
1.	 INTRODUCTION
Scientists in agricultural research, biology, 

medicine, engineering and many other applied 
disciplines quite often model the relationship 
between a response variable y with some control 
or predictor variable x as E(yt) = g(xt, q), where  
θ = (q

1
, q

2
, ..., qp) is a vector of unknown parameters 

and g(xt, θ) is a known smooth function of xt and θ 
in which q

1
, q

2
, ..., qp occur non-linearly. A model in 

which g(xt, θ) cannot be made linear in parameters 
by any variable or parameter transformation is 
known as intrinsically nonlinear. Let {xt, yt},  
t = 1, 2, ..., n be a random sample in which xt are 
deterministic, that is, without any measurement 
error. Considering the measurement errors in y, 
we can express the model as

yt = g(xt, q) + ∈t   t = 1, 2, ..., n	 (1.1)

where the additive errors ∈t’s are assumed to 
be independently distributed with E(∈t) = 0 and 

Var(∈t) = s2 for all t. For inference purposes, 
we often assume that these errors are normally 
distributed. The method of least squares is 
commonly used to obtain estimates of parameters 
in non-linear regression models. For a given 
sample we choose the values of parameters which 
minimizes the sum of squares of errors (SSE) 
given by
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q = ∈ = − q  ∑ ∑ 	 (1.2)

With easy access to fast computers and 
availability of optimization programs like 
Marquardt–Levenberg and ‘nls’ of R, the practice 
nowadays is to minimize objective function SSE(q)
directly using a suitable optimization algorithm. 
But all algorithms require good initial estimates 
as seed values. If many parameters are involved, 
the surface of SSE(q) could be very rough and a 
poor choice of initial estimates may pose many 
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problems. The algorithm may converge to a local 
minima or convergence may be very slow and 
may need a lot of iterations and computing time. 
It may also be possible in some ill conditioned 
situations that convergence does not occur at 
all. In view of these problems, we need good 
initial estimates as close to the true least squares 
estimates as possible. Moreover, we need at least 
one more set of parameter estimates to check that 
the convergence occurs to the same values.

In earlier days, researchers used the graphical 
method of stripping (c.f. Wagner 1975) or a 
combination of graphical and transformation 
methods, well discussed in the book by Ratkowsky 
(1983). In the latter case, in the first stage one 
of the parameters is estimated graphically and 
then the data is transformed using this estimate. 
At the second stage, the model is transformed 
and available methods are used to estimate the 
remaining parameters. For intrinsically nonlinear 
regression models, an entire chapter is devoted 
to these methods in the aforementioned book. 
However, initial estimates obtained by these 
methods are not always precise enough to give 
desired convergence. Ratkowsky, therefore, 
proposes iterative procedures even to determine 
better initial estimates if a set of estimates fails to 
give convergence.

Some ingenious methods other than the 
graphical method were developed by illustrious 
statisticians like Fisher, Hotelling, Yule and 
Hartley for the logistic growth model. These 
methods are well explained by Nair (1953). Cornell 
(1962) proposed a method based on partial sums 
to estimate the parameters of a bi-exponential 
non-linear regression model yt = Ae–at + Be–bt + ∈t.  
Shah (1973) proposed a difference–regression 
equation method for this model. But both methods 
require equally spaced observations. That is  
xt +1

 – xt should be same for all t. Since in practice, 
the observations are often unequally spaced, these 
methods have a little scope of applicability. Foss 
(1969) proposed a method based on the area under 
y(t) curve for the above model. However, this 
method fails if the regression line passes through 
origin or two consecutive observations are equal, 
that is yt = yt +1

 for one or more t. Recently, Singh 
et al. (2016) proposed a method based on finite 
differences for the models which could be put 

under asymptotic regression category discussed 
by Stevens (1951). Because of the assumption of 
equally spaced observations the above methods 
have limited scope and the graphical methods 
have convergence problems in some situations. 
[cf. Wagner (1963), Steyn and Van Wyk (1977)]. 
Therefore, there is need of a procedure which 
could be applied to a large class of models with 
equally or unequally spaced observations. To meet 
this requirement we have proposed a procedure 
in section 2 of this paper which could be applied 
in some widely used intrinsically non-linear 
regression models. The procedure works well, 
whether the observations are equally or unequally 
spaced. In section 3, we have demonstrated the 
application of the procedure to several published 
data sets.

