
1.	 INTRODUCTION
 It is well-known that the sample mean under the 

linear systematic sampling (LSS) is more efficient, 
for estimation of a finite population mean, than 
the corresponding estimator, under simple random 
sampling (SRS), in the presence of linear trend 
(see Cochran 1977). There are attempts to improve 
the sampling design in populations with linear 
trend, including Madow (1953), Sethi (1965) and 
Singh et al. (1968). Some articles including Singh  
et al. (1968) and Yates (1948) proposed improved 
estimators for the population mean which coincide 
with the population mean under a linear trend 
model. Others consider the improvement of the 
systematic sampling for population exhibiting 
parabolic trend, such as Bellhouse and Rao (1975), 
Agrawal and Jain (1988), Bellhouse (1981), Singh 
et al. (1968), Sampath and Chandra (1991) and 
Sampath et al. (2009). Examples of populations 
with parabolic trend are discussed in Singh et al. 
(1968) and Bellhouse (1981).
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There are two major questions about a 
population trend. The first question is “Under 
what conditions a finite population might 
exhibit a polynomial trend of order k ≥ 1?” The 
second question is “What is the link between the 
knowledge of a supplementary variable which is 
closely related to the variable of interest and the 
information pertaining to lables of population 
units, when the list of population units are ordered 
by the supplementary variable? In other words, 
if we use an auxiliary variable to sort the list of 
population units, how our knowledge about the 
joint distribution of auxiliary variable and the 
variable of interest enables us to discover the 
population trend?”. To answer these questions, 
let us first focus on the distributional properties of 
the supplementary variable. In a population with 
equally spaced units with equal frequencies, the 
ordered values of population units have an exact 
linear trend. This relation can be formulated by 
using the fact that for a population constisting  
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that is the ordered values of the supplementary 
population exhibit a linear trend (see first row 
of Fig. 1). Now, suppose that the list of the 
population individuals y

1
,
 
..., yN is ordered by 

using the auxiliary population x
1
,
 
..., xN, that are 

equally spaced with equal frequencies and the 
relation between pairs (xi, yi), i = 1, ..., N, is well 
approximated by a linear function, that is 

yi = a + bxi + ei,

where the values of ei = yi – a – bxi, i = 1, ..., N are 
close to zero, then the Y-concomitants y

[i:N]
 of the 

ith ordered value xi:N of x
1
,
 
..., xN satisfy 

y
[i:N]

 = a + bxi:N + ei:N 

1
:= N i N

ia bF e
N

−  + + 
 

.i′ ′≈ a + b

Fig. 1. Relation Between the Distribution of  
Y and the Population Trend

Alternatively, if the space between the values 
of x

1
,
 
..., xN is increasing in their index and/or their 

frequency is decreasing, then the trend of ordered 
values xi:N is increasing and concave, which is well 

approximated by a parabolic function (see second 

row of Fig. 1). Now, suppose that NF  has two tails. 

Then the trend of 1−
NF  has a return point and so the 

trend of the ordered values of the supplementary 
population can be well approximated (see Fig. 2) 



Morteza Amini et al. / Journal of the Indian Society of Agricultural Statistics 70(3) 2016 255–264 257

by a polynomial trend of order k ≥ 3, specially by 
a cubic trend 

2 3
: .i Nx i i ia + b + g + h

Therefore, under the model yi = a + bxi + ei, 

y
[i:N]

 = a + bxi:N + ei:N

       
2 3,i i i′ ′ ′ ′≈ a + b + g + h

that is the trend of the population is parabolic.

Fig. 2. The Two-Tail Distribution and the Population Trend

The higher order polynomials might also be 
considered as the population trend whether the 

relation between pairs (xi, yi), i = 1, ..., N is well 

approximated by polynomials of higher order or 

the structure of 1−
NF  is more complicated.

