
1.	 INTRODUCTION
Pulses in India are cultivated mainly on 

marginal lands under rain fed conditions. Due to 
the high level of fluctuations in pulse production 
and prices, farmers are not readily taking up 
cultivation of pulses despite government ensuring 
high wholesale pulse prices in recent years. 
Among the kharif pulses, Arhar and Urud are the 
major ones which regularly have high demand 
and also have high wholesale prices. In addition 
to it, these two pulses face the inherent problem 
of fluctuation in production and prices. Thus, it 
becomes necessary to understand the phenomenon 
that might govern the prices of these crops. Further, 
to have better insight into the process one needs 
to deal with both the crops together and come to 
a conclusion. Modelling of more than one time-
series together at present has become the need of 
the hour. With advent of large data storage and 
availability, as well as the fast computing systems 
one can easily deal with multiple series at once. 
Moreover, it has been noticed that the series tend 

to have a higher degree of interaction among them 
or they move together over time, which compels 
the researcher to consider all the series to better 
understand the phenomenon under consideration. 
Different multivariate time-series models are used 
for forecasting, but after the pioneering work of 
Sims (1980), Vector Autoregressive (VAR) model 
have become the most popular among them for 
correlated series. This phenomenon of correlation 
is also observed in agricultural data series. The 
VAR model is useful only for modelling the mean 
or the first order moment of the series. Thus to have 
a better understanding of the series, modelling and 
forecasting volatility has been a major area of time 
series research for some years now. Traditional 
econometric models assume a constant one-period 
forecast variances. To generalize this implausible 
assumption, Engle (1982) introduced a new 
class of stochastic process called Autoregressive 
Conditional Heteroscedasticity (ARCH) which is 
very useful where underlying forecast variances 
may change over time and is predicted by the 
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past forecast errors. However, ARCH model has 
some drawbacks such as high number of unknown 
parameters and rapid decay of unconditional 
autocorrelation function of squared residuals etc. 
To overcome these difficulties, Bollerslev (1986) 
proposed the Generalized ARCH (GARCH) 
model in which conditional variance is also a 
linear function of its own lags. This model is also 
a weighted average of past squared residuals, but it 
has declining weights that never go completely to 
zero. It provides much more flexible lag structure 
and it permits more parsimonious descriptions 
in most of the situations. The ability of GARCH 
model to capture volatility has been widely studied 
in literature (Lama et al. 2015). 

However, with increased globalization it 
is now widely accepted that agricultural price 
volatilities interact over time across commodities 
and markets. This feature can be better understood 
through a multivariate GARCH (MGARCH) 
model framework instead of working with separate 
univariate model for different commodities and 
markets. A class of MGARCH models have been 
developed over time. Engle and Kroner (1995) 
introduced a multivariate structure of GARCH 
model known as BEKK (Baba, Engle, Kraft and 
Kroner) model which is the direct generalization 
of univariate GARCH model and have huge 
flexibility. Bollerslev (1990) developed a relatively 
flexible approach known as Constant Conditional 
Correlation (CCC) model which allowed for 
combination of univariate GARCH model, with 
an assumption of constant correlation among the 
series over time. Engle (2002) proposed a new 
class of multivariate GARCH model known as 
Dynamic Conditional Correlation (DCC) model 
which has the flexibility of the univariate GARCH 
models coupled with parsimonious parametric 
model for the correlations. The use of these 
models for modelling the degree of interactions 
among various volatile commodities and markets 
can be widely seen in literature (Chevallier 2012, 
Teng and Lean 2013 and Li and Lin 2015). It is 
also interesting to note that most of the financial 
series exhibits leptokurtic behaviour which has 
been documented well in the literature. There 
are number of ways to deal with this problem 
and the use of Student-t distribution to model the 
error term is a promising alternative among them 

(Ku 2008). In this study, we have modelled the 
volatile agricultural price series using the class of 
MAGRCH model to understand the transmission 
of volatility among the series and its movement 
over time. Further, keeping in mind the inherent 
kurtosis nature of the series Student-t innovation 
have been incorporated in the models to better 
explain the characteristics of the series. The paper 
is organised as follows: In Section 2 brief details 
of the VAR, MGARCH models and testing of 
MARCH effect have been described, followed 
by empirical results in Section 3. Section 4 of 
the paper deals with the discussion of the results. 
Finally, the paper is concluded in Section 5. 

