
1.	 INTRODUCTION
Auxiliary information is often used to improve 

the precision of estimators of finite population 
total. Calibration approach is widely used for 
making efficient use of auxiliary information in 
survey estimation. Estimation in sample surveys is 
conducted mainly by attaching weights to sample 
data and then computing weighted averages. 
When available, auxiliary information may be 
employed to improve survey estimates. In this 
context, a set of sample weights which is said to 
have the calibration property are considered, if it 
reproduces exactly known population quantities 
when applied to the sample values of the 
corresponding auxiliary variables. It is based on 
the argument that “weights that perform well for 
the auxiliary variables also should perform well 
for the study variable” (Deville and Sarndal 1992). 
Auxiliary information is often used by survey 
statisticians to increase the precision of estimators 
of commonly used parameters. Some examples 
of estimators of population mean or population 

total, which use auxiliary information, are ratio 
and regression estimators. In the past twenty 
years or so, calibration itself became an important 
topic in survey research and a large amount 
of literature has been devoted to it, so much so 
that it gained significant attention not only in the 
field of survey methodology, but also of survey 
practice, calibrated weights, mainly derived using 
the techniques in Deville and Sarndal (1992), are 
currently employed by several national statistical 
agencies to produce official estimates from large 
scale surveys. Following Deville and Sarndal 
(1992) a lot of work has been carried out in the 
context of calibration estimation i.e. Singh et al. 
(1998, 1999), Folsom and Singh (2000), Farrell 
and Singh (2002), Wu and Sitter (2001), Sitter 
and Wu (2002), Kott (2006), Estevao and Sarndal 
(2002, 2006), Plikusas and Pumputis (2010), Sud 
et al. (2014), Aditya et al. (2016) but most of the 
studies in this context is only restricted to single 
stage or two phase sampling designs whereas 
in large scale surveys two stage or multistage 
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sampling designs are generally used. In this study, 
we have developed calibration estimators under 
two stage sampling design by modifying the 
sampling design weight with the help of auxiliary 
information by minimising the chi-square type 
distance function between the proposed weight 
and the sampling design weight with respect to 
certain calibration constraint equations in the 
presence of complex auxiliary information. We 
consider case of availability of complete auxiliary 
information at the secondary stage unit (ssu) level 
under two stage sampling design. 

In what follows, regression type estimators 
have been proposed using the calibration approach 
under two stage sampling design in the presence of 
complex auxiliary information and the regression 
line does not pass through the origin. In fact, the 
generalized regression (GREG) estimator is a 
special case of the calibration estimator when the 
chosen distance function is the Chi-square distance 
(Deville and Sarndal 1992). The main difference 
between the GREG approach and the calibration 
approach is that in the GREG approach the 
predicted values are generated using an assisting 
model whereas in calibration approach it does 
not depend on any assumption about the assisting 
model. Assisting model, an imagined relationship 
between study variable and auxiliary variable 
which can have many forms: linear, nonlinear, 
generalized linear, mixed (model with some fixed, 
some random effects), and so on. Expressions for 
variance and variance estimator of the proposed 
calibration approach based estimators have been 
developed. The improved performance of the 
proposed estimator over the usual regression 
estimator under two stage sampling design was 
demonstrated through a simulation study and 
concluding remarks were made.

2.	 CALIBRATION BASED ESTIMATION 
UNDER TWO STAGE SAMPLING 
DESIGN
We consider a simple case where information 

on only one auxiliary variable is available. Let, 
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the second stage sampling we are assuming the 
invariance and independence property. The whole 
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Let the study variable be y, where yk is 
observed for all k∈s. The parameter to estimate 

is the population total 
I
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Let us consider the case where population 
level complete auxiliary information (xk) is 
available at the ssu level. As an example, consider 
a survey conducted in a large city and let the city 
blocks are the primary stage units (psus) and the 
buildings within as the ssus. The study variable is 
measurement of some aspects of the k-th building 
such as habitable carpet area or the quantity of 
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certain equipments in the building. Suppose 
we have from the city register, an up to date list 
of all the buildings in the entire city with some 
useful information xk attached to the k-th building,  
k = 1,2, …, N. Further, in agricultural surveys, 
while estimating the crop area at sub-district 
level, we can consider villages as the psus and 
households within each village as ssus. For crop 
area enumeration, we do complete enumeration 
of all the households. In that situation, we have 
complete information at the ssu level for both 
crop area along with information on active 
family members, number of cattle the household 
owns, their family status etc. which can be used 
as the frame of auxiliary information. This kind 
of situation leads to the scenario of complete 
auxiliary information.