In this paper, the problem of estimation of the 
population mean is studied for a population with 
cubic trend to investigate the effect of a polynomial 
trend on the performannce and efficiency of 
the estimators under systematic sampling. In 
Section 2, we develope the corrected estimator 
of the population mean for the linear systematic 

sampling (LSS), the modified systematic sampling 
(MSS) of Singh et al. (1968), and for the balance 
systematic sampling (BSS) of Sethi (1965), under 

the model 2 3=iy i i ia + b + g + h , which coincides 

with the population mean. Then, using a super-
population model approach, the mean square error 
of the corrected estimator is obtained under the 
model 

2 3= , = 1, , ,i iy i i i e i Na + b + g + h + 

with certain additional assumptions on the errors 
ei, i = 1, ..., N. A comparison of three sampling 
schemes is performed in Section 3, with respect 
to the mean square errors. Furthermore, the effect 
of using the corrected estimator for the population 
with parabolic trend, under the population 
exhibiting a cubic trend is evaluated. Some real 
data set is considered in Section 4 to compare 
the performance of the estimators in a real life 
example. 

2.	 THE CORRECTED ESTIMATOR FOR 
CUBIC POPULATIONS
To draw a linear systematic sample of size n 

from a population of size N = nk, a random integer 
1 ≤ r ≤ k is chosen. The sample is then given by 

yr + jk, j = 0, ..., n – 1

For the MSS case, when n is even, the sample 
corresponding to the random start r is 

( )1, , = 0, , 1.
2r jk N r jk
ny y j+ − + − −

The corresponding drawn sample for the BSS 
case, when n is even, is 

( )2 2 1 2, , = 0, , 1.
2r jk k r jk
ny y j+ − + + −

In order to compare LSS, MSS and BSS 
schemes, we assume throughout the paper that n 
is even. For the case of n even, the notation of the 
three schemes can be unified as 

,
, ,

, = 0, , 1,
2r ajk YN ajkn k r

nY j+ −

  − 
 



where a = 1, for MSS and LSS schemes,  
a = 2 for BSS, Nn,k,r = (nk – r + 1), for MSS and 
BSS, and Nn,k,r = r + (n – 1)k, for LSS.



Morteza Amini et al. / Journal of the Indian Society of Agricultural Statistics 70(3) 2016 255–264258

Under the above unified notation, we consider 
the weighted estimator of the population mean, 

Ny , as 

C
( ) 1 2 3

( 1) ( 1), ,2 2

1
=ub
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y w y w y w y
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
+ + + 
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 The weights wi, i = 1, ..., 4 are determined so 

that 
Nwr yy =)(

, under the model 

2 3= , = 1,2,..., .iy i i i i Na + b + g + h 	 (2)

Using the fact that under the model (2), we 
have 

2( 1) ( 1)(2 1) ( 1)
= ,

2 6 4N
N N N N Ny + + + +

a + b + g + h

the following system of equations is obtained: 

1

, , 12
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where 

( ) = 1 ,
2
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, ,( ) = 1 ,
2n k r
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The solution of the above system of equations 
is 

3
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where 

1 ( ) = ( ) ,r r rµ µ −

1 ( ) = ( ) ,r r rχ χ −

1 , ,( ) = ,n k rr N rδ −

2 2
2 1( ) = ( ( ) ) ( ( ) ) ( ),r r r r r rχ χ − − µ + χ

2 2
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3 3 2 2
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             1 2( ) ( ( ) ( ) ) ( ),r r r r rδ − χ + µ + δ

,4)(=),( 11 rNgrNg −

2
2 2 1( , ) = ( ) 4 ( ( ) ) ( , )g N r g N r r r g N r− − µ +
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3 2 2

3 3( , ) = ( ) 4 ( ( ) ( ) )g N r g N r r r r r− − µ + µ +

                1 2( , ) ( ( ) ( ) ) ( , ).g N r r r r g N r− χ + µ +

Using the weights given in (3)-(6), the mean 
square error of the estimator in (1) is zero under 
the model (2). In the sequel, the mean square error 
of the estimator in (1) is obtained using a super-
population model approach. In this approach, 
the mean square error is calculated by averaging 
with respect to probability distribution function  
of y

1
, ..., yN. To model the joint distribution of  

y
1
, ..., yN, we utilize the approach used in Sampath 
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et al. (2009) and Agrawal and Jain (1988), by 
considering the model 

2 3= , = 1, , ,i iy i i i e i Na + b + g + h + 

	 (7)

with E(ei) = 0 and Cov(ei, ej) = 0, i ≠ j = 1, ..., N. 
To include the homoscedastic and heteroscedastic 
errors in the model, we further assume that 
Var(ei) = s2ig, where g is a real number. The 
homoscedasticity is then determined by the case  
g = 0. It is easy to see that 
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3.	 COMPARISON
We start with comparing the mean square 

errors of the estimators under LSS, BSS and 
MSS sampling strategies. Then, for a population 
with cubic trend, the estimator developed under 
the assumption of cubic trend is compared with 
that developed under the assumption of parabolic 
trend to measure the effect of polynomial trends of 
higher order on the performance of the corrected 
estimators.