2.	 A BRIEF DESCRIPTION OF MODELS

2.1 VAR Model
Let ( )1 2, , ...,t t t ntY y y y=  denote an (n×1) vector 

of time series variables. The basic p-lag vector 
autoregressive VAR(p) model has the form:

1 1 2 2 3 3 ...t t t t p k p tY A B Y B Y B Y B Y e− − − −= + + + + + +     (1)

where, A is n × 1 vector of intercepts , Bi (i =1, 
2, …, p) is k × k matrices of parameters and  
et ~ iidN(0, S)

The number of parameters to be estimated 
in the VAR model is k(1+kp) which increases 
with the number of variables (k) and number of  
lags (p).

2.2 MGARCH Model
For a multivariate time series ( )1 , ...,t t kny y y=  

the MGARCH model is given by:

ttt Hy e= 2/1  	  (2)

where, H is k × k positive-definite matrix and of 

the conditional variance of Ct k  is the number of 

series and t = 1,2,…,n (number of observations). 

It is with the specification of conditional variance 

that the MGARCH model changes.

Engle and Kroner (1995) introduced the 

BEKK model which is the direct generalization 

of the univariate GARCH model. The resulting 

variance is dependent on the amount of currently 

available information. A general GARCH (p, q) 



Achal Lama et al. / Journal of the Indian Society of Agricultural Statistics 70(2) 2016 145–151 147

model (Bollerslev 1986) can be defined as:
2 2

0 1 1 1 1t t p t p t q t qh h ha a e a e b b− − − −= + + + + + +  ,

0, 0i ia b> > , 1i ia b+ < 	  (3)

where, th  is the conditional variances which 
depends on the previous error terms as well as 
previous conditional variances of the process.

Equation (2) can be transferred into 

multivariate GARCH model with a generalization 

of the resulting variance matrix Ht

11 12 13

21 22 23

31 32 33

t

h h h
H h h h

h h h

 
 =  
 
 

			    

(4)

Each element of Ht depends on the p delayed 
values of the squared te , the cross product of te  
and on the q delayed values of elements from Ht. 
In general, multivariate GARCH (1, 1) model can 
be written as: 

2
11 1 1 2 1 3

2
0 0 22 2 1 2 2 3

2
33 3 1 3 2 3

0 0

... 0 0

0 0
t

a
H C C a

a

e e e e e
e e e e e
e e e e e

  
  = + +   

    

      

11 11

22 22

33 33

0 0 0 0

0 0 ... 0 0

0 0 0 0

a b
a b

a b

   
   + +   
   
   

  

2
1 1 2 1 3 11

2
2 1 2 2 3 22

2
3 1 3 2 3 33

0 0

0 0

0 0

h h h h h b
h h h h h b
h h h h h b

  
  
  

    

  	    (5)

In compact form, the above equation can also 
be written as:

0 1 1 1t t t tH C A A B H Be e− − −
′′ ′ ′= + +

	
   	    (6)

For 2 variable case the model can be 
represented as:

Ht = 
2

11 12 11 12 1, 1 1, 1 2, 1

2
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t t t

t t t
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Ht = DtRDt

The core issues in MGARCH model is to 
construct the conditional variance-covariance 
matrix tH  . A relatively flexible approach is the 

CCC model introduced by Bollerslev (1990). This 

model assumes the conditional correlations to 

be constant. This restriction strongly reduces the 

number of unknown parameter and thus simplified 

the estimation. In case of CCC model the tH
represented as follows:

	 Ht = DtRDt	

where, ( )1/2 1/2
11, ,,...,t t kk tD diag h h=  and R is a symmetric 

positive-definite matrix whose elements are 

(constant) conditional correlations ρij, i, j = 1, 2, ... 
k(ρij = 1, i = j). Thus each conditional covariance 

is given by:

	
 tjjtiiijtij hhh ,,, ρ= 			     (7)

In case of DCC the R matrix is also time varying 

thus making it dynamic. The representation of the 
model is as follows:

	 Ht = DtRtDt

	 Rt = diag(Qt)
– 1/2 Qtdiag(Qt)

–1/2

where Qt = (1 – a – b)R + aut – 1 – ut – 1 ut – 1 + bQt – 1

and Ut = Dt
–1yt

R is the unconditional covariance matrix and 
the conditional covariances are given by :

, , , , , ,/ij t ij t ii t jj t ii t jj th q h h q q= 		     (8)

Qt is written as GARCH (1,1) type equation 
and then transformed to get Rt.
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The parameters of the models are estimated 
using the maximum likelihood estimation 
procedure.

