
1.	 INTRODUCTION
The most preferred model for analysis of binary 

(dichotomous) responses is the logistic regression 
model. By considering the two distinct responses 
as two groups, the usual logistic regression model 
can thus be reformulated as a classification 
technique in the lines of discriminant function 
analysis. Logistic regression have found profound 
applications in different fields such as agriculture, 
medical science (epidemiology and health), 
psychology etc. (Johnson et al. (1996), Tsien  
et al. (1998), Misra et al. (2002), Gent et al. (2003), 
Mila et al. (2004), Ayan and Garcia (2008) etc.). 
However, work on logistic regression in the field 
of ergonomics seems to be limited in literature. 
Vergara and Page (2002) classified lumbar 
discomfort/absence of discomfort by relating 
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with back posture and mobility in sitting-posture 
using both discriminant analysis and logistic 
regression. Bhowmik et al. (2011) employed 
logistic regression model for classification of 
presence or absence of discomfort for the farm 
labourers in operating farm machineries with a set 
of quantitative and qualitative regressor variables. 
They have identified a single best regressor by 
employing variable selection based on collinearity 
diagnostics and stepwise logistic regression. 
Further, comparisons were made between the 
performances of logistic regression models with 
that of the discriminant function analysis.

We know that, maximum likelihood estimation 
(MLE) approach is most used approach to estimate 
the parameters under logistic regression. However, 
in recent days, bootstrap based methods have 
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found wide applications in the area of regression 
analysis, particularly in nonlinear models. Over 
time there arose a spate of modifications in the 
bootstrap method. In case of ordinary bootstrap 
method, several independent samples are randomly 
drawn with replacement from the original sample 
with sizes same as that of the original sample 
and the estimates of any population parameter is 
computed from the estimates obtained from these 
resamples. It is well-known that the bootstrap 
can be very computer-intensive, especially if 
no analytic method can be used and simulation 
based approximations are required. Work related 
to the use of bootstrapping are large in number 
however those under logistic regression setting 
seems to be very few (for example Swapnepoel 
and Frangos 1994, Lee 1990, Claeskens and 
Aerts 2000, Aerts and Claeskens 2001 etc.). 
Claeskens et al. (2003) moved one step further 
by proposing a quadratic bootstrap method of 
estimation in logistic regression which had their 
underprintings from Claeskens and Aerts (2000). 
A bias corrected estimator based on the quadratic 
bootstrap estimator has also been constructed  
by them. 

In this paper, based on a real experimental setup 
in the field of Agricultural Ergonomics, we have 
obtained the quadratic bootstrap estimator under 
logistic regression model following Claeskens 
et al. (2003) based on a single explanatory 
variable viz. load given to the farm machinery 
during farm operation. This single explanatory 
variable has been considered since Bhowmik  
et al. (2011) employed logistic regression 
modeling in agricultural ergonomics and have 
identified the single best regressor ‘load given to 
the farm machinery during farm operation’ for 
classifying presence or absence of discomfort. 
It has been emphasized here that the same best 
regressor has been considered in the present 
study also albeit for generating larger dataset 
using simulation and applying improved logistic 
regression model via quadratic bootstrap. 
Therefore, the performances in terms of length 
of the confidence interval of the model parameter 
using the quadratic bootstrap estimator based on 
the original sample have been compared with 
those of the usual maximum likelihood estimates 
of the original sample. The classificatory ability 

of logistic regression model fitted based on both 
these estimates of the parameter obtained from the 
original sample has also been compared. Further, 
on the lines of Claeskens et al. (2003), a bias 
corrected estimator under the logistic regression 
model with single explanatory variable has 
also been obtained through quadratic bootstrap 
estimates via simulation. The performance of bias 
corrected estimator has been compared with the 
usual maximum likelihood estimator through a 
simulation study by means of Mean Square error 
(MSE) and efficiency factor. 

2.	 ESTIMATION IN LOGISTIC 
REGRESSION MODEL
Estimation and testing are two important 

aspects of regression analysis. The usual method of 
estimation under logistic regression is Maximum 
Likelihood Estimation method (MLE). Another 
method called quadratic bootstrap improves the 
estimation by giving a bias corrected estimator. The 
mean squared error obtained for such an estimator 
yields a narrower confidence interval. The 
procedure of employing the quadratic bootstrap 
method of estimation in logistic regression as in 
Claeskens et al. (2003) is discussed below. 