2.	 THE PROPOSED PROCEDURE
Foss (1965) developed a method which uses 

the estimated areas under y(t) curve up to points 
xt, t = 1, 2, ..., n and linear multiple regression to 
estimate parameters of bi-exponential regression 
model. For estimating area under the y(t) curve he 
used a quadrature formula of numerical integration. 
But the numerical integration procedure which he 
used fails if the regression line passes through the 
origin, that is, yt = 0 for x

1 
= 0 or yt = yt+1

 for some 
t. Therefore the method works only for decay 
type data where y(t) decreases monotonically. We 
shall follow a modified strategy with a different 
quadrature formula to ensure that the procedure 
works in all situations. In what follows, we shall 
develop the estimating procedures for some 
important non-linear regression models. 

2.1 Asymptotic Regression Model 
The asymptotic regression model is given by 

y(t) = a + brt + ∈t	 (2.1)

where y(t) ≥ 0, t ≥ 0 and 0 < ρ < 1. Note that y(t) 
→ a as t → ∞. Many important intrinsically non-
linear models including Mitscherlish model and 
Gompertz model belong to this category (see 
Singh et al. 2016).

Now, though a process of differentiation and 
integration, we shall manipulate (2.1) to write it 
as a linear multiple regression model. Ignoring the 
error term ∈t we obtain
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( ) ( ) ( ) ( )ln ln
d y t y t
dt

= r − a r 	  (2.2)

where ln(.) is the natural logarithm loge (.) The 
initial condition is y(0) = a + b. Now, replacing t 
by z in (2.2) and then taking integral with respect 
to z from z = 0 to t, we have 

( ) ( ) ( ) ( ) ( )ln ln
t t t

o o o

d y z dz y z dz y z dz
dz

= r − a r∫ ∫ ∫ 	 (2.3)

Therefore, from the Fundamental Theorem of 
Calculus, we have 

y(t) – y(0) = ln(ρ). F(t) – a ln(r).t

or  y(t) = (a + b) – a ln(r)t + ln(r). F(t)	 (2.4)

where ( ) ( )
t

o
F t y z dz= ∫ . Thus the model (2.1) 

could be written as 

y(t) = a + bt + cF(t) + ∈t	 (2.5)

where a = a + b, b = – a ln(r) and c = ln(r).

For a given sample {ti, y(ti)}, i = 1, 2, ..., n, we 

can obtain the estimates of F(ti), i = 1, 2, ..., n. 

We estimate ( ) ( )
t

i o
F t y z dz= ∫  using the given 

data and a simple trapezoidal quadrature formula 
of numerical integration. Thus, F(ti) could be 
estimated by 

( ) ( ) ( ) ( )1 1
11

ˆ ,
2

i k k
i k kk

y t y t
F t t t− +

+=

+
= − ⋅∑  i = 1, 2, ..., n 	(2.6)

Now, we have the data ( ) ( ){ }ˆ, , ,i i it y t F t   
i = 1, 2, ..., n at hand. With this data, we regress 
y(t) on t and F(t) and obtain the estimates of a, b 
and c using the theory of least squares. From these 
estimates the estimates of asymptotic regression 
model (2.1) could be obtained as 

( ) ˆ ˆˆ ˆ ˆˆexp , andˆ
bc acr = a = − b = − ∝̂a 	 (2.7)

2.2 Logistic Regression Model
The logistic regression model can be written 

as 

( )
1 tat

ky t
be−= + ∈

+
	 (2.8)

For this model, we can use two approaches as 
follows.

Approach 1: By using the reciprocal 
transformation we can write (2.8) as 

( ) = +  + ,  = 1, 2, ..., i

i

t
i tz t e i n∝ bra( ) = +  + ,  = 1, 2, ..., i

i

t
i tz t e i n∝ br 	 (2.9)

where ( ) ( )
1 1, ,i

i

bz t ky t k
= a = b =  and  

ρ = e–a. The error 
it

e  is different from ∈t but we 

still assume that ( ) 0
it

E e =  and ( ) 2Var
it

e = s  for all 

t. Since y(0) ≠ 0, we shall not face any technical 
difficulty. We can now use the procedure 
developed for asymptotic regression model to 
obtain the estimates of parameters of model (2.8). 