2.3 Testing of MARCH Effect 
The appropriateness of VAR model depends 

largely on the behaviour of the residuals remaining 
constant over time. Thus, the MARCH – Lagrange 
multiplier (LM) test was carried out on the square 
of the residuals obtained after fitting the VAR 
model on two series to test whether the residuals 
do in fact remain constant. The results of the test 
revealed the presence of ARCH effect for both the 
series (Table 3).

2.4 Akaike Information Criterion and 
Bayesian Information Criterion 
Standard model evaluation criteria, such as 

Akaike information Criterion (AIC) and Bayesian 
Information Criterion (BIC), are used to compare 
the performance of different models. These 
criteria penalize the decrease in the degrees of 
freedom when more variables are added. The AIC 
and BIC values for GARCH model with Gaussian 
distributed errors are computed by:

AIC = −2 log(likelihood)+2T 

BIC = −2 log(likelihood)+log(Tk)

where, k is model degrees of freedom.

3.	 EMPIRICAL RESULTS
3.1 Data and Implementation

In this study, we have used two pulses series 
namely price index of Arhar and Urud. The data 
was collected from the Office of the Economic 
Adviser, Ministry of Commerce and Industry, 
Government of India. These series illustrate the 
complexity and variation of typical agricultural 
price data (Figs. 1-2). Each series contained 261 
data points (April, 1994 to January, 2016) and 
the entire series was used for modelling. The 
characteristics of the data sets used are presented 
in the Table 1. The visual inspection of these 
series (Figs. 1-2) clearly indicated the presence 
of volatility at several time-epochs. In addition, 
the skewness and kurtosis coefficients suggested 
the asymmetry and fat-tailed distribution of 

the series and the correlation coefficient (0.92) 
suggested the linear inter-dependence of the two 
series (Table 1). The presence of cointegration 
among the two series was also tested and the 
results (Table 2) clearly indicted the absence of it, 
with the alternate hypothesis being the presence 
of cointegration. This result was needed to have 
an understanding of the fact that the series have a 
long run dependency or not. This motivated us to 
use the VAR-MGARCH model with multivariate 
Student-t distribution instead of the usual 
multivariate normal distribution. The MARCH – 
Lagrange multiplier (LM) test was carried out on 
the square of the residuals obtained after fitting 
the VAR model on the two series to test whether 
the residuals exhibit heteroscedasticity (Table 3). 
The heteroscedasticity or volatility clustering 
phenomenon is observed in the price series 
and justifies the implementation of MGARCH 
models. We also explore the Stationarity of the 
series by implementing the augmented Dickey–
Fuller (ADF) test and we find that the series are 
stationary after first order differencing (Table 4).

3.2 Fitting of GARCH and MGARCH Models
Both the price series at first were modelled 

individually by univariate GARCH model and 
then by the MGARCH models. The results of 
the GARCH models are reported in Table 5. 
The results clearly indicate the persistence of 
volatility in both the series by the high value of 
the coefficient bj. For modelling the two series 
together we first modelled them with VAR(2) 
model to understand the causality relationship 
of the series among them, in terms of their mean 
response. After fitting of the VAR, residuals 
obtained from them were used as an input for 
MGARCH models. The estimates of VAR model 
is reported in Table 6. In case of MAGRCH we 
have first used the BEKK model and the results 
indicated the transmission of volatility among the 
series. The conditional volatilities obtained from 
this model are depicted in Fig. 3. The transmission 
of volatility was more from series b (Urud) to 
series a (Arhar), as evident from the values of the 
coefficients A21 and B21 (Table 7). The problem 
of this model lies in the fact that all the coefficients 
in the model were not statistically significant 
at 5% or 10% level of significance. Thus, the 
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accuracy of results obtained is questionable. In 
light of this finding we then focused on the CCC 
model. The estimates of the model were found to 
be significant and the series transmitted volatility 
among them with a correlation of 0.52 (Table 8). 
After achieving a positive insight of the conditional 
correlation, we tested for the presence of dynamic 
conditional correlation using Tse’s (2000) 
Lagrange Multiplier (LM) test. The 2χ  statistic 
(27.52) was rejected at 5% level of significance, 
confirming the presence of dynamic properties of 
the series. Further, we modelled the series using 
DCC model with multivariate normal distribution. 
The results of the DCC model were encouraging 
as all the parameters were found to be significant 
at 5% level of significance (Table 9). Further, to 
incorporate the leptokurtic effect DCC model 
with multivariate Student-t distribution was fitted 
to the series. The results obtained here were also 
encouraging and in line with that of DCC model 
with multivariate normal distribution. Along 
with it the shape parameter ( γ  ) of the Student-t 
distribution was also found to be significant at 1% 
level of significance (Table 10). The superiority of 
DCC-MARCH model with Student-t distribution 
to model leptokurtic pulses price series goes with 
the findings in literature (Ku 2008).