2.1	Maximum Likelihood Estimation in 
Logistic Regression 

Let, X represent an explanatory variable for 
which there are p levels. Let, all the p levels of the 
explanatory variable to be considered as p different 
populations. Let Yi1, …, Yini

 be independent 

identically distributed Bernoulli random variables 

with probability function ( )1( ) = 1 ,ij ijy y
i iif y −π − π  

y = 0, 1; i = 1, 2, …, p; j = 1, …, ni where, Yij 
indicate whether the jth outcome in population i is 
a “success” or not, πi indicates the probability of 
success. Let ni be the number of replications at xi. 

The number of levels p is considered as fixed 
whereas the observation number ni of distinct 
populations become large as total number of 

observations n =
1

p

i
i

n
=
∑

 

tends to infinity. 

Logistic regression implies the success 
probability should be modeled as a function of 
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covariates through model parameters β = (β
0,
 β

1
, 

…, βr ).

For example, in a logistic model (r = 1)

P(Yij = 1) = pi = 
0 1 1

1

1 exp [ ( )]X+ − β +β

	 i = 1, … , p,  j = 1, … , ni    (1)

Now, for a logistic regression model with 
parameters β = (β

0
, β

1 
, …, βr), maximum likelihood 

estimates for associated populations is based on  
(r + 1) dimensional score functions (including the 
intercept) as

ˆ ˆ( , ) ( / ) log ( , ), 1, ...,i ij n iY f y i p= ∂ ∂ =ψ β β β 	  (2) 

More specifically, the score vector for logistic 
regression with r =1 i.e. one regressor is given as 
follows:

( ) ( ) ( )1 2
ˆ ˆ ˆY , , ,i ij n i ij n i ij nY Y ′ =  ψ β ψ β ψ β  

( ){ }0 1 i

1

ˆ ˆ1+ exp +
ij ijy y

x


= − −

β β
	

( ){ }0 1 i
ˆ ˆ1+ exp +

ix

x


− − 

β β

'

	 (3) 

Solving the system of equations 

( )
1 1

0
inp

i ij
i= j=

Y , =∑∑ψ β 	 (4)

leads to the maximum likelihood estimator ˆ
nβ  for

β .

2.2	Quadratic Bootstrap and Bias Corrected 
Estimator
The quadratic bootstrap procedure can be 

used for finite sample bias correction. Let, a large 
number, say B, resamples are taken, resulting in a 

set of B quadratic bootstrap estimators *1 *Bˆ ˆ, ..., .n nβ β  

From this set of quadratic bootstrap estimator, a 
bias corrected estimator can be obtained as

 *

=1

1ˆ ˆ ˆ= 2
B

bc u
n n n

uB
− ∑β β β 	 (5)

here the quadratic bootstrap estimator *ˆ uβ  is 
defined as:

( )
1

* *

=1 =1

1ˆ ˆ ˆ
2

inp
u *

n n ij n
i j

U
−

 
= + −  

 
∑∑ νβ β ψ β

( )* * *
ij nk nl

,l
= 0 l = 0 =1 =1

ˆ U U
inpr r

n kk i j

 
 
 
∑∑∑∑ 

ψ β 	 (6)

for all i = 1, …, p, j = 1, …, ni and u = 1, 2, ... B 
with

( ) ( )
1

=1 =1

ˆ ˆ= .
ii npnp

* * *
n ij n ij n

i=1 j=1 i j
U

−
   

− ψ   
   
∑∑ ∑∑ β ψ β

The quadratic bootstrap estimators are based 

on the values ( ) ( ) ( )( )ˆ ˆ ˆ* * *
ij n ij n ij n, ,  ψ β ψ β ψ β , j = 1, 

…, ni and i = 1, 2 … p taken with replacement 
from the set 

( ) ( ) ( ) 2

T
ˆ ˆ, , , ,i ij n i ij nY Y

  ∂ ∂   ∂ ∂ ∂ 
ψ β ψ ββ β β

( ) }iˆ, , =1, ..., , =1, ...,i ij nY n j n i p




ψ

The first term ˆ
nβ  at the right-hand side of 

Equation (6) is the maximum likelihood estimator 
of the original sample obtained by solving 
Equation (4). It is expected that, the representation 

of the random variation about estimate 
*ˆ u
nβ  

would be improved through the last term at the  

right-hand side of Equation (6). Here ( )ˆ,i ij nYψ β  

is a 2 × 1 vector defined in Equation (3). The 2 × 2 
matrix of the first derivatives of the score function 

i.e. ( ) ( )i ij n
ˆY ,∂

∂ ψ ββ  is given by

( ) ( )i ij n
ˆY ,∂

∂ ψ ββ

( ) ( )
( ) ( )