In order to compare the precision of LSS, BSS 
and MSS methods under the model 

2 3= , , = 1, , ,i iy i i i e i Na + b + g + h + 

the relative efficiencies 
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are computed and given in Table 1 for different 

values of g, n and k, where 
C .
( ) ,ub Type
r wy Type = 

LSS, MSS and BSS, is the estimator in (1) with 
corresponding values of a and Nn,k,r for LSS, MSS 
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and BSS schemes, respectively. As it can be seen 
from Table 1,

(1)	The estimator C .
( )

ub MSS
r wy  is more efficient than 

C .
( )

ub LSS
r wy  and C .

( )
ub BSS

r wy , for all values of n 

=12(4)36, k = 5, 8, 10, 12 and g = 0, 1, 2, 3. 

(2)	The values of RE
2
 suggest that there exist 

integers k* and n*, both non-increasing in g, 

such that for k ≥ k* and n ≥ n* C .
( )

ub LSS
r wy  is more 

efficient than C .
( )

ub BSS
r wy . 

(3)	It seems that the values of relative efficiencies 
tend to 1 as n grows larger. 

To evaluate the effect of a polynomial trend of 
higher order on the performance of the estimators, 
suppose that the population exhibits a cubic trend 

2 3= , = 1, , ,i iy i i i e i Na + b + g + h + 

with E(ei) = 0 and Cov(ei, ej) = 0, i ≠ j = 1, ..., N 
and Var(ei) = s2ig, where g is a real number. and 
that we use the weighted estimator 
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j

Y Y Y
−

+ −


 +l + +  
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where li, i = 1, 2, 3 are determined such that 
estimator in (9) coincide with the population mean 
under the assumption that yi = a + bi + gi2, i = 1, 
..., N.

Remark 1: It is worth noting that the estimator 
in (9) is different from the estimator proposed in 
Sampath et al. (2009) for the case of BSS in the way 
that in Sampath et al. (2009) l2 is the weight of the 

last drawn pair ( )( 1) 1,r n k nk ry y+ − − + , while in (9) it is the 

weight of the middle pair 
2( 1) 1 2( 1)

2 2

,n nr k nk r k
y y

+ − − + − −

 
 
 

. 

However, for the sake of comparability with the 
results of Section 2, we use (9) as the corrected 

Table 1. Relative efficiencies of MSS and BSS with respect to LSS.

g = 0 g = 1 g = 2 g = 3
k n RE

1
RE

2
RE

1
RE

2
RE

1
RE

2
RE

1
RE

2

5 12 1.0679 1.0338 1.0679 1.0338 1.0538 1.0024 1.0397 0.9719
16 1.0471 1.0233 1.0471 1.0233 1.0369 0.9985 1.0266 0.9743
20 1.0360 1.0178 1.0360 1.0178 1.0279 0.9973 1.0198 0.9773
24 1.0291 1.0143 1.0291 1.0143 1.0225 0.9970 1.0158 0.9800
28 1.0244 1.0120 1.0244 1.0120 1.0188 0.9970 1.0131 0.9822
32 1.0210 1.0104 1.0210 1.0104 1.0161 0.9971 1.0112 0.9840
36 1.0184 1.0091 1.0184 1.0091 1.0141 0.9972 1.0097 0.9855

8 12 1.0642 0.9822 1.0642 0.9822 1.0508 0.9427 1.0373 0.9051
16 1.0445 0.9871 1.0445 0.9871 1.0347 0.9546 1.0250 0.9235
20 1.0339 0.9899 1.0339 0.9899 1.0263 0.9625 1.0186 0.9362
24 1.0274 0.9917 1.0274 0.9917 1.0211 0.9682 1.0148 0.9454
28 1.0230 0.9930 1.0230 0.9930 1.0176 0.9724 1.0123 0.9523
32 1.0198 0.9939 1.0198 0.9939 1.0151 0.9756 1.0105 0.9577
36 1.0173 0.9947 1.0173 0.9947 1.0132 0.9781 1.0091 0.9620

