
1.	 INTRODUCTION
The concept of long-term dependency was 

developed by Hurst and Mandelbrot (1963). They 
developed the rescaled range (R/S) method to 
test for persistent long-term dependency. Later 
on in 1980’s Granger and Joyeaux (1980) and 
Geweke and Porter-Hudak (1983) developed 
fractional integration as an alternative, in which 
the differencing parameter is allowed to be a 
fraction. In the literature, several studies have 
illustrated the existence of long-range dependency 
and the applicability of fractional differencing 
(Jin and Frechette 2004). There has been a large 
amount of research on long memory in economic 
and financial time series. For modelling the 
time series in presence of long memory, the 
autoregressive fractionally integrated moving-
average (ARFIMA) model is used. ARFIMA 
model searches for a non-integer parameter, d, to 
difference the data to capture long memory. The 
existence of non-zero d is an indication of long 

Available online at www.isas.org.in/jisas

Journal of the Indian Society of 
Agricultural Statistics 70(3) 2016 243–254

Long Memory in Conditional Variance

Ranjit Kumar Paul, Bishal Gurung, A.K. Paul and Sandipan Samanta
ICAR-Indian Agricultural Statistics Research Institute, New Delhi

Received 12 November 2015; Revised 12 July 2016; Accepted 22 September 2016

SUMMARY 
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memory and its departure from zero measures the 
strength of long memory. Paul (2014) and Paul et 
al. (2015a, 2015b) have applied ARFIMA model 
for forecasting of agricultural commodity prices. 
However, ARFIMA model is based on some 
crucial assumptions like linearity, stationarity and 
homoscedastic errors. Further, time series data 
quite often exhibits features like long memory in 
volatility; which cannot be explained by ARFIMA 
model. Sometime asymmetric phenomenon 
arises with economic series, which tend to 
behave differently when economy is moving 
into recession rather than when coming out of 
it. Many financial time series shows periods of 
stability followed by unstable periods with high 
volatility. Volatility is generally measured in 
terms of the conditional standard deviation of the 
underlying asset return. Modelling the volatility 
of a time series can improve the efficiency and 
the accuracy of forecast. In time series literature, 



Ranjit Kumar Paul et al. / Journal of the Indian Society of Agricultural Statistics 70(3) 2016 243–254244

models which attempt to explain the changes 
in conditional variance are generally known as 
conditional heteroscedastic models. Some of the 
volatility models that have been extensively used 
in the literature are Autoregressive Conditional 
heteroscedastic (ARCH) model of Engle (1982), 
Generalized ARCH (GARCH) model (Bollerslev 
1986 and Taylor 1986), Exponential GARCH 
(EGARCH) model of Nelson (1991) and 
Fractionally Integrated GARCH (FIGARCH) 
model of Baillie et al. (1996). Huge amount of 
empirical and theoretical research work has been 
already done for GARCH and related models. 
The GARCH model assumes that negative and 
positive shocks of equal magnitude have identical 
impacts on the conditional variance. In order to 
accommodate differential impacts on conditional 
variance between positive and negative shocks, 
Glosten et al. (1992) proposed the asymmetric 
GARCH, or GJR model. As the positive and 
negative shocks on conditional volatility, called 
leverage effect, are asymmetric, Nelson (1991)
proposed the EGARCH model. Some applications 
of GARCH family of models may be found in 
Paul et al. (2009), Ghosh et al. (2010a, 2010b) and 
Paul et al. (2014).

In terms of volatility persistence, a GARCH 
model features an exponential decay in the 
autocorrelation of conditional variances. However, 
a shock in the volatility series seems to have “long 
memory” and impacts on future volatility over a 
long horizon. Fung et al. (1994) described that 
a long memory process could allow conditional 
heteroscedasticity, which could be the explanation 
of non-periodic cycles. It seems a long memory 
model is more flexible than an ARCH model in 
terms of capturing irregular behaviour. Therefore, 
Baillie et al. (1996) proposed the FIGARCH 
(p, d, q) model where a full description of the 
properties of the process and the appropriate quasi-
maximum likelihood estimation (QMLE) method 
can be found. Baillie et al. (2007) explained that 
the long memory refers to the presence of very 
slow hyperbolic decay in the autocorrelations 
functions. Therefore, econometrically, the long 
memory is between the usual exponential rates 
of decay associated with the class of stationary 
and invertible ARMA models, and the alternative 
extreme of infinite persistence associated with 