0 0 1 0

i1 ij 1 ij
0 1

i 2 i 2 ij
0 1 ˆ ˆ= , =

ˆ ˆY , ,
=

ˆ ˆY , ,

i

ij n

Y

Y

    ∂ ∂ψ ψ   ∂β ∂β   
    ∂ ∂ψ ψ  ∂β ∂β    

n n

n
β β β β

β β

β β
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The second partial derivatives of ( )ˆ,i ij nYψ β  

are taken w.r.t (k, l)th components of β , here k,  

l = 0,1 and the resulting vectors are of dimension  
2 × 1. The corresponding vectors are given as 
follows. 

The second partial derivative of ( )ˆ,i ij nYψ β
with respect to (0, 0)th component is:

( )
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The second partial derivative of ( )ˆ,i ij nYψ β  
with respect to (0, 1)th component is:
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The second partial derivative of ( )ˆ,i ij nYψ β  
with respect to (1, 0)th component is:
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The second partial derivative of i ij n
ˆ(Y , )ψ β  

with respect to (1, 1)th component is:
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The estimated bias of the quadratic bootstrap 
estimator is calculated as 

B
*

 =1

1 ˆ ˆ
B

u
n n

u
−∑β β 	 (7) 

For the present study, first we have obtained a 
good number of quadratic bootstrap samples from 
the original sample and hence obtain the quadratic 
bootstarp estimator of the model parameter 
with single explanatory variable along with the 
maximum likelihood estimator of the original 
sample. The length of the confidence interval for 
both the estimators of model parameter obtained 
through the original sample have been computed and 
comparison has been made. Later, a large number 
of simulated samples have also been generated from 
the original sample and for each of the simulated 
sample, both MLE and bias corrected estimates 
have been constructed. Finally comparison has 
been made between these two approaches on the 
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basis of mean square error (MSE) and efficiency. 
The mean square errors for both the MLE and bias 
corrected estimator have been calculated as:

( ) ( ) ( ) 2
ˆ ˆ ˆMSE variance biasn n n

 = +  β β β 	 (8)

( ) ( ) ( ) 2
ˆ ˆ ˆMSE variance biasbc bc bc

n n n
 = +  β β β 	(9)

3.	 SOURCE AND EXTENT OF DATA
Indian farm employs 225 million workers, 

constituting 10 percent of total world’s workforce 
in agriculture activities (Ram et al. 2008). Many 
of the tasks are performed manually. They rely 
on rotary power input; it may be pedal, hand 
rocking or flywheel-operated machines. Human 
energy is used to operate different machines. 
Working environment of farm is labour intensive 
and strenuous. In the farm environment, machines 
are generally operated at a greater physiological 
cost and postural stress leading to discomfort and 
fatigue of farmers depending upon posture, force 
application, quantum and frequency. The farm 
labourers experience discomfort in hands and 
legs in general and thighs, knees, feet, legs, back, 
palms, buttocks etc. in particular. Researchers 
have categorized the overall discomfort of the 
farm labour on the basis of various factors like 
loads given to various farm machineries, heart 
beat per unit time, oxygen consumption per unit 
time, feeling of discomfort in various body parts 
during farm operation, % of aerobic capacity of 
the farm labour during operation, the mode of 
operation such as stepper, pedal, bicycle etc. 

For the present study, the data has been taken 
in the area of agricultural ergonomics from the 
Division of Agricultural Engineering, ICAR-
Indian Agricultural Research Institute (IARI), New 
Delhi. The variable considered as the dependent 
variable (Y) for the present study is the presence 
or absence of discomfort for the farm labourers 
during farm operation with two levels 0 and 1 
depending upon whether discomfort is absent 
or present. The single explanatory variables (X) 
considered is the load given to farm machineries 
during farm operations. Here, the variable Load 
given to the farm machinery was having five 
levels viz. 0W(no load), 0.90W, 1.80W, 2.70W 
and 3.60W (W is the unit of power i.e. Watt). 
In total 135 observations were available for the 

study which were made upon nine subjects (farm 
labourers) over three independent time periods 
under each of the five levels of the loads given 
to farm machineries during farm operations. 
Out of the 135 observations available, 80% i.e. 
108 observations have been selected randomly. 
These 108 observations consist of the original 
sample. The remaining 20% i.e. (135-108) = 27 
observations have been considered as hold out data 
set for model validation in terms of classifying 
ability of the model. 

