
1.	 INTRODUCTION
Forecasting technique is an important tool 

in any field. It provides important and useful 
input for proper, foresighted and informed 
planning, more so, in agriculture which is full of 
uncertainties. Now-a-days agriculture has become 
highly input and cost intensive. Without judicious 
use of fertilisers and plant protection measures 
agriculture no longer remains as profitable as 
before. Uncertainties of weather, production, 
policies, prices etc. lead to mass suicides by 
farmers. New pests and diseases are emerging 
as an added threat to the production. Under the 
changed scenario today, forecasting of various 
aspects relating to agriculture are becoming 
essential.

Forecasting in agricultural system is not new. 
A lot of studies related to various aspects of 
agriculture clearly indicate its importance. A lot of 
studies including the latest technologies like GIS 
and Remote Sensing have been extensively used to 
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forecast crop production, pest/disease infestation 
etc. However, achievements in this direction are 
not up to the mark. One of the reasons might be 
lack of use of proper statistical techniques. Most of 
the earlier workers have utilised regression models 
(taking data as such or suitable transformation 
of data or some indices), discriminant function 
analysis, agro-meteorological models, etc. for 
crop yield forecasting (to cite a few, Chakraborty  
et al. 2004, Agrawal and Jain 1996, Prasad and 
Dudhane 1989, Kumar and Bhar 2005). Off 
course there are other approaches for forecasting 
also. For example, Matis et al. (1985) proposed a 
statistical methodology for forecasting crop yields 
at successive stages of the growing season of any 
crop using Markov Chain theory. Other work on 
this subject are due to Matis et al. (1989), Jain and 
Agrawal (1992) and Ramasubramanian and Bhar 
(2014). Application of Time Series modelling in 
forecasting is very popular. Some examples in this 
field are due to Mcleod and Vingilis (2005), Suresh 
et al. (2011), Paul (2015) and Paul et al. (2015).
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Survey of existing literature reveals that in 
most of these studies, simple linear regression 
models are employed, whereas relationship exists 
in most of the Agricultural situations is non-
linear. For example, disease/pest infestation over 
a time generally follows a growth curve which is 
non-linear in nature. The most of the biological 
phenomena in agriculture generally follow a non-
linear pattern over time. Off course some attempts 
are made to model such phenomena by non-linear 
modeling techniques. Time Series models also 
cannot take account of the explanatory variables. 
But in non-linear models the response, i.e., 
observed values are modelled with time variable 
only. However, generally response variable is 
also governed by many affecting factors. For 
example, disease/pest infestation over time may 
also be affected by prevailing weather conditions 
like temperature, relative humidity etc. But in 
non-linear model building, incorporation of these 
weather variables along with the time variable is 
somewhat impractical; reason being theoretical. 
Theory of non-linear modelling with more than 
one explanatory variables is not well established. 
We are somewhat handicapped in exploiting 
the information on many explanatory variables 
while developing a non-linear model. But we are 
convinced that use of these variables definitely 
improve the quality of the models and hence the 
performance of forecasting. 

In the present study, an attempt has been made 
to exploit the information on other explanatory 
variables like temperature, relative humidity in 
non-linear models. The approach is empirical, 
but definitely, it will provide a good framework 
for building forecasting models using non-linear 
modelling technique. It will open up an area, where 
researchers will be able to utilize their resources to 
the full extent. The developed methodology has 
been illustrated with a real life data set pertaining 
to aphid population in mustard over time in 
Beherampore district of Odisha. Aphid population 
over time is a typical example of non-linear nature 
of a variable. In the literature, such type of data 
is fitted through non-linear modelling technique 
by taking time as the only explanatory variable. 
Through this example, we have shown how 
other important affecting weather variables like 
temperature, relative humidity can be made used 

to improve the forecasting ability of a non-linear 
model.

The paper is organized as follows: In 
Section 2, proposed models are discussed. Two 
approaches are made to utilize the full information 
on explanatory variables. Various aspects of 
fitting non-linear models are also discussed in 
this Section. Illustration of the proposed models 
are considered in Section 3. Real aphid population 
in mustard in Beharampore district of Odisha has 
been taken for this purpose. Temperature and 
relative humidity are two variables that are used 
as explanatory variables. The paper is concluded 
with a Section on Discussion.