integrated, unit root processes. FIGARCH model 
is capable of explaining and representing the 
observed temporal dependencies of the financial 
market volatility in a much better way than 
other types of GARCH models (2004). Jin and 
Frechette (2004) applied FIGARCH model for 
describing fourteen agricultural future price series. 
When estimating the parameters of a FIGARCH 
model, generally, the value of parameter d is 
estimated first and one uses these estimates to 
obtain the estimation of other parameters (Lopes 
and Mendes 2006, H¨ardle and Mungo 2008). 
The same procedure was followed in Paul et al. 
(2015c) for forecasting agricultural commodity 
prices in India using ARFIMA-FIGARCH model. 
In the present investigation, an attempt has been 
made to apply different extensions of GARCH 
model along with FIGARCH model for modelling 
and forecasting of spot return price of gram in 
Delhi Market. The paper is organized as follows: 
section 2 deals with the concept of long memory 
process; section 3 deals with GARCH model 
and its important extensions; section 4 describes  
the details of FIGARCH model, its estimation 
process and forecasting and section 5 deals with 
the results and discussion followed by conclusions 
in section 6.

2.	 LONG MEMORY PROCESS
Long memory in time-series can be defined as 

autocorrelation at long lags Robinson (2003). The 
acf of a time-series yt is defined as

( ) ( )1cov , / vark t t ty y y−ρ = 	 (1)

for integer lag k. A covariance stationary time-
series process is expected to have autocorrelations 
such that lim 0k k→∞ ρ = . Most of the well-known 
class of stationary and invertible time-series 
processes have autocorrelations that decay at the 
relatively fast exponential rate, so that 

k
k mρ ≈ , 

where |m|<1 and this property is true, for example, 
for the well-known stationary and invertible 
ARMA (p, q) process. For long memory processes, 
the autocorrelations decay at an hyperbolic rate 
which is consistent with 2 1d

k Ck −ρ ≈ , as k increases 
without limit, where C is a constant and d is the 
long memory parameter.

Suppose that {Yt} is a stationary process 
with the spectral density function (SDF) denoted 
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by SY(.), then {Yt} is a stationary long memory 
process if there exist constants a and CS satisfying 
-1<a<0 and CS> 0 such that

( )
0

lim / ( )
a

Y Sf
S f C f 1

→
= 1	 (2)

In other words, a stationary long memory 
process has an SDF SY(.) such that SY(.) ≈ a

SC f , 
with the approximation improving as f approaches 
zero. An alternative definition can be stated in 
terms of the auto covariance sequence (ACVS)  
{ ,YS τ } for {Yt}. {Yt} is a stationary long memory 
process if there exist constants b and CS satisfying 
-1<b<0 and CS>0 such that

( ),
0

lim / 1b
y sS Cττ→

τ = 	 (3)

where b is related to a in (2) via b = - a – 1.

2.1 Long Memory Tests
Long memory is an important empirical 

feature of any financial variables. The presence of 
long memory in the data implies the existence of 
nonlinear forms of dependency between the first 
and the second moments, and thus the potential 
of time-series predictability. Testing for long 
memory property is an essential task since any 
evidence of long memory would support the use 
of Long Memory (LM)-based volatility models 
such as FIGARCH.

We test for long memory components in the 
return series and volatility of gram using the 
Geweke and Porter-Hudak (1983) (GPH) statistic. 
For long memory in the volatility process, this 
test is applied to the logarithm of squared returns 
series of gram, which is commonly regarded as a 
proxy of conditional volatility (Lobato and Savin 
1998, Choi and Hammoudeh 2009). 

Let rt be the return series. The GPH estimator 
of the long memory parameter d for rt can be then 
determined using the following periodogram:

2
0 1log ( ) log 4sin

2
j

j j

w
I w β β e

  
  = + +   

  
	 (4)

where njTjwj ,...,2,1,/2 == π ; je  is the residual 
term and wj represents the Tn =  Fourier 
frequencies. )( jwI denotes the sample periodogram 
defined as

2

1

1
( )

2
j

T
w t

j t
t

I w re
Tπ

−

=

= ∑

where rt is assumed to be a covariance stationary 
time series. The estimate of d, say ,ˆ

GPHd  is 1̂β− .

3.	 GARCH MODEL
The ARCH(q) model for the series { }te  is 

defined by specifying the conditional distribution 
of te  given the information available up to time t 
−1. Let 1−tψ  denote this information. ARCH (q) 
model for the series { }te  is given by 

( )1| ~ 0,t t tN h−e ψ  	 (5)

2
0

1

q

t i t i
i

h a a e −
=

= + ∑ 	 (6)

where a0 > 0, ai > 0 for all i and ∑
=

<
q

1i
i 1a  1 are 

required to be satisfied to ensure non negativity 
and finite unconditional variance of stationary 
{ }te  series.