Approach 2: In this approach, we directly deal 
with y(t). Ignoring the error term, we obtain 

( )
1 1

at

at at

d k abey t
dt be be

−

− −= ⋅
+ +

with ( )0
1

ky
b

=
+

 it could easily shown that 

( ) ( ) ( )
1

y td y t ay t
dt k

 
= − 

 

or  ( ) ( ) ( )2d y t y t y t
dt

= ∝ + b a( ) ( ) ( )2d y t y t y t
dt

= ∝ + b  	 (2.10)

where a = a and b = – a/k.

Now proceeding along the same lines as 
followed for the asymptotic regression model, we 
obtain

( ) ( ) ( )2

1

t t

o o

ky t y z dz y z dz
b

= + ∝ + b
+ ∫ ∫ a( ) ( ) ( )2

1

t t

o o

ky t y z dz y z dz
b

= + ∝ + b
+ ∫ ∫

Thus, the model (2.8) could alternatively be 
written as 

y(t) = g + aU(t) + bW(t) + ∈t	 (2.11)

where g
1

ky
b

=
+

, a = a, b = – a/k	 (2.12) 

Also, ( ) ( ) ( ) ( )2and
t t

o o
U t y z dz W t y z dz= =∫ ∫

These integrals could be estimated using the 
given data and trapezoidal formula (2.6) for t = t

1
, 
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t
2
, ..., tn. For W(t) we shall use y2(t) instead of y(t) 

in (2.6). Now using the data {ti, y(ti), Û(ti), Ŵ (ti)}
i = 1, 2, ..., n we regress y(t) on t, U(t) and W(t). 
Applying the method of least squares, we obtain 
the estimates g, a and b. From these estimates we 
obtain the estimates of original parameters as 

ˆ̂
ˆˆ ˆˆˆ , , 1ˆ ˆ ˆ

a k b
y

 aa= a = − = − + b b  
	 (2.13) 

2.2 Gompertz Model
This model is given by 

y(t) = a exp[– b exp(– ct)] + ∈t	 (2.14)

Using a logarithmic transformation, we can 
put this model in asymptotic regression form as 

z(t) = a + brt + et 	 (2.15)

where z(t)  = ln[y(t)], a = ln(a), b = – b and  
r = e-c

Using the method developed for asymptotic 
regression model, we estimate a, b and r. From 
these estimates, we obtain the estimates of a, b 
and c by using an inverse transformation.

3.	 APPLICATIONS
A few points need to be mentioned before 

discussing the application of the proposed 
methods. The first and foremost issue in nonlinear 
regression models is that normal equations, unlike 
in linear regression models, do not produce the 
estimates of parameters in close form. Therefore 
iterative procedures are used to obtain the estimates. 
Nowadays, researchers directly minimize the sum 
of squares of errors, SSE(q), given at (1.2) for the 
choice of q and use the non-linear optimization 
algorithms for the purpose. But all available 
algorithms need good initial estimates as seed 
values to start the iterations. Since the surface of 
SSE(q) is quite often rough they need at least two 
sets of initial estimates to ensure the convergence 
to a global minimum.

The second important point is that nice 
properties like unbiasedness and minimum 
variance available for estimators of parameters 
of linear regression models are not achievable 

in the case of nonlinear models. We have only 
asymptotic properties of least squares estimators 
[c.f. Seber and Wild (1989)]. Therefore, we 
can calculate only asymptotic standard errors 
of estimates after convergence is achieved. For 
the details of the procedure one may refer to 
Ratkowsky (1983, pp 15-17). In finite samples, 
however, the performance of the estimators or 
procedures could be judged by measures like the 
residual sum of squares (RSS) given by

( ) 2

1
ˆRSS ,

n
t tt

y g x
=

 = − q ∑ 	 (3.1)

or the mean squared error MSE = RSS/n. One can 
also use the mean absolute percent error (MAPE) 
which is defined as

[ ]
'

ˆ1
MAPE 100%

n t t
t

t

y y
n y

−
= ∑  	 (3.2)

where ˆty  is the predicted value.

We shall now apply the methods developed in 
previous section to some published data sets. For 
asymptotic regression model, we shall use three 
data sets. 

Data Set 1: Stevens (1951)

A thermometer lowered into a refrigerated 
hold, gave the following six consecutive readings 
(°F) at half minute intervals:

Time 0 1 2 3 4 5
Temperature 
Readings (°F)

57.7 45.7 38.7 35.3 32.2 32.2

Data Set 2: Gomes (1953)

The mean yield of potatoes per plot of 
1

65
th of 

an acre in an experiment with 5 levels (0, 40, 80, 
120 and 160 pounds per acre) of superphosphate 
is given in the following table.