As population level complete auxiliary 
information is available at the unit (ssu) level i.e. 
the auxiliary information kx

 was known for all 
elements k∈U. U was the population of size N. 
The simple estimator of the population total in this 
case will be, 

/
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The proposed calibration estimator of the 
population total in this case was given by
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wk was the calibrated weight. In this situation we 
minimize the chi-square type distance function 
using lagrangian multiplier technique to obtain the 
calibrated weight. In this case we have minimized 

the chi-square type distance given as 
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The objective function in this case is given as,
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Putting the values of 1λ and 2λ in kw we obtain 
the calibrated weight as,
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approach by Sarndal et al. (1992), the Yates–
Grundy form of estimator of variance of the 
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3.	 EMPIRICAL EVALUATION
In this Section, we report the results from 

simulation studies that aim at assessing the 
performance of the developed calibration estimator 
under two stage sampling design with respect 
to simple regression estimator when complete 
auxiliary information is available at ssu level as 
given in Sarndal (1992, p.322). These proposed 
estimators were described as in Table 1.

Table 1. Definition of various estimators  
considered in simulation studies.

Estimators Description
ˆ

y ut π
Calibration estimator of the population 
total under two stage sampling design when 
population level complete auxiliary information 
(xk) was available at the ssu level

ˆ
yBrt simple regression estimator of the population 

total when complete auxiliary information is 
available at ssu level

In this study we have considered the case of 
two stage sampling where sample selection at each 
stage is governed by equal probability without 
replacement sampling design (SRSWOR). Here, 
we also have considered the situation that the 
size of the ssus is fixed. For empirical evaluation, 
a Bi-variate normal population is generated and 
used for the study where BVN (22, 25, 2, 5, r). 
For the case of simplicity we have assumed that, 
NI = 50 and Ni =100 whereas the selected samples 
are of size nI = 15, ni = 30 and nI = 20, ni = 40 and 
there is availability of auxiliary information for 
ssu level. For the study we have selected a total of 
1000 samples from the population using two stage 
SRSWOR and also considered different levels 
of correlation between the study variable and the 
auxiliary variable. For the empirical evaluation 
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a SAS macro was developed for selection of the 
samples under Two Stage SRSWOR sampling 
design. The developed SAS Macro is as follows,

%macro two_stage;

proc surveyselect data=pop_psu out=sample_
psu sampsize=&sample_n seed= -111 noprint

run;

data temp_1;

set sample_psu;

sample_no=_n_;

run;

proc plan seed=-27371;

factors sample_no=&sample_n;

output out=Randomized;*domain no and 
sample size should be given equal otherwise the 
program for domain will not work;

run;

proc sort data=Randomized;

by sample_no;

run;

data temp1;

merge Randomized temp_1; 

by sample_no;

run;

%do j=1 %to &sample_n;

proc surveyselect data=pop_ssu out=sample_
ssu_&j sampsize=&sample_m seed= -111 noprint; 

run;

data sample_ssu_&j;	 set sample_ssu_&j ;	
sample_no=&j;

run;

%end;

data temp2;

set %do k=1 %to &sample_n; 

sample_ssu_&k; %end;;

by sample_no;run;

proc sql;

create table temp3 as select *

from temp1, temp2

where temp1.sample_no=temp2.sample_no;

quit;

data temp3;

set temp3;

drop sample_no;

run;

proc sql;

create table final_sample

as select *

from temp3, pop 

where temp3.i=pop.i and temp3.j=pop.j;

quit;

proc sql;

%do k=1 %to &sample_n;

drop table sample_ssu_&k; 

%end;

drop table Sample_psu, Temp1, Temp2, 
Temp3, Temp_1, Randomised;

quit;