Bollerslev (1986) and Taylor (1986) proposed 
the Generalized ARCH (GARCH) model 
independently of each other, in which conditional 
variance is also a linear function of its own lags 
and has the following form

1/2
t t the = x

2
0

1 1

q p

t i t i j t j
i j

h a a b h− −
= =

= + e +∑ ∑

( ) ( )2
0 t ta a L b L h= + e + 	 (7)

where tx  ~ IID(0,1). A sufficient condition for the 
conditional variance to be positive is a > 0, ai ≥ 0, i 
= 1, 2, ..., q, bj ≥ 0, j = 1, 2, ..., p and a(L) and b(L) 
are lag operator such that a(L) = a

1
L + a

2
L2 + ...+ 

aqL
a and b(L) = b

1
L + b

2
L2 + ...+ bqL

a . For p = 0, 
the process reduces to an ARCH(q) and for p = q = 
0, et is simply a white noise process. The GARCH 
(p, q) process is weakly stationary if and only if

1 1

1
q p

i j
i j

a b
= =

+ <∑ ∑ .

The conditional variance defined by (3) has 

the property that the unconditional acf of 2
te , if it 

exists, can decay slowly. For the ARCH family, 
the decay rate is too rapid compared to what is 
typically observed in financial time-series, unless 
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the maximum lag q is long. As (7) is a more 
parsimonious model of the conditional variance 
than a high-order ARCH model, most users 
prefer it to the simpler ARCH alternative. Huge 
amount of empirical and theoretical research 
work has been already done for GARCH and 
related models. There are several important 
extensions of GARCH models such as: Threshold 
ARCH (TARCH) model, Exponential GARCH 
(EGARCH) model, Component GARCH model, 
Asymmetric component GARCH model etc. 

3.1 Testing for ARCH Effects
Let et be the residual series. The squared 

series { }2
te  is then used to check for conditional 

heteroscedasticity, which is also known as 
the ARCH effects. The test for conditional 
heteroscedasticity used here is the LM test, 
which is equivalent to usual F-statistic for testing  
H

0
: ai = 0, i =1 ,2,…, q in the linear regression 

2 2 2
1 1 ,t 0 t q t q ta a ... a e− −e = + e + + e +

	 1, ...,t q T= +   (8)

where et denotes error term, q is prespecified 
positive integer, and T is sample size. Let 

( )
2

2
0

T

t
t q 1

SSR
= +

= e − ω∑ , where 2 /
T

t
t q 1

T
= +

ω = e∑  is 

sample mean of { }2
te , and 2

1
1

ˆ
T

t
t q

SSR e
= +

= ∑ , where 

tê  is least squares residual of (8). Then, under H
0
:

( )
( )

0 1

1 1

SSR SSR / q
F

SSR T q
−

=
− −

is asymptotically distributed as chi-squared 
distribution with q degrees of freedom. 

4.	 FIGARCH PROCESS
The GARCH (p, q) process may also be 

expressed as an ARMA (m, p) process in 2
te

( ) ( ) ( )2
01 1t ta L b L a b L v− − e = + −      

where m = max{p, q} and 2
t t tv h=e − . The {νt} 

process can be interpreted as the “innovations” 

for the conditional variance, as it is a zero-mean 
martingale. Therefore, an integrated GARCH  
(p, q) process can be written as

( ) ( ) ( ) ( )1 1 12
t 0 ta L b L L a b L v− − − e = + −       	 (9)

The fractionally integrated GARCH or 
FIGARCH class of models is obtained by replacing 
the first difference operator (1 − L) in (9) with the 
fractional differencing operator (1 − L)d, where d 
is a fraction 0 < d <1. Thus, the FIGARCH class 
of models can be obtained by considering

( ) ( ) ( ) ( )1 1 1
d 2

t 0 ta L b L L a b L v− − − e = + −       	(10)

Such an approach can develop a more flexible 
class of processes for the conditional variance that 
are capable of explaining and representing the 
observed temporal dependencies of the financial 
market volatility in a much better way than other 
types of GARCH models (Davidson 2004).