2.	 PROPOSED METHODS
Suppose we have p explanatory variables 

x
1
, x

2
,...,xp and y as the response variable. For 

simplicity, let us consider that we have only 
three explanatory variables x

1
, x

2 
and x

3
. More 

clearly, these three explanatory variables may be 
temperature, relative humidity and rainfall and the 
response variable y may be aphid population. As a 
first approach for building up of forecasting model, 
one may consider a multiple linear regression 
model as

y = a + b
1
x

1
 + b

2
x

2
 + b

3
x

3
 + e	  (1)

where a is the intercept and b
1
, b

2
 and b

3
 are 

three regression coefficients associated with three 
explanatory variables or regressor variables. The 
logic behind such model might be that each of the 
explanatory variables is highly correlated with the 
response variable and their relationship is linear. 
That is x

1
 is related linearly with y. Similarly, 

x
2
 and x

3
 are also related linearly with y. Thus 

each of these variables multiplied by a constant 
(regression coefficient) and added linearly to have 
a multiple linear model as given in (1).

But as mentioned earlier, these relationships 
may not be linear in practice. Therefore, question 
may arise why not to exploit exact relationship 
between an explanatory variable and the response 
variable. This exact relationship may be non-
linear of different kind or even a linear. This may 
be sigmoidal or curvi-linear and so on. If the exact 
relationship between an explanatory variable and 
the response variable is correctly accommodated 
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in the model then it may, perhaps give a better 
forecast result. The present paper aims to use 
this idea and provide a better non-linear model 
building technique for forecasting purpose.

The proposed methods consist of exploiting 
the exact relationship between the explanatory 
variables and response variable. We propose two 
approaches to build up the models. 

Approach 1: Once the relationship for each 
explanatory variable is established, we add 
them linearly just like multiple linear regression 
model in (1) to have the final model. We can also 
add these non-linearly. But for simplicity, we 
confine ourselves to linear addition. If we have p 
explanatory variables, then the proposed model is 
formulated as

( )
1=

= +∑ p
i ii

y f x e  	  (2)

where fi(xi)  is the exact relationship between ith 
explanatory variable and the response variable. 
Whatever relationship is revealed, we as such put 
in the model (2). Some of the variables may be 
related linearly with the response variable. 

To be specific, once again, we consider the 
case with three explanatory variables, x

1
, x

2
, x

3
. 

Suppose relationship of x
1
 with y is logistic, i.e., 

( ) ( )1 1
1exp

f x
l x

a
=

+ b −g
	 (3)

If we build up a non-linear model with this 
single variable x

1
, then our model becomes 

( )1exp
y e

l x
a

= +
+ b −g

	  (4)

where a, b and g are the parameters of the model. 
But we want to exploit the information on x

2
 and 

x
3
 as well. Suppose the relationship of x

2
 with y is 

exponential, i.e., 

( ) ( )2 2 2exp= l −df x x 	 (5)

and corresponding non-linear model with x
2
 

becomes

( )2exp= l −d +y x e 	 (6)

For illustration, let us consider that the third 
variable x

3
 has a linear relationship with y, i.e. 

3= q +y x e  	  (7)

Since our objective is to develop a model with 
all three explanatory variables, we add all three 
relationships linearly to get the final model as

( ) ( )2 3
1

exp
exp

a
= + l −d + q +

+ b −g
y x x e

l x
	 (8)

Approach  2: As mentioned earlier, non-linear 
model generally fitted with a single variable as 
explanatory variable. Suppose a non-linear model 
with a single variable is given by 

( )exp= l −d +y x e 	 (9)

Generally, x is taken as a time variable t. 
However, explanatory variables are generally 
related among themselves. For example, 
temperature may be highly related to relative 
humidity and so on. So, we can have a linear 
relationship among the explanatory variables. For 
example with three variables, this relationship 
may be depicted as 

1 1 2 2 3 3b + b + bx x x 	 (10)

Then why not this relationship should be 
exploited in non-linear model? Our second 
approach is based on this idea. We replace x in 
(9) by the exact linear relation in (10), i.e., we 
get a non-linear model with three explanatory 
variables as

( ){ }1 1 2 2 3 3exp= l − b + b + b +y x x x e 	 (11)

This is again a non-linear model with three 
explanatory variables x

1
, x

2
 and x

3
 and four 

parameters l, b
1
, b

2
 and b

3
. Thus all information 

of explanatory varaiables can be fully exploited 
through this approach.

