estimators. In particular, we consider following two 
estimators of the population regression coefficient: 

(i)	 π-estimator, B̂π  given by (1) (denoted as 
Est‑π), 

(ii)	 Calibrated estimator, (3)ˆ
cBπ  given by (2) 

(denoted as Est-CAL), 

The performance of the estimators was evaluated 
by percentage absolute relative bias (ARB) and 
percentage relative root mean squared error (RRMSE), 
defined by

1

ˆ1ˆ( ) 100M i
i

B BARB B
M B=

−
= ×∑

2

1
1

ˆˆ( ) 100M i
i

B BRRMSE B M
B

−
=

 −
= × 

 
∑

where ˆ
iB  denotes the predicted value of population 

regression coefficient at simulation run i, with true 
value B and M denotes the number of simulation run.

A real dataset of 284 municipalities of Sweden, 
referred to as MU284 population was used for 
simulation. Thus, here population size N = 284. The 
municipalities are grouped into 50 clusters each 
containing 5 to 9 municipalities. Here, the aim was 
to estimate population regression coefficient between 
variables revenues from the 1985 Municipal taxation 
(RMT85, measured in millions of kronor) and 1985 
population (P85, in thousands) using number of 
municipal employees in 1984 (ME84) and 1975 
population (P75, in thousands) as the auxiliary 
variables respectively. The correlations between the 
variables are presented in Table 1.
Table 1. Correlation between different variables in MU284 data

Variables RMT85 P85 ME84 P75

RMT85 1 0.961 0.999 0.967

P85 0.961 1 0.965 0.998

ME84 0.999 0.965 1 0.971

P75 0.967 0.998 0.971 1
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From this population, a two stage sample of size 
ns = 80 was selected by drawing 20 psus at the first 
stage and 4 units from each selected psus at the second 
stage. The sampling scheme used in both stages is 
simple random sampling without replacement. Then 
the various estimators of the population regression 
coefficient were computed using the sample data. 
The Monte Carlo simulation was run M=5000 times. 
Simulation study was done using R software. The 
values of percentage absolute relative bias and the 
values of percentage relative root mean square error of 
different estimators are reported in Table 2. 

Table 2. Percentage absolute relative bias (ARB, %) and 
percentage relative root mean square error (RRMSE, %) of 

different estimators
Estimator ARB, % RRMSE, %

Est- π 18.9924 21.8049 

Est-CAL 15.7059 17.9376

These results in Table 2 show that the value of 
percentage absolute relative bias for the π-estimator 
is more than the Est-CAL (calibrated estimator). 
Therefore, it can be concluded that in terms of 
absolute relative bias the estimator Est-CAL shows 
better performance. In the case of percentage relative 
root mean square error, it is higher for the π-estimator 
as compared to Est-CAL. Therefore, in terms of 
criterion of percentage relative root mean square error 
also the calibrated estimator Est-CAL gives better 
performance.

5.	 CONCLUDING REMARKS

This article discusses the calibrated estimator of 
population regression coefficient under the availability 
of auxiliary information at both psu and ssu level and 
its variance estimation using Taylor series linearization 
approach. The calibration estimator based on both 
psu and ssu level auxiliary information gives better 
performance than the simple π-estimator of population 
regression coefficient. 
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