The ARFIMA (p, d, q) class of models for the 
discrete time real-valued process {yt} introduced 
by Granger and Joyeux (1980), Granger (1980, 
1981) and Hosking (1981) is defined by

( )( ) ( ) tt
d LbyLLa x=−1 	 (11)

where a(L) and b(L) are polynomials in the lag 
operator of orders p and q respectively, and xt is 
a mean-zero serially uncorrelated process. For 
the ARFIMA models, the fractional parameter d 
lies between ­1/2 and 1/2, (Hosking 1981). The 
ARFIMA model is nothing but the fractionally 
integrated ARMA for the mean process. Analogous 
to the ARFIMA(p, d, q) process defined in (11) 
for the mean, the FIGARCH (p, d, q) process for 

2
te can be defined as

( )( ) ( )[ ] tt
d vLbaLLa −+=e− 11 0

2 	 (12)

where 0 < d <1, and all the roots of a(L) and 
[1 − b(L)] lie outside the unit circle. In the case 
of ARFIMA model, the long memory operator 
is applied to unconditional mean μ of yt which 
is constant. But this is not true in the case of 
FIGARCH model, where it is not applied to α

0
, 

but on squared errors.

Rearranging the terms in (10), an alternative 
representation for the FIGARCH(p, d, q) model 
may be obtained as
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( ) ( ) ( )( )1 1 1
d 2

t 0 tb L h a b L a L L − = + − − − e     	(13)

where, .2
t t tv h= e −

4.1 Estimation of FIGARCH Model
The estimation of parameters of FIGARCH 

model is generally carried out using the maximum 
likelihood method (which is most efficient) with 
normality assumption for zt. But the normality 
assumption can be questioned with some empirical 
evidence and therefore the use of quasi-maximum 
likelihood estimator is preferred. 

The FIGARCH model is estimated by using 
the quasi-maximum likelihood (QML) estimation 
method allowing for asymptotic normality 
distribution, based on the following log-likelihood 
function

( )
2

1

1 1
( , ) log 2 log( )

2 2

T
t

T t t
t t

LL h
h=

 e
e θ = − π − + 

 
∑ 	(14)

where ( )qp aaabbbda ,...,,,,...,,,, 21210≡θ′ .

The likelihood function is maximized 
conditional on the start-up values. For the 
FIGARCH(p, d, q) model with d > 0, the population 
variance does not exist. In most practical 
applications with high frequency financial data, 

the standardized innovations 1/ 2
t t th−x = e  are 

leptokurtic and not normally distributed through 
time. In these situations the robust quasi-MLE 
(QMLE) procedures discussed by Weiss (1986) 
and Bollerslev and Wooldridge (1986) may 
give better results while doing inference. When 
estimating the parameters of a FIGARCH model, 
generally, the value of parameter d is estimated 
first and one uses these estimates to obtain the 
estimation of other parameters (Lopes and Mendes 
2006, H¨ardle and Mungo 2008). 

4.2 Forecasting by FIGARCH Model
Now consider the problem of forecasting using 

a FIGARCH model (Tayafi and Ramanathan 
2012). The one-step ahead forecast of ht is given 
by

( ) [ ] 1

1 1 2 11 1 ...2 2
t 0 t th a b −

−= − + λ e + λ e +

where, ( ) ( )[ ] 11
11 −−Γ−≈ d

k kdbλ

Similarly, the two-step ahead forecast is given 
by

( ) [ ] 1 2 2
1 1 1 22 1 ...t 0 t th a b −

+= − + λ e + λ e +

Here 2
1t+e  is unobservable and to be estimated 

by its conditional expectation ht(1), which is a 

function of past 2
te .

Therefore,

( ) [ ] ( )1

1 1 22 1 1 ...2
t 0 t th a b h−= − + λ + λ e +

In general, the l-step ahead forecast is

( ) [ ] ( )1

1 11 1 ...t 0 th l a b h l−= − + λ − +

            ( ) 1 11 ...2 2
l t l t l th + −+ λ + λ e + λ e +

For all practical purpose, we stop at a large M 
and this leads to the forecasting equation

( ) [ ] ( )
1

1

1
1 0

1
l M

2
t 0 i t l j t j

i j
h l a b h l i

−
−

+ −
= =

≈ − + λ − + λ e∑ ∑

The parameters will have to be replaced by 
their corresponding estimates.

5.	 RESULTS AND DISCUSSION
Daily time series data for spot prices of gram 

in Delhi Market during 1 January, 2009 to 31 July, 
2013 has been considered. The return series are 
computed as differences in log prices. The data is 
collected form Ministry of Consumer’s Affairs, 
Government of India. The data for the period 
January 1, 2009 to June 30, 2013 have been used for 
model building and the remaining data have been 
used for model validation. The summary statistics 
for percentage return and squared percentage 
return series have been computed and reported in  
Table 1. A perusal of table 1 indicates that both 
series are positively skewed and platykurtic. 
The daily unconditional volatility of returns 
and the squared return, as measured by standard 
deviations, are 1.46 and 7.86 respectively.