2.1	Estimation of Parameters
Models in (8) and (11) are non-linear models 

with more than one explanatory variable. In 
model (8), there are 3 explanatory variables and 6 
parameters a, b, g, l, d and q in model (11), there 
are again three explanatory variables and four 
parameters. To estimate these parameters least 
squares or maximum likelihood method can be 
employed. By least square method, we minimize 
the error sum of squares. From (8), the ith error 
would be 

( ) ( )2 3
1

exp
exp

a
= = − l −d − q

+ b −gi i i i
i

e y x x
l x

– ( ) ( )2 3
1

exp
exp

a
= = − l −d − q

+ b −gi i i i
i

e y x x
l x

	 (12)
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and from (11), it is 

{ }1 1 2 2 3 3expi i i i ie y x x x= − l b + b + b 	 (13)

If we have n observations, then we minimize 

a quantity Q given by 2

1
,

=
=∑n

ii
Q e  i.e., we 

differentiate Q with respect to each of the 
parameters and equate it to zero. Then we get 
as many equations as the number of parameters. 
But like non-linear model with a single variable, 
also called normal equations will be non-linear in 
nature. Therefore, iterative least squares method 
can be applied to obtain the parameter estimates. 
Therefore, it is not possible to solve nonlinear 
equations exactly; the next alternative is to obtain 
approximate analytic solutions by employing 
iterative procedures. Three main methods of this 
kind are available in the literature, (i) Linearization 
(or Taylor Series) method, (ii) Steepest Descent 
method and (iii) Levenberg-Marquardt’s method. 
The details of these methods along with their 
merits and demerits are given in Draper and 
Smith (1998). The linearization method uses the 
results of linear least square theory in a succession 
of stages. However, neither this method nor the 
Steepest descent method, is ideal. The most widely 
used method of computing nonlinear least squares 
estimators is the Levenberg-Marquardt’s method. 
This method represents a compromise between 
the other two methods and combines successfully 
the best features of both and avoids their serious 
disadvantages. Does not use derivatives (DUD) 
procedure is also available in some of the statistical 
software in which empirically parameters are 
estimated.

2.2	Goodness of Fit and Diagnostics
For model adequacy checking and diagnostic, 

usual methods as applied in non-linear model 
with a single variable can be applied. Model 
adequacy is generally assessed by the coefficient 
of determination, R2. However, as pointed out by 
Kvalseth (1985), eight different expressions for R2 
appear in the literature. Thus it is confusing that 
which measure we should take to judge the model. 
Following Kvalseth (1985) we propose to use R2 

given by

( ) ( )2 22 ˆR = 1 y y / y y−Σ − Σ −i i i i 	  (14)

to test the goodness of fit of the model. However, 
it is always desirable to use some other summary 
statistics like Root Mean Square Error (RMSE) 
and Mean Absolute Error (MAE) along with R2. 
These statistics are given by 

Mean Absolute Error 

(MAE) = iŷ / ,Σ −iy n 	  (15)

Mean Squared Error 

(MSE) = 2
iˆ( y ) / ( ),Σ − −iy n p 	 (16)

where iŷ  is the predicted value of the ith 
observation and y  is the grand mean. The better 
model will have the least values of these statistics 
while higher value of R2 is expected. 

Uncritical use and sole reliance on the 
above statistics may fail to reveal important 
data characteristics and model inadequacies. 
Additional detailed analysis of the residuals 
is strongly recommended to decide about the 
suitability of a model. Two important assumptions 
made in the model are (i) errors are independent 
and (ii) errors are normally distributed. These 
assumptions can be verified by examining the 
residuals. If the fitted model is correct, the 
residuals should exhibit tendencies that tend to 
confirm or at least should not exhibit a denial of 
the assumptions. The principal ways of plotting 
the residuals are: (a) in time sequence, (b) against 
fitted values. To test the independence assumption 
of residuals run test procedure is available in the 
literature (Ratkowsky 1990). For testing normality 
assumption, Kolmogorov-Smirnov test is applied. 