4.	 DISCUSSIONS
The two series under consideration were 

modelled using the VAR-MGARCH approach. 
Order of the VAR model was determined with the 
help of AIC and SIC criterion in which VAR (2) 
model was found to have the lowest values 16.16 
and 16.29 respectively. The diagnostic checking 
after fitting of VAR model clearly indicated the 
need for further use of MGARCH model to have 
a clear understanding of the series behaviour. We 
started by fitting the MGARCH-BEKK model to 
the residuals series to understand the pattern of 
volatility transmission among them. The results 
obtained clearly indicated the transmission of 
volatility from series a to series b (-0.40) and from 
b to a (0.50). The value of -0.40 can be interpreted 
as the transmission of persistent negative impact 
on series b due to the presence of volatility in 
series a. In a similar manner the value 0.50 is the 
positive impact that series a has on series b in 
terms of transmission of volatility between them. 

But, these effects are lower than their individual 
effects on their past shocks. The conditional 
variance graph obtained after fitting of the 
MGARCH-BEKK model shows a large amount 
of variability toward the end. This goes with the 
original series which too is more volatile at the 
latter half of the series, indicating its adequacy 
to capture volatility. Although, the BEKK model 
is adequate to study the effect of volatility 
transmission, it becomes necessary to explore the 
possibility of conditional correlation that might 
exist in the structure of conditional variance. In 
order to have an insight in this area, we have 
further used the MGARCH-CCC and MGARCH-
DCC models in the residual series. Results of the 
CCC model clearly suggested the presence of 
conditional correlation in the conditional variance 
exhibited by the series. The magnitude of constant 
conditional correlation being 0.52, whereas the 
dynamic conditional correlation obtained from 
DCC multivariate normal model is 0.24 for both 
ARCH and GARCH effects and 0.23 and 0.35 
respectively for ARCH and GARCH effects from 
DCC multivariate student-t model.

5.	 CONCLUSION
In this paper the performance of MGARCH 

models namely BEKK and DCC have been studied 
using monthly agricultural commodity price 
indices. The DCC model was further studied with 
multivariate normal and student-t distribution of 
error to incorporate the leptokurtic behaviour of the 
series. For both the series, the VAR (2)-MGARCH 
(1,1) was found to be suitable for modelling due to 
its low AIC and SIC values. The superiority of the 
DCC-MGARCH model for modelling the series is 
highlighted by the low AIC and SIC values and by 
the presence of dynamic conditional correlation 
in the series (Fig. 4) than by the corresponding 
BEKK-MAGARCH model. The DCC-MGARCH 
model with Student-t distribution was found to be 
superior for modelling than the DCC-MGARCH 
model due to the leptokurtic behaviour of the 
series. The methodology employed in this paper 
can also be used for modelling other multivariate 
agricultural time-series data exhibiting transmis-
sion of volatility among them.
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Fig. 1. Time plot of arhar price index

Fig. 2. Time plot of urud price index
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Fig. 3. Conditional variance of arhar (a) and urud(u) after fitting 
MGARCH-BEKK model
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Fig. 4. Dynamic correlation between arhar and urud