The time series plot of percentage log return 
series and squared percentage log return series 
have been exhibited in Fig. 1 and 2 respectively. 
A perusal of the plot indicates that the dataset is 
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stationary. In order to test for stationarity, two 
tests namely Augmented Dickey-Fuller unit root 
test and Philips-Peron unit root test are used. The 
results of the tests are reported in Table 2. Table 
2 indicates that both the return as well as squared 
return spot price series data is stationary. 

Table 1. Descriptive statistics for returns and squared returns

Mean 0.006 2.131
Minimum -7.380 0.000
Maximum 17.070 290.180
Standard deviation 1.460 7.855
Skewness 0.688 26.300
Kurtosis 11.601 931.144

Table 2. Test for stationarity

Series ADF Test PP Test
Return series -21.345 -40.968
Squared return series -15.089 -40.101

5% Critical Value for ADF and PP test –2.864

Fig. 1. Log returns series

Fig. 2. Squared log returns series

Presence of ARCH effect has been tested for 
both the series. It is found that in squared return 
series; there is significant presence of ARCH 
effect; whereas in the return series, there is no 
ARCH effect. 

5.1 Autocorrelation
The distributional characteristics of the return 

series can be investigated further by analyzing 
the behavior of their autocorrelation functions. 

The results, displayed in Fig. 3 shows that the 
autocorrelation functions of the returns are small 
and have no particular form. Most of them stay 
inside the 95% confidence intervals. This is 
suggestive of their short memory property. The 
autocorrelation functions of the squared returns 
are however larger, and they remain significant for 
many lags. More importantly, they exhibit a slow 
decay, indicating that the time series are strongly 
auto correlated up to a long lag. Periodogram of 
return and squared return series are displayed in 
Fig. 4.

Fig. 3. Autocorrelation function for log returns and squared log 
returns series
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Fig. 4. Periodogram of return and squared return series

5.2	Results of long memory tests
We apply the GPH tests for testing long 

memory to the raw and squared returns of the spot 
prices of gram. The obtained results are reported in 
Table 3. For the (raw) return series, the test shows 
no evidence of LM patterns for return series; as the 
null hypothesis of no persistence is not rejected.

Table 3. Results of LM tests for returns and squared returns

Long Memory Parameter Return Squared Return
D 0.000045 0.3163
SE 0.000039 0.00007
Z 1.159 4060

P-value 0.246 <0.001

The result for squared return is different from 
that of the returns. Indeed, long memory property 
is found to be highly significant for the squared 
returns. Since squared returns are a good proxy 
for volatility, these findings thus suggest that 
the conditional volatility of return would tend to 
be range-dependent, persist and decay slowly. 
Intuitively, this volatility persistence can be 
appropriately modeled by a FIGARCH process 
because it allows for long memory behavior and 
slow decay of the impact of a volatility shock. 

It is, however, important to note that the 
estimate of the LM parameter d is less than 0.5 
for squared return indicating the stationarity of the 
process.

5.3	Fitting of different extension of GARCH 
model and FIGARCH model
Important extensions of GARCH models like 

TARCH model, EGARCH model, Component 

GARCH model, Asymmetric component GARCH 
model and FIGARCH model have been explored 
for modelling the return series. Minimum 
Schwarzbayesian information criteria (SBIC) 
value has been used for choosing the best model. 
The models fitted for the present data sets are 
AR(1)-GARCH(1,1) Model, AR(1)-TARCH(1,1) 
Model, AR(1)-EGARCH(1,1) Model, AR(1)-
Component GARCH(1,1) Model, AR(1)-
Asymmetric component GARCH(1,1) Model 
andAR(1)-FIGARCH(1,d,1).The parameters 
estimates of above fitted models are reported in 
Table 4 and 5. A perusal of Table 4 and 5 indicate 
that, all the parameters are statistically significant. 
The long memory parameter, d is less than 0.5 
ensures the stationarity of the model.