3.	 ILLUSTRATION
In this section we illustrate the proposed 

methods through a real-life data. Daily data on 
aphid population from Behrampur, Odisha, has 
been collected in aphid growing season from 1st 
December, 2002 to 10th March, 2003. However, 
for illustration, data pertaining to the period 
from 25th December, 2002 to 28th February, 2003 
has been used. For explanatory variables, daily 
weather data corresponding to the said period has 
been considered. Among the weather variables, 
maximum temperature (x

1
), minimum temperature 

(x
2
) maximum relative humidity (z

1
) and minimum 

relative humidity (z
2
) have been considered for 
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model building. Again average of maximum 
and minimum values of temperature and relative 
humidity have been taken as the final explanatory 
variables, i.e., x = x

1
 + x

2
 and z = z

1
 + z

2
. Thus 

finally we have two explanatory variables. The 
aphid population has been denoted by y. The aphid 
population over time has been plotted in Fig. 1.

Fig. 1. Aphid population over time

From Fig. 1, it is clear that aphid population 
over time does not follow any linear pattern and 
hence a multiple regression model is not at all a 
choice for the present data. Again as mentioned 
earlier, fitting a non-linear model with only 
time variable cannot exploit the information 
on other explanatory variables. However, for 
demonstration, we fit a non-linear model of this 
aphid population against time. The model fitted is 
a logistic model as follows:

( )( ) ,
1

a
= + ε

+b −g
y

Exp t
	  (17)

where a, b and g are the parameters of the model 
and t is the time variable. The results obtained by 
fitting this model is given in Table 1. Table 1(a) 
clearly shows that the model fit is good (p-value for 
F-statistic is <0.0001). The parameter estimates of 
this model along with the standard errors are given 
in Table 1(b). The final model thus becomes

( )
30.29

1 38671.5 0.2653
=

+ −
y

Exp t
	  (18)

Table 1(a): ANOVA-Logistic Model with t 

Source Degree of 
Freedom

Sum of 
squares

Mean 
Sum of 
Squares

F-value p-value

Model 3 21040.60 7013.50 33.04 < 0.0001
Error 63 13372.60 212.30    
Total 66 34413.20      

R2 41%
MAE 0.35

Table 1(b): Parameter estimate: Logistic model with t 

Parameter Estimate Approx. Std. 
Error

Approx. 95% 
Confidence Interval

α 30.29 4.0374 22.2287 38.3648
β 38671.5 245269 -451459 528802
γ 0.2653 0.1633 -0.0610 0.5917

Table 1(c): Correlation matrix: Logistic model with t 

α β γ
α 1.000 – 0.446 -0.496
β -0.446 1.000 0.993
γ -0.496 0.993 1.000

Though the model fitting is good, yet parameter 
estimates are unstable which is clear from the 
correlation table given in Table 1(c). All parameter 
estimates are highly correlated among themselves. 
Though calculated value of MAE is low, yet R2 
value is very les which indicates that the model 
may not give good forecast values. The graph 
of the observed and predicted values is given in  
Fig. 2. Fig. 2 clearly indicates that the model could 
not capture the pattern fully. We, therefore switch 
to the methodologies as proposed in this paper.

Fig. 2. Observed vs. predicted aphid population by  
the logistic model with time

In the present attempt, we take aphid 
population (y) as the response variable and two 
derived variables as explanatory variables. We 
first explore all possible relationships between y 
and x and between y and z. Finally we find that a 
logistic curve best explains the relation of y with 
x and between y and z, this relation is exponential. 
We, therefore, first fit a logistic non-linear model 
for y by taking x as an explanatory variable and an 
exponential model for y and z. The models are as 
follows:

( )( )Logistic :
1

a
= + ε

+b −gExp x
,	  (19)

Exponential: ( ) ,= l −m + εy Exp z 	  (20)
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where α, β, γ, l and m are the parameters of the 
model and is the error term.

We first fit these models separately. For fitting, 
appropriate programming codes are written in 
SAS. The results for Logistic model are presented 
in Table 2(a) to Table 2(c). Results for fitting 
exponential model with z are given in Table 3(a) 
to Table 3(c). From these tables, it is clear that 
overall fitting is good but estimates of parameters 
are not stable as indicated by high correlation 
coefficients. Moreover, the model adequacy 
parameter R2 are also not good to use these models 
for forecasting purpose. The graphs of observed 
and predicted values as given Fig. 3 and Fig. 4 
respectively indicate that the fitting models with 
only one explanatory variable is not good enough 
for forecasting.