%mend;

The performance measures used for empirical 
evaluation were percentage Relative Bias (%RB) 
and percentage Relative Root Mean Squared 
Error (%RRMSE). The formula of Relative Bias 
and Relative Root Mean Squared Error of any 
estimator of the population parameter θ are given 
by

1

ˆ1ˆ( ) 100
S

i

i
RB

S =

 q − q
q = ×  q 

∑  and

1 1ˆ ˆ( ) ( ) 100
S

i
i

RRMSE
S =

q = q − q ×
q ∑

where, 
îq  are the value of the estimator generated 

through simulation study and q is the overall 
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population total for the character under study. The 
results corresponding to %RB for all the calibration 
estimators developed for the situation when there 
was availability of population level complete 
auxiliary information at ssu level were reported 
at Table 1 whereas the results corresponding to 
%RRMSE these proposed calibration estimators 
were reported in Table 2. From Table 1 it can be 
seen that, with respect to %RB the calibration 
regression type estimator was performing better 
than the usual regression estimator under two 
stage sampling design when population level 
complete auxiliary information was available at 
ssu level for all the situations of different sample 
sizes drawn from the population and different 
level of correlations between the study variable 
and the auxiliary variable. Table 2 reveals that, 
the proposed calibration estimator for the situation 
of availability of complex auxiliary information 
at ssu level was performing better than the usual 
regression estimator under two stage sampling 
design for all the sample sizes drawn from the 
population and for all the levels of correlation 
between the study variable and the auxiliary 
variable with respect to %RRMSE except for the 
case nI=15,ni=30, r=0.9 when both the estimators 
have almost the same %RRMSE.

Table 1. % RB for the proposed estimator ( )ŷ ut π  with respect to 
usual regression estimator ( )ŷBrt  under two stage sampling design 

when auxiliary information is available at the SSU level

Sample Size and Correlation (r) ˆ
y ut π

ˆ
yBrt

nI = 15, ni = 30, r = 0.5 0.116 0.137

nI = 15, ni = 30, r = 0.7 0.019 0.029

nI = 15, ni = 30, r = 0.9 0.154 0.156

nI = 20, ni = 40, r = 0.5 0.036 0.047

nI = 20, ni = 40, r = 0.7 0.085 0.088

nI = 20, ni = 40, r = 0.9 0.015 0.023

Table 2. %RRMSE for the proposed estimator ( )ŷ ut π  with respect 
to usual regression estimator ( )ŷBrt  under two stage sampling 

design when auxiliary information is  
available at the SSU Level

Sample Size and Correlation(r) ˆ
y ut π

ˆ
yBrt

nI = 15, ni = 30, r = 0.5 0.201 0.209
nI = 15, ni = 30, r = 0.7 0.011 0.013
nI = 15, ni = 30, r = 0.9 0.109 0.110
nI = 20, ni = 40, r = 0 .5 0.014 0.027
nI = 20, ni = 40, r = 0.7 0.025 0.031
nI = 20, ni = 40, r = 0.9 0.052 0.067

4.	 CONCLUDING REMARKS
Using the calibration approach proposed by 

Deville and Sarndal (1992) we have been able to 
develop a regression type estimator of population 
total when the study and the complex auxiliary 
variables are linearly related. The proposed 
calibration type regression estimators of population 
total performs better than the simple regression 
estimator as given in Sarndal et al. (1992, p.322) 
under two stage sampling design when there was 
availability of population level complete auxiliary 
information at ssu level with respect to % relative 
bias for most of the cases of selection of sample out 
of the population using equal probability without 
replacement sampling design and three different 
levels of correlation between the study variable 
and the auxiliary variable. Further, it can also be 
seen that the proposed calibration based regression 
estimators of population total outperforms the 
simple regression estimator under two stage 
sampling design with respect to % relative root 
mean square error for all of the cases of selection 
of sample. Hence, based on the simulation study, 
it can be concluded that the developed estimator 
is better than simple regression estimator as given 
in Sarndal et al. (1992) under two stage sampling 
design when there was availability of population 
level complete auxiliary information at ssu level. 
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