Table 4. Parameter estimate of GARCH family of models

Coefficient Std. 
Error z-Statistic Probability

AR(1)-GARCH(1,1) Model
Mean Equation

C 0.012 0.034 0.374 0.700
AR(1) 0.108 0.024 4.438 <0.001

Variance Equation
C 0.035 0.007 4.958 <0.001
ARCH(1) 0.070 0.007 9.668 <0.001
GARCH(1) 0.912 0.007 117.681 <0.001

AR(1)-TARCH(1,1) Model

Mean Equation
C 0.031 0.033 0.954 0.340
AR(1) 0.110 0.023 4.762 <0.001

Variance Equation
C -0.092 0.010 -9.007 <0.001
|RES|/
SQR[GARCH]
(1)

0.133 0.014 9.460 <0.001

RES/SQR
[GARCH](1)

0.033 0.007 4.494 <0.001

EGARCH(1) 0.983 0.003 283.885 <0.001

AR(1)-EGARCH(1,1) Model
Mean Equation

C 0.025 0.034 0.743 0.457
AR(1) 0.109 0.024 4.482 <0.001

Variance Equation
C 0.032 0.006 4.981 <0.001
ARCH(1) 0.080 0.008 9.346 <0.001
(RESID<0)*
ARCH(1)

-0.030 0.010 -2.962 0.003

GARCH(1) 0.918 0.007 117.478 <0.001

AR(1)-Component GARCH(1,1) Model
Mean Equation

C 0.019 0.033 0.577 0.563
AR(1) 0.113 0.026 4.232 <0.001
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Variance Equation
Perm: C 2.013 0.324 6.200 <0.001
Perm: [Q-C] 0.989 0.003 286.120 <0.001
Perm: [ARCH-
GARCH]

0.048 0.008 5.634 <0.001

Tran: 
[ARCH-Q]

0.078 0.020 3.773 <0.001

Tran: 
[GARCH-Q]

0.591 0.127 4.649 <0.001

AR(1)-Asymmetric component GARCH(1,1) Model
Mean Equation

C 0.021 0.033 0.632 0.526
AR(1) 0.114 0.026 4.333 <0.001

Variance Equation
Perm: C 1.994 0.327 6.094 <0.001
Perm: [Q-C] 0.989 0.003 284.277 <0.001
Perm: [ARCH-
GARCH]

0.048 0.008 5.524 <0.001

Tran: 
[ARCH-Q]

0.090 0.024 3.642 0.0003

Tran: 
(RES<0)*
[ARCH-Q]

-0.032 0.029 -1.118 0.2632

Table 5. Parameter estimate of AR(1)-FIGARCH (1, d, 1) model

Mean Equation
Coefficient Std. 

Error t-Statistic Probability 
Constant 0.016 0.032 0.513 0.608
AR(1) 0.111 0.026 4.333 <0.001

Variance equation
Constant 0.160 0.063 2.529 0.011
d-Figarch 0.418 0.081 5.156 <0.001

ARCH 
(Phi1)

0.303 0.072 4.216 <0.001

GARCH 
(Beta1)

0.631 0.097 6.506 <0.001

5.4 Diagnostic Checking
The model verification is concerned with 

checking the residuals of the model to see if they 
contained any systematic pattern which still could 
be removed to improve the chosen FIGARCH 
Model. This has been done through examining 
the autocorrelations and partial autocorrelations 
of the residuals of various lags. For this purpose, 
autocorrelations of the residuals were computed 
and it was found that none of these autocorrelations 
was significantly different from zero at any 
reasonable level. This proved that the selected 
FIGARCH model was an appropriate model for 
capturing the volatility present in the data under 
study. 

5.5 Validation
One-step ahead moving window forecasts of 

percentage log return series for the period July 
01, 2013 to July 31, 2013 (total 27 data points 
excluding market holidays) in respect of above 

Table 6. Validation of models

Model MAE MSPE RMAPE (%) MAE MSPE RMAPE (%) MAE MSPE RMAPE (%)
5-step ahead 10-step ahead 15-step ahead