4.	 QUADRATIC BOOTSTRAP ESTIMATES VS 
MAXIMUM LIKELIHOOD ESTIMATES
Using the original sample of size 108, 

200 quadratic bootstrap estimates have been 
constructed using Equation (6). The mean of 
these 200 estimates has been calculated and the 
resulting value is taken as a single quadratic 

bootstrap estimate given by *
0β̂  = -5.78 and

*
1̂β  = 4.36. Along with the quadratic bootstrap 

estimates, maximum likelihood estimates of the 
model parameters under logistic regression setup 
with single explanatory variable has also been 
obtained from the original sample as 0β̂ = -4.60 
and 1̂β = 3.46. Thereafter, for both the estimates, 
95% confidence intervals have been calculated 
and are given in Table 1. Comparison has been 
made between the length of confidence interval 
of these two estimates. From Table 1, it has been 
found that the length of confidence interval for 
quadratic bootstrap estimates is shorter than 
that of maximum likelihood estimates. Thus 
there is a reduction in confidence interval for 
quadratic bootstrap estimates as compared to the 
MLE based estimates on the original sample. 
Thus quadratic bootstrap performs better than 
maximum likelihood estimates. Along with 
the comparison, the 200 quadratic bootstrap 
estimates are also grouped in 10 groups and 
frequency of each group has been calculated in 
order to draw histograms (given in Fig. 1 and 
Fig. 2) for knowing the distribution pattern of the 
parameters. From Fig. 1 and Fig. 2, it can be said 
that the distribution of the intercept parameter 
is negatively skewed whereas it is positively 
skewed for the slope parameter under the logistic 
regression model considered for the present study. 
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Table 1. 95% confidence intervals for maximum likelihood estimates and quadratic bootstrap estimates based on original sample

Estimation Method Estimates 95% Confidence Interval Length of Confidence Interval

MLE =- 4.60 (- 6.56, - 2.65) 3.90

= 3.46 (2.08, 4.85) 2.77

Quadratic Bootstrap = - 5.78 (- 7.18, - 4.33) 2.85

= 4.36 (3.48, 5.25) 1.77

Table 2. Comparison between classificatory abilities of logistic regression models fitted based on maximum likelihood estimates and 
quadratic bootstrap estimates based on the original sample

Method of 
Estimation

Correct 
Classificatioraratio

Sensitivity Specificity False Positive Rate False Negative Rate

Maximum likelihood 92.59 94.12 90.00 5.88 10.00

Quadratic bootstrap 93.10 94.75 91.20 5.01 9.21
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Fig. 1. Histogram of the quadratic bootstrap estimates *
0β̂  obtained for the resamples drawn from the 

original sample
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Fig. 2. Histogram of the quadratic bootstrap estimates *
1β̂  obtained for the resamples drawn from the 

original sample
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The two models fitted based on ( 0β̂  = – 4.60, 

1β̂ = 3.46) and ( *
0β̂  = – 5.78 and *

1β̂   =  4.36) are  

compared for their classifying abilities in terms 
of hold out data set. The classification is analyzed 
through a 2 × 2 classification table and the results 
are tabulated in Table 2. It has been found that 
both the models are having high classificatory 
power. However, the correct classification 
ratio, sensitivity and specificity for the logistic 
regression model fitted based on quadratic 
bootstrap estimates is more as compared to that 
of maximum likelihood estimates. Moreover, 
false positive rate and false negative rate are also 
less for quadratic bootstrap based fitted model as 
compare to the maximum likelihood based fitted 
model. Thus, quadratic bootstrap based estimates 
have been found to perform better marginally. 