Table 1. Descriptive statisticsh

Arhar Urud

Mean 255.03 336.96

Median 181.40 293.80

Maximum 916.77 1059.01

Minimum 100.30 134.10

Std. Dev. 152.36 163.24

Skewness 1.91 1.72

Kurtosis 7.19 6.87

Jarque-Bera 351.79 292.82

Probability <0.001 <0.001

C.V (%) 59.74 48.44

Correlation 0.92

Table 2. Likelihood ratio tests for cointegration

Test Null 
Hypothesis

Eigen 
Value

Test 
Statistic

P value

Trace None 0.03 15.42 0.53

At most 1 0.02 5.61 0.51

Maximum 
Eigen Value

None 0.03 9.81 0.63

At most 1 0.02 5.61 0.51

Table 3. MARCH test for the series

Lags Q value P value

1 0.01 <0.0001

2 0.68 <0.0001

3 10.27 <0.0001

4 14.92 <0.0001

5 28.90 <0.0001

6 34.75 <0.0001

Table 4. Test for stationarity

Series ADF test 
(lag 12) P value

Arhar price 
index

Level 0.20 0.97

Differenced 12.69 <0.001

Urud price 
index

Level 1.48 0.58

Differenced 12.09 <0.001

Table 5. GARCH model estimates of individual series

Series Model a0 ai bj ai + bj

Arhar
GARCH 
(1,1)

1.75

(0.61)

0.14

(0.03)

0.81

(0.01)
0.95

Urud
GARCH 
(1,1)

8.59

(7.48)

0.15

(0.07)

0.84

(0.07)
0.99

*Values in the parenthesis are Standard Errors
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Table 6. Estimates of VAR(2) model

Series Arhar Urud
Arhar (-1) 1.23 0.20

(0.07) (0.10)
Arhar (-2) -0.21 -0.15

(0.079) (0.10)
Urud (-1) 0.001 1.25

(0.05) (0.07)
Urud (-2) -0.004 -0.29

(0.05) (0.07)
C -2.58 0.75

(2.05) (2.68)

*Values in the parenthesis are Standard Errors

Table 7. MGARCH-BEKK model estimates

Coefficients Estimate Std. Error t value P value

C11 4.03 1.33 3.01 <0.001
C21 6.05 2.20 2.74 <0.001
C22 3.89 2.36 1.64 <0.001
A11 0.54 0.08 6.69 <0.001
A21 0.10 0.07 1.31 0.190
A12 0.05 0.05 1.13 0.254
A22 0.58 0.07 7.65 <0.001
B11 0.89 0.10 8.70 <0.001
B21 0.50 0.09 5.25 <0.001
B12 -0.40 0.04 10.22 <0.001
B22 0.48 0.05 9.41 <0.001

Table 8. MGARCH-CCC model estimates

Coefficients Estimate Std. Error t value P value

C11 14.16 4.85 2.92 0.003

A11 0.72 0.18 3.90 <0.001

B11 0.40 0.10 3.79 <0.001

C22 60.24 13.64 4.42 <0.001

A22 1.47 0.26 5.56 <0.001

B22 0.12 0.05 2.22 0.027

CCC 0.52 0.04 10.65 <0.001

Table 9. Estimates of MGARCH-DCC model with multivariate 
normal distribution

Coefficients Estimate Std. 
Error t value P value

C1 0.15 0.47 0.32 0.743

w1 3.88 3.73 1.03 0.299

A11 0.22 0.06 3.68 <0.001

B11 0.77 0.08 9.72 <0.001

C2 1.01 0.80 1.24 0.212

w2 81.08 49.33 1.64 0.100

A22 0.66 0.18 3.66 <0.001

B22 0.32 0.14 2.27 0.022

d12 0.24 0.08 2.72 0.006

d21 0.24 0.11 2.12 0.033

Table 10. Estimates of MGARCH-DCC model with student-t 
distribution

Coefficients Estimate Std. Error t value P value
C1 0.15 0.46 0.32 0.743

w1 3.88 3.75 1.03 0.301

A11 0.22 0.06 3.66 <0.001

B11 0.77 0.07 9.73 <0.001

C2 1.01 0.81 1.24 0.214

w2 81.08 48.55 1.66 0.094

A22 0.66 0.18 3.65 <0.001

B22 0.32 0.13 2.38 0.017

d12 0.23 0.08 2.73 0.006

d21 0.35 0.13 2.59 0.009

γ 4.32 0.47 9.07 <0.001
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