GARCH 0.182 0.053 11.14 0.165 0.044 11.20 0.135 0.028 11.40

TARCH 0.183 0.054 11.76 0.165 0.045 11.80 0.138 0.028 12.40

EGARCH 0.182 0.053 11.49 0.165 0.044 11.50 0.136 0.028 12.00

Component 
GARCH

0.189 0.057 11.72 0.171 0.047 11.70 0.141 0.030 12.10

Asymmetric 
Component 
GARCH

0.192 0.059 11.94 0.173 0.049 12.00 0.143 0.031 12.30

FIGARCH 0.162 0.042 8.92 0.143 0.032 8.70 0.126 0.027 8.80

20-step ahead 25-step ahead 27-step ahead

GARCH 0.129 0.025 10.90 0.139 0.026 12.10 0.136 0.027 12.50

TARCH 0.132 0.027 11.20 0.148 0.028 14.00 0.149 0.029 15.10

EGARCH 0.131 0.026 11.00 0.145 0.027 13.30 0.145 0.028 14.20

Component 
GARCH

0.134 0.027 11.40 0.147 0.029 13.10 0.145 0.029 13.80

Asymmetric 
Component 
GARCH

0.137 0.028 11.40 0.150 0.030 13.50 0.148 0.030 14.20

FIGARCH 0.120 0.024 9.10 0.125 0.025 9.60 0.112 0.022 8.80
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fitted model are computed. Total 6 moving 
windows have been considered: 5-step, 10-step, 
15-step, 20-step, 25-step and 27-step ahead. For 
measuring the accuracy in fitted time series model, 
Mean square prediction error (RMSPE), Mean 
absolute prediction error (MAPE) and Relative 
mean absolute prediction error (RMAPE) are 
computed by using the formulae given below and 
are reported in Table 6.

1

ˆMAPE 1 /
h

t i t i
i

h y y+ +
=

= −∑

( ){ }2

1

ˆMSPE 1 /
h

t i t i
i

h y y+ +
=

= −∑

{ }
1

ˆRMAPE 1/ / 100
h

t i t i t i
i

h y y y+ + +
=

= − ×∑
where, h denotes the window length.

A perusal of Table 6 depicts that, irrespective 
of criteria used for model evaluation, FIGARCH 
model outperforms other models considered in 
this paper.

5.6	Diebold-Mariano Test 
Diebold-Mariano test (Diebold and Mariano 

1995) has also been applied for comparison 
of forecasting performance between different 
extension of GARCH model and FIGARCH model. 
A brief description of the test is given below. Let 

{yt} denote the series to be forecast and let 1
|thty +  

and 2
|thty +  denote two competing forecasts of yt+h 

based on information up to time t. The forecast 

errors from the two models are 1
|

1
| ththttht yy +++ −=e  

and 2
|

2
| ththttht yy +++ −=e  The accuracy of each 

forecast is measured by a particular loss function 

( ) ( ) 2,1,, || =e= +++ iLyyL i
tht

i
ththt

.

Some popular loss functions are

Squared error loss: ( ) ( )2||
i

tht
i

thtL ++ e=e

Absolute error loss: ( ) i
tht

i
thtL || ++ e=e

To determine if one model predicts better than 
another we may test null hypotheses

( )[ ] ( )[ ]2
|

1
|0 : thttht LELEH ++ e=e

against the alternative

( )[ ] ( )[ ]2
|

1
|1 : thttht LELEH ++ e≠e

The Diebold-Mariano test is based on the loss 

differential ( ) ( )2
|

1
| thttht LL ++ e−e

The null of equal predictive accuracy is then 

H0: E[dt]=0

The Diebold-Mariano test statistic is

( ) 2/1/TLRV
dS

d

=

where

( )jttj
j

jd ddLRV −

∞

=
=γ∑ γ+γ= ,cov,2

1
0

dLRV  is a consistent estimate of the 

asymptotic (long-run) variance of dT . Diebold 
and Mariano (1995) showed that under the null of 
equal predictive accuracy S ~ N(0, 1).

The results of the test for different pairs of 
models are reported in Table 7. It is clear that 
FIGARCH model has better predictive accuracy 
as compared to all other models explored in this 
paper. It is also observed that component GARCH 
and asymmetric component GARCH models have 
better predictive accuracy than GARCH, TARCH 
and EGARCH models whereas there is no 
significant difference in the predictive accuracy of 
GARCH, TARCH and EGARCH models.

Table 7. Testing predictive accuracy by D-M test

Null-Hypothesis Alternate 
Hypothesis

D-M 
Statistic P Value

Predictive accuracy 
of GARCH and 
FIGARCH is equal

FIGARCH has 
better predictive 
accuracy than 
GARCH

3.430 <0.001

Predictive accuracy 
of TARCH and 
FIGARCH is equal

FIGARCH has 
better predictive 
accuracy than 
TARCH

2.119 0.017

Predictive accuracy 
of EGARCH and 
FIGARCH is equal

FIGARCH has 
better predictive 
accuracy than 
EGARCH

3.366 >0.001

Cont Table
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Cont Table
Predictive accuracy 
of Component 
GARCH and 
FIGARCH is equal