Fertilizer 
Level (x) 0 1 2 3 4

Yield (y) 229.1 231.8 254.2 250.6 249.6

Data Set 3: (Ratkowsky (1983), page 102)

The leaf production, number of leaves per 
tiller per day (y) versus light irradiance (x) in watts 
per square meter at 20°C is given in the following 
table.
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x 12 23 40 92 156 215
y 0.094 0.119 0.199 0.260 0.309 0.331

Since the observations are unequally spaced 
in data set 3, we shall use this set to illustrate the 
application of the method developed in section 2. The 
areas F(ti) for t = 23, 40, ..…, 215 could estimated 

using, formula (2.6) and given the data and F(12) = 

( )
12

0
y z dz∫  is extrapolated assuming y(0) = 0 in this 

case. Thus, by adding this area to areas obtained 
by (2.6), we get estimates of F(12), F(23), …, 
F(215). The values are given in following table.

t 12 23 40 92 156 215
y(t) .094     .119 .199 .260 .309 .331

( )ˆ
iF t .564 1.7355 4.4385 16.3725 34.5805 53.4605

Now, regressing y(t) on t and F(t) and using 
‘lm’ program of R-3.2.2, we obtain

Intercept Coefficients of t F(t)
0.039134 ( )â 0.005257 ( )b̂ –.015754 ( )ĉ

Using equations at (2.7), we get r̂  = 0.98437, 
â  = 0.33369 and b̂  = – 0.29456 which are quite 
close to the true least squares estimates reported by 
Ratkowsky (1983) in Table 5.1 on page 96. Note 
that true least squares estimates were obtained 
by Ratkowsky using his initial estimates in the 
optimization algorithm. For the above estimates 
we have RSS = 0.0006758, MSE = 0.0001126 and 
MAPE = 4.6298%. If we use above estimates in 
‘nls’ program of R–3.2.2, we obtain convergence 
in 6 iterations and least squares estimates are  
â  = .335021 (standard error = .01736),  
b̂  = – 0.29457 (standard error = .019564) and  
r̂  = .98383 (standard error = .003702). For these 
least squares estimates we have RSS = 0.0006056, 
MSE = 0.00010 and MAPE = 4.63772%. It is 
evident from the values of these performance 
measures for the proposed method that initial 
estimates are quite close to corresponding values 
given above.

If we use a combination of the graphical and 
transformation method suggested by Ratkowsky 
to obtain initial estimates, we get â  = 0.34,  
b̂  = 0.30521 and r̂  = 0.98439 for which  
RSS = 0.000678, MSE = 0.000113 and  
MAPE = 5.04034l%. These values are obviously 
greater than the corresponding values of the 
proposed method.

The initial estimates of the parameters of 
proposed method, RSS, MSE and MAPE and 
number of iteration needed for the convergence 
for data sets of Stevens and Gomes are given in 
Table 1. Corresponding least square estimates 
obtained by ‘nls’ program of R-3.2.2 and their 
standard errors are also given. Comparison of the 
estimates and performance measures RSS, MSE 
and MAPE indicates that the proposed method 
performs well in both decay type data as well as in 
growth type data. 

Now, to demonstrate the application of the 
proposed method in logistic growth model, we 
have considered pasture yield (y) versus growing 
time (x) data reported by Ratkowsky (1983) on 
page 88. The data is as follows:

x 9 14 21 28 42 57 63 70 79
y 8.93 10.80 18.59 22.33 39.35 56.11 61.73 64.62 67.08

Let us write x = t and y = y(t). If t starts from 
zero, values of U(0) and W(0) are taken to be zero. 
If it is not so then the values of U(t

1
) and W(t

1
) are 

to be extrapolated. For this we should have some 
idea about y(0). We would have this idea from the 
graph of the data. We could easily guess at what 
height the curve will hit the y-axis if extended 
towards the left. Using this value of y(0) and y(t

1
) 

we estimate the values of U(t
1
) and W(t

1
). These 

figures are added to values of U(ti) and W(ti) 
obtained by using the quadrature formula and the 

Table 1. Estimates of parameters, their RSS, MSE and MAPE for the proposed method and nonlinear optimization (NLS) method

Data Set Method â b̂ r̂ RSS MSE MAPE (%) I
Stevens Proposed 

NLS
30.7252
30.7239
(.2310)

26.8414
26.8211
(.2577)