Table 2(a): ANOVA-logistic model with x
Source Degree of 

Freedom
Sum of 
squares

Mean 
Sum of 
Squares

F-value p-value

Model 3 16598.50 5532.80 19.57 <.0001
Error 63 17814.80 282.80
Total 66 34413.20

R2 46%
MAE 0.30

Table 2(b): Parameter estimates-Logistic model with x
Parameter Estimate Approx. 

Std. Error
Approx. 95% 
Confidence Interval

α 49.29 57.22 -65.06 163.70
β 2655.40 10051.50 -17430.90 22741.70
γ 0.36 0.27 -0.18 0.91

Table 2(c): Correlation matrix-Logistic model with x
α β γ

α 1.000 -0.792 -0.909
β -0.792 1.000 0.972
γ -0.909 0.972 1.000

Table 3(a):ANOVA-exponential model with z

Source Degree of 
Freedom

Sum of 
squares

Mean 
Sum of 
Squares

F-value p-value

Model 2 11718.80 5859.40 16.52 <.0001
Error 64 22694.40 354.60    
Total 66 34413.20      

R2 49%
MAE 0.36

Table 3(b):Parameter estimates: Exponential model with z

Parameter Estimate Approx. 
Std. Error

Approx. 95% 
Confidence Interval

l 14.650 23.930 -33.154 62.459
m -0.001 0.021 -0.044 0.042

Table 3(c): Correlation matrix-Exponential model with z

l m
l 1.000 -0.994
m -0.994 1.000

 Fig. 3. Observed vs. Predicted aphid population by the logistic 
model with x 

 Fig. 4. Observed vs. Predicted aphid population by the 
Exponential model with z 

We now apply the methodologies as proposed 
in this paper to this data.

Approach 1: In the first approach, the functional 
relationship between y and each of the explanatory 
variables are added linearly to get a final model. 
We have seen that the relation between y and x 
is logistic, where as it is exponential in case of 
z. These functional forms are now linearly added 
and obtained the following model

( )( ) ( )Exp
1

a
= + l −m + ε

+b −g
y z

Exp x
	  (21)

The model has now 5 parameters to be 
estimated. Again SAS programme is written to 
obtain the parameter estimates. Results are given 
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in Table 4(a) to Table 4(c). The fitted model 
becomes

( )( )
80.16

1 1032.3 0.29
=

+ −
y

Exp x
	  

( )0.00037 0.19− − + εExp z 	 (22)

The R2 value is quite high and the model has 
very low MAE value which indicate that overall 
fitting of this model is very good. The graph 
between observed and predicted values is depicted 
in Fig. 5. The graph also shows the closeness 
between observed and predicted values.

Table 4(a): ANOVA: Approach-1

Source Degree of 
Freedom

Sum of 
squares

Mean 
Sum of 
Squares

F-value p-value

Model 5 17442.80 3488.60 12.54 <.0001
Error 61 16970.50 278.20    
Total 66 34413.20      

R2 76%
MAE 0.28

Table 4(b): Parameter estimates: Approach-1

Parameter Estimate Approx. 
Std. Error

Approx. 95% 
Confidence Interval

α 80.16 175.80 -271.30 431.60
β 1032.30 2438.70 -3844.20 5908.90
γ 0.29 0.24 -0.19 0.7762
l -0.00037 0.00622 -0.00001 0.000012
m 0.19 0.18 -0.171 0.5550

Table 4(c): Correlation matrix: Approach-1

α β γ l m
α 1.000 -0.682 -0.942 -0.356 -0.351
β -0.682 1.000 0.884 0.521 0.518
γ -0.942 0.884 1.000 0.439 0.436
l -0.356 0.521 0.439 1.000 0.999
m -0.351 0.518 0.436 0.999 1.000

Fig. 5. Observed vs. predicted aphid population by  
a model by approach-1

Approach 2: In the second approach, in the non-
linear models the respective variable is replaced 
by a linear function of all explanatory variables. 
Two models are developed. In the first model, 
i.e., in logistic model, the explanatory variable x 
is replaced by a linear combination of x and z. The 
final model becomes 

( )( )1
y

Exp x z
a

= + ε
+ b −g − l

	 (23)

Now this model has four parameters to be 
estimated. Again SAS programme is written to 
obtain the parameter estimates. The results are 
provided in Table 5(a) to Table 5(c). Though the 
R2 value and MAE value are quiet good, yet the 
graph for observed and predicted values as given 
in Fig. 6 indicates that the model not good enough 
for forecasting purpose.

