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SUMMARY 

The presence of genotype-environment interactions necessitates the development of varieties or breeds suited or tailored to 
different agro-ecological environments based on their stability and adaptability characteristics. In many situations, the assumption 
about the normality and independence of observations as well as homogeneity of error variances is not fulfilled. This investigation 
aims to determine and compare, in terms of statistical power, the performance of different parametric and non-parametric methods 
for stability measures when the basic data are not normally distributed.  
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1. INTRODUCTION 
Crop and animal improvement would have 

been much simpler if there were no cross over 
genotype-environment interactions (GEI), which 
cause differential performance of different 
genotypes in different environments. The 
presence of genotype-environment interactions 
necessitates the developments of varieties or 
breeds suited or tailored to different, agro-
environments based on their stability and 
adaptability characteristics. If possible, the 
breeder would like to have varieties, which show 
high performance for yield and other agronomic 
traits over as a wider range of environmental 
conditions as