FIGARCH has 
better predictive 
accuracy than 
Component 
GARCH

2.952 0.004

Predictive accuracy 
of Asymmetric 
Component 
GARCH and 
FIGARCH is equal

FIGARCH has 
better predictive 
accuracy than 
Asymmetric 
Component 
GARCH

3.291 <0.001

Predictive accuracy 
of GARCH and 
TARCH is equal

TARCH has 
better predictive 
accuracy than 
GARCH

-0.227 0.5897

Predictive accuracy 
of GARCH and 
EGARCH is equal

EGARCH has 
better predictive 
accuracy than 
GARCH

-0.570 0.7157

Predictive accuracy 
of GARCH and 
Component 
GARCH is equal

Component 
GARCH has 
better predictive 
accuracy than 
GARCH

3.245 0.0005

Predictive accuracy 
of GARCH and 
Asymmetric 
Component 
GARCH is equal

Asymmetric 
Component 
GARCH has 
better predictive 
accuracy than 
GARCH

3.352 0.0004

Predictive accuracy 
of TARCH and 
EGARCH is equal

EGARCH has 
better predictive 
accuracy than 
TARCH

-0.435 0.6682

Predictive accuracy 
of TARCH and 
Component 
GARCH is equal

Component 
GARCH has 
better predictive 
accuracy than 
TARCH

3.442 0.00029

Predictive accuracy 
of TARCH and 
Asymmetric 
Component 
GARCH is equal

Asymmetric 
Component 
GARCH has 
better predictive 
accuracy than 
TARCH

4.210 <0.001

Predictive accuracy 
of EGARCH 
and Component 
GARCH is equal

Component 
GARCH has 
better predictive 
accuracy than 
EGARCH

4.417 <0.001

Predictive accuracy 
of EGARCH 
and Asymmetric 
Component 
GARCH is equal

Asymmetric 
Component 
GARCH has 
better predictive 
accuracy than 
EGARCH

4.549 <0.001

Table cont.

Table cont.
Predictive accuracy 
of Component 
GARCH and 
Asymmetric 
Component 
GARCH is equal

Asymmetric 
Component 
GARCH has 
better predictive 
accuracy than 
Component 
GARCH

3.616 <0.001

To have a visual ideal of model fitting 
performance of different models, the graphs 
of squared residuals and estimated conditional 
variance of individual model has been displayed 
in Figs. 5 to 10. It is to be noted here that, as 
depicted by figure 10, FIGARCH model captures 
the volatility more accurately as compared to 
other models.

Fig. 5. Squared residuals vs. conditional variance of  
fitted AR(1)-GARCH(1,1) model

Fig. 6. Squared residuals vs. conditional variance of  
fitted AR(1)-TARCH(1,1) model

Fig. 7. Squared residuals vs. conditional variance of  
fitted AR(1)-EGARCH(1,1) model

Fig. 8. Squared residuals vs. conditional variance of  
fitted AR(1)-component GARCH (1,1) model
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Fig. 9. Squared residuals vs. conditional variance of  
fitted AR(1)-asymmetric component GARCH (1,1) model

Fig. 10. Squared residuals vs. conditional variance of fitted 
AR(1)-FIGARCH (1,0.418,1) model

6.	 CONCLUSION
Several papers in the literature have addressed 

the issue of volatility modeling for agricultural 
commodity prices, but very few of them have 
explicitly investigated the nature and causes of 
the observed volatility persistence. The present 
investigation is aimed to fill this gap by testing the 
relevance of long memory in modeling the return 
and volatility for the spot prices of gram. GPH 
test indicated the existence of long-term memory 
in the volatility processes. Several extensions 
of GARCH model along with FIGARCH were 
fitted to the present data. The sample ACFs of 
the volatility processes decay hyperbolically as 
the lag increases, indicating long-term memory 
exists in the squared log return seriesWe find that 
long memory is particularly strong and plays a 
dominant role in explaining the spot price return 
of Gram. Finally, our out-of-sample analysis using 
six moving windows indicates that the FIGARCH-
based model outperforms other extensions of 
GARCH models in terms of MASPE, MAPE and 
RMAPE. To this end, Diebold-Mariano test was 
conducted to see the significant difference in the 
predictive accuracy of different models. Based on 
the analysis it can be concluded that, FIGARCH 
model has better predictive accuracy as compared 
to all other models applied here in the present data 
set. It is also observed that predictive accuracy of 
component GARCH and asymmetric component 

GARCH model are better than GARCH, TARCH 
and EGARCH model whereas there is no 
significant difference in the predictive accuracy of 
GARCH, TARCH and EGARCH models as far as 
the data under consideration.
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