5.	 RESULTS OF THE SIMULATION STUDY
For studying further properties based on 

quadratic bootstrap estimation procedure, 2000 
simulated samples each of size 108 have been 
generated from the following logistic regression 
model (values of the ML Estimates of the original 
sample have been chosen as the initial values for 

the model parameter 0β̂  
and 1β̂  i.e. 0β̂  = – 4.60 

and 1β̂  = 3.46). Thus the initial fitted logistic 
regression model is

1 4.60 -3.46X

1
ˆ (Y=1)=

1+e
P

 
π =  

 
	 (10)

where X
 
is the single explanatory variable i.e. 

load given to the farm machinery which takes five 
different values as {0.00, 0.90, 1.80, 2.70, 3.60}; 
here, each level of X has been considered as a 
population. So, in total there are five populations. 
For the present study, the population sizes are 
20, 24, 21, 19 and 24 respectively which together 
represent all the 108 observations. Now putting 
the value of X in Equation (10), probability that 
Y can take value one is obtained corresponding to 
each value of X

.
 Multiplying these probabilities by 

the corresponding number of observations under 
a particular population, the expected frequencies 
of occurrences of ‘1’ in each of the populations 
can be calculated based on which we have 
generated 2000 simulated sample each of size 

108. Thereafter, from each simulated data set, 200 
bootstrap resamples have been taken and quadratic 
bootstrap estimates are constructed. Each of these 
200 quadratic bootstrap estimators corresponding 
to a particular simulated sample have been used 

to obtain a bias corrected estimators ( )0 1
ˆ ˆ,bc bcβ β  

as defined in Equation (5). Like this, for each of 

the remaining simulated samples, a bias corrected 
estimator has been constructed. In this manner, a 
total of 2000 such bias corrected estimates have 
been obtained. Along with bias corrected estimates 

( )0 1
ˆ ˆ,bc bcβ β , MLE estimates ( )0 1MLE MLE

ˆ ˆ,β β  have 

also been constructed for each of the corresponding 
simulated sample yielding 2000 MLE estimates. 
Thereafter, mean square error [defined Equation 
(8) and (9)] for both MLE and bias corrected 
estimators over all simulated samples have been 
calculated. For 2000 simulated samples, Table 3 
shows simulated means, standard deviation and 

mean square error values of ( )0 1MLE MLE

ˆ ˆ,β β  and 

bias corrected ( )0 1
ˆ ˆ,bc bcβ β  estimators. Perusal of 

Table 3 reveals that the bias correction decreases 

the variance, as the simulated standard deviation 

( )0
ˆ bcσ β  and ( )1

ˆ bcσ β  for the bias corrected 

estimates are, smaller than the corresponding 

simulated values of standard deviation ( )0 MLE

ˆσ β  

and ( )1MLE

ˆσ β
 
for the MLE estimates respectively. 

Moreover, mean square errors (MSE) for bias 

corrected estimators ( )0 1
ˆ ˆ,bc bcβ β  have been reduced 

to a great extent as compared to the same of 
MLE estimates. Rather the efficiency factor of  

MLE ( )0 1MLE MLE

ˆ ˆ,β β  is much less as compared 

to the bias corrected estimators ( )0 1
ˆ ˆ,bc bcβ β . The 

efficiency factor of 0 MLE
β̂

 
as compared to 0

bcβ
 is 

0.36 and the same for 
1MLE
β̂

 
as compared to is 

0.31 respectively. 
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6.	 DISCUSSION
Based on the present study, it can be said that, 

from estimation point of view, in terms of confidence 
intervals calculated for the estimates upon the 
original sample, quadratic bootstrap performs better 
than MLE as the length of confidence interval is 
smaller for the former as compare to the later. In 
terms of classificatory ability, although both the 
fitted model is having high classificatory ability, 
however, the model fitted based on quadratic 
bootstrap estimates performs marginally better 
than the fitted logistic model based on maximum 
likelihood estimates. Beside this, when simulation 
study is conducted, quadratic bootstrap based bias 
corrected estimates outperform MLE estimates with 
respect to mean square error and efficiency factor. 
The bias correction also decreases the variance. 
Thus the present study validate the theoretical 
results obtained in the literature based on a real 
experimental setup in the field of Agricultural 
Ergonomics.

In the context of the present study, it can be 
mentioned that, improved statistical models are 
always sought over and above the existing models 
to describe the aspects of the observed phenomena 
for better classification and prediction. Thus, 
while the existing logistic regression models may 
work well for certain situations, but may fail, 
in a slightly different set up, the improved ones 

which are bias corrected and robust can be used 
by subject matter specialists with more reliability. 
In this era of statistical computing both in terms 
of ease of speed and programming capabilities, 
such tasks can easily and readily be relegated to 
high speed computers and thus model fitting and 
analysis is no longer a problem nowadays. Rather 
applying improved logistic regression models as 
has been done in this study is worth the efforts 
because it gives a bias corrected estimator in 
addition to being more accurate.
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