10 12 1.0629 0.9523 1.0629 0.9523 1.0498 0.9082 1.0365 0.8668
16 1.0436 0.9657 1.0436 0.9657 1.0340 0.9286 1.0244 0.8935
20 1.0332 0.9733 1.0332 0.9733 1.0257 0.9416 1.0182 0.9115
24 1.0268 0.9781 1.0268 0.9781 1.0207 0.9507 1.0145 0.9244
28 1.0225 0.9815 1.0225 0.9815 1.0173 0.9573 1.0120 0.9341
32 1.0193 0.9840 1.0193 0.9840 1.0148 0.9624 1.0103 0.9415
36 1.0170 0.9859 1.0170 0.9859 1.0130 0.9664 1.0089 0.9475

12 12 1.0621 0.9248 1.0621 0.9248 1.0490 0.8766 1.0360 0.8321
16 1.0429 0.9456 1.0429 0.9456 1.0335 0.9043 1.0241 0.8658
20 1.0327 0.9575 1.0327 0.9575 1.0254 0.9219 1.0180 0.8884
24 1.0264 0.9652 1.0264 0.9652 1.0204 0.9341 1.0143 0.9046
28 1.0221 0.9705 1.0221 0.9705 1.0170 0.9430 1.0118 0.9167
32 1.0190 0.9744 1.0190 0.9744 1.0146 0.9497 1.0101 0.9261
36 1.0167 0.9774 1.0167 0.9774 1.0128 0.9551 1.0088 0.9336
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estimator for the parabolic population. Hence, for 
the case of BSS, the weights li, i = 1, 2, 3 in (9) are 
different from the weights obtained in Section 3 
of Sampath et al. (2009). Indeed, for the estimator 
in (9) to coincide with the population mean, under 

the model 2= , = 1, ,iy i i i Na + b + g  , we obtain 

2
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( , )
= ;

( )

g N r
r

′
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′χ 	 (10)

1 2
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From the computation results, the following 
result arises. Unfortunately, the proof of this result 
is very tedious and untractable and we could not 
handle it. 

Table 2: The values of 

2

=1

P . 2
P ( )

1

( )

k
rr
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ar r w N

A
k

E y y
s

−

∑
 for different 

values of n, k and g.

k n g = 0 g = 1 g = 2
5 12 3004.317 543.996 85.361

20 10945.243 1540.209 187.739
28 25544.682 3042.327 313.824
36 48045.137 5050.393 459.788

8 12 5781.699 830.204 103.168
20 21109.608 2352.785 226.965
28 49313.805 4649.350 379.441
36 92800.231 7719.961 555.964

10 12 7952.366 1022.395 113.704
20 29056.145 2898.378 250.168
28 67899.205 728.310 418.249
36 127797.595 9512.268 612.841

12 12 10345.345 1214.999 123.398
20 37817.989 3445.124 271.515
28 88392.925 6809.537 453.951
36 166389.990 11308.324 665.164

Conjecture 1: The estimator in (9) coincide with 
the estimator in (1) for the MSS and the BSS 
strategies and for n ≥ 6(N = nk, n is even), in the 
way that 
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where C .
( )

ub LSS
r wy  and P .

( )
ar LSS

r wy  are given in (1) and 

(9) with a = 1 and Nn,k,r = r + (n – 1)k, respectively, 

ECub and EPar denote the expectation under the 

model (7) and the model 
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for different values of n, k and g. It should be kept 
in mind that as the lower bound of |h| increases, 
the effect of the cubic trend decreases. So, as it 
can be seen from Table 2, the effect of the cubic 
trend decreases as n and k increases. Also, under 
hetroscedastic error models the cubic trend is 
more effective.

4.	 A REAL DATA EXAMPLE
We use the real data set of the grain production 

in 24 non dry states of Iran for the cropping year 
2004/05. The acres planted and total production of 
grain are given in Table 3 for all 24 non dry states 
in 2004/05 cropping season. Suppose that the 
variable of interest is the total production and the 
aim is to estimate the population mean. Assume 
further that the list of states is ordered by the acres 
planted variable. 