.5609

.5518
(.0085)

.3349 .0558
.0162

.4748

.3015
4

Gomes Proposed
NLS

256.2454
255.5306
(17.2375)

–29.4616
–28.3072
(17.0841)

.5952

.5744
(.4739)

132.5460
131.7859

26.5092
26.3572

1.7401
1.7015

17

Note: Figures within parentheses represent standard errors of the estimates and I is the total number of iterations needed for convergence.
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given data. For the given data set, the values of 
U(ti) and W(ti) are obtained as follows:

Û (t): 58.185, 107.510, 210.375, 353.595, 
785.355, 1501.305, 1854.825, 2297.50, 2889.700

Ŵ (t): 430.852, 921.814, 2539.613, 5494.372, 
19823.732, 55049.392, 75926.162, 103878.352, 
142917.952

Now, we regress y(t) on U(t) and W(t). Using 
‘lm’ program of R–3.2.2, we obtain 

Intercept Coefficient of U(t) Coefficient of W(t)

ĝ = 4.7612732 â  = 0.0694327 b̂  = – 0.0009623

Using the relationships given at (2.13), we 
obtain the estimates of parameters as â  = 0.0694, 
k̂  = 72.1529 and b̂  = 14.1541. For the form 
of logistic model given in Ratkowsky, that is,  

y(t) = ( ) [ ]
*

1 exp * *
y t

t
a

=
+ b −g

 we obtain estimates 

of parameters from above estimates as ∝* = 
72.1529, b* = 2.650 and ĝ * = 0.0694. These 
estimates are quite close to non-linear optimization 
estimates reported by Ratkowsky in Table 4.1 
on page 65. The parameter estimates, predicted 
values, RSS, MSE and MAPE for the proposed 
method (Approach 2 for logistic model) and non-
linear optimization method are given in Table 2.  
Fig. 1 shows the closeness of predicted values by 
the proposed method to the observed and those 
predicted by the nonlinear method.

Table 2. Parameter estimates, RSS, MSE, MAPE and  
predicted values for logistic model

x y Proposed Method
(Approach 2)

Non-linear
Optimization

9 8.93 8.4125 8.5480
14 10.80 11.3546 11.4310
21 18.59 16.8056 16.7277
28 22.33 23.8472 23.5322
42 39.35 40.8496 40.0395
57 56.11 56.7931 55.9632
63 61.73 61.2345 60.5464
70 64.62 65.0220 64.5361
79 67.08 68.1518 67.9131

Parameters
a* 72.1529 72.4622

(1.7340)
b* 2.6500 2.6181

(0.0883)
g* 0.06943 0.0674

(0.00344)

RSS 10.3325 8.0565
MSE 1.1481 0.8952

MAPE 3.9305% 3.4251%
Iterations 6

Note: Figures within parentheses represent the standard errors of 
the estimates.

We have also obtained initial estimates using 
the reciprocal transformation discussed in Section 
2. The estimates are â * = 71.0056, b̂* = 2.5604 and 
ĝ* = 0.0643. For these estimates RSS = 38.4358, 
MSE = 4.2706 and MAPE = 4.7738%. Looking at 
the performance measures, this method is slightly 
inferior to the direct method.

Fig. 1. Observed and Predicted Values Obtained from Proposed 
and Nonlinear Methods for Logistic Model

Lastly, we applied the proposed method for 
Gompertz model to the date set 3 reported on 
page 88 of Ratkowsky. The data set contains 
9 unequally spaced observations regarding the 
area of cucumber cotyledous (y) versus growing 
time (x). The initial estimates are obtained as  
â = 9.8597, b̂ = 1.6426 and ĉ  = 0.8185. For these 
estimates the values of RSS, MSE and MAPE 
are given by 109.5340, 12.1705 and 89.158% 
respectively. If we use these initial estimates in 
‘nls’ optimization algorithm of R-3.2.2. We get 
convergence in 8 iterations. The final least squares 
estimates are given by â = 6.9249 (standard error 
= 0.2184), b̂ = 2.1556 (standard error = 0.1989) 
and ĉ  = 0.4933 (standard error = 0.0516) which 
are same as those reported in Table 4.1 on page 65 
of Ratkowsky (1983).

Thus, from the above examples it is evident 
that the proposed method provides good initial 
estimates of parameters in all situations whether 
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the observations are equally or unequally spaced 
and whether the response variable represents a 
decay or a growth phenomenon.
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