Table 5(a): ANOVA-Approach – 2: Model 1 

Source Degree of 
Freedom

Sum of 
squares

Mean 
Sum of 
Squares

F-value p-value

Model 4 16602.5 4150.6 14.45 <.0001
Error 62 17810.7 287.3    
Total 66 34413.2      

R2 63%
MAE 0.32

Table 5(b): Parameter Estimates-Approach – 2: Model 1

Parameter Estimate Approx. 
Std. Error

Approx. 95% 
Confidence Interval

α 63.8987 129.8 -195.6 323.4
β 1110.0 3598.8 -6083.8 8303.9
γ 0.3159 0.2694 -0.2226 0.8545
l -0.00418 0.0215 -0.0471 0.0388

Table 5(c): Correlation matrix-Approach – 2: Model 1

a b g l
α 1.000 -0.677 -0.934 -0.0732
β -0.677 1.000 0.826 0.4642
γ -0.934 0.826 1.000 0.0216
l -0.073 0.464 0.0216 1.0000

 Fig. 6. Observed vs. Predicted Aphid Population by a  
Model by Approach–2: Model 1
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In the second model the explanatory variable 
z is replaced by a linear combination of other 
explanatory variables. The model considered is as 
follows:

( )y Exp x z= a −b − g + ε  	  (24)

This model has three parameters. SAS is 
again used to estimate the parameters. Results 
are presented in Table 6(a) to Table 6(c). Fig. 7 
depicts the curve between observed and predicted 
values.

Table 6(a): ANOVA-Approach – 2: Model 2 

Source Degree of 
Freedom

Sum of 
squares

Mean 
Sum of 
Squares

F-value p-value

Model 3 16593.4 5531.1 19.55 <.0001
Error 63 17819.9 282.9    
Total 66 34413.2      

R2 69%
MAE 0.36

Table 6(b): Parameter estimates-Approach – 2: Model 2 

Parameter Estimate Approx. 
Std. Error

Approx. 95% 
Confidence Interval

α 0.2984 0.4558 -0.6124 1.2093
β -0.00657 0.0137 -0.0339 0.0208
γ 0.2248 0.0653 0.0943 0.3552

Table 6(c): Correlation matrix-Approach – 2: Model 2 

α β γ
α 1.0000 -0.463 -0.7506
β -0.4630 1.000 -0.2320
γ -0.7506 -0.232 1.0000

Fig. 7: Observed vs. Predicted Aphid Population by a  
Model by Approach–2: Model 2

Here also we see that though the R2 value 
and MAE value are quiet good, yet the graph for 
observed and predicted values as given in Fig. 7 

clearly indicates that the model not good enough 
for forecasting purpose. Thus it is expected that 
the model developed by Approach 1 can be a good 
approach for building a non-linear model. 

4.	 DISCUSSION
The methodologies as proposed in the present 

paper are a noble idea to develop non-linear 
models with more than one explanatory variable. 
So far we used to develop non-linear models with 
time variable only which sometime do not clearly 
exploit the relation between response variable 
and time. Also in some situations, it is not at all 
possible to develop a non-linear model with time. 
Thus with this new approach, one can now be able 
to use other explanatory variables. Among the two 
approaches, the first approach gives better results. 
However, this is true for data set we have used 
in the example. In some other data sets, second 
approach may come out to be useful. Thus one 
has to exploit all possible kind of models to arrive 
at the final model. The approaches are empirical, 
but they have strong power to build up models 
according to situation. We have also forecast 
some observations beyond 28th Feb., 2003 up 
to which data are used to build up models. We 
have not presented these results in the paper. But 
among all the models presented in the paper, one 
developed by Approach 1, gives better forecast 
values as compared to the observed actual values. 
As mentioned earlier, fitting of models was carried 
out by SAS software. Programme codes can be 
obtained from the author on request.
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