Fig. 3 (top) shows the scatter plot of total 
production versus acres planted. The relation 
between two variables might be modeled by a 
linear model and the variance of the errors of the 
linear model is increasing in acres planted. The 
empirical distribution function of the auxiliary 
variable is shown in Fig. 3 (top-second). The 

distribution of the acres planted variable has two 
tails. Also, the plot of total production in the 
ordered list versus the index of the list units is 
shown in Fig. 3 (bottom).

Table 3. The acres planted and total production of grain for 24 
non dry states of iran in 2004/05 cropping season

State Acres Planted 
(Acre) 

Total 
Production 

(Tons)
Fars 870730 3176283
Khuzestan 825003 2223741
Khorasan Razavi 717043 1591215
Kermanshah 574852 1364382
Golestan 491980 1362293
Mazandaran 281919 1118081
East Azarbayejan 525111 867414
Hamedan 512719 852208
Isfahan 209101 832006
Ardabil 467854 793168
West Azarbayejan 454437 788573
Gilan 219579 784868
Lorestan 525829 740919
Kordestan 559556 686907
Kerman 170874 663903
Markazi 254924 486280
Kazvin 202424 473079
Tehran 107436 469668
Zanjan 357013 439254
North Khorasan 214775 409167
Ealam 203223 341997
Kohkiluye & Boyerahmad 176088 268816
Chaharmahal & Bakhtyari 91539 199007
Bushehr 191808 163964
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Fig. 3. The scatter plot (top), the empirical distribution function 
of auxiliary variable (top-second) and the trend of ordered total 

production by acres planted (bottom) for grain data set

As, it is claimed in Conjecture 1 the estimator 
typeCub

wry .
)(

 coincides with typePar
wry .

)(
 for type = MSS and 

BSS for n = 6, 8 and 12. In order to compare the 
estimators under different sampling strategies and 
different trend models the following quantities are 
computed 
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where the superscripts Cub, Par and Lin stand 
for the cubic, parabolic and linear trend models, 
respectively, and the superscripts LSS, MSS 
and BSS stand for the corresponding sampling 
strategies. The relative efficiencies REi, i = 1, ..., 
6 are given in Table 4, for n = 6, 8 and 12. As one 
can see from Table 4, the corrected LSS estimators 
under cubic trend model is more efficient than that 
under parabolic trend model for n = 6, 8 and 12. 
The corrected LSS estimator under parabolic trend 
model is more efficient than that under linear trend 
model for n = 6, 8 and 12, while, for the MSS case, 
this holds only for n = 6 and 8 and for the BSS case 
it holds only for n = 6 and 12. Furthermore, under 
cubic trend model, the corrected LSS estimators is 
less efficient than the corrected MSS estimator for 
n = 6, 8 and 12, while it is more efficient than the 
corrected BSS estimator for n = 6 and 8.

Table 4. Relative efficiencies of cubic estimator relative to the 
parabolic estimator for different sampling schemes and values of 

n for the grain data set

n RE
1

RE
2

RE
3

RE
4

RE
5

RE
6

6 1.743 3.248 4.732 2.221 6.769 0.755
8 3.634 3.000 3.479 0.819 1.856 0.940
12 1.488 2.315 0.377 3.533 10.793 34.244

5.	 CONCLUDING REMARKS
As a result of numerical comparisons and 

real data analysis, we suggest using the estimator 
C .
( )

ub MSS
r wy  rather than C .

( )
ub LSS

r wy  and C .
( ) .ub BSS
r wy

Furthermore, the numerical comparisons and 
real data analysis suggest that estimation of the 
population mean under the assumption that the 
population exhibits a cubic trend might result to 
better performance of the estimators rather than 
under those of linear or parabolic trends.
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It is well-known that under the ordinary 
systematic sampling the second order inclusion 
probabilities are zero for several pairs of units 
which makes variance estimation difficult. To 
overcome this problem, Tukey (1950) and later on 
Gautschi (1957) suggested using multiple random 
starts for systematic sampling. The problem of 
estimation of population mean under systematic 
sampling with multiple random starts in the 
presence of a cubic trend remains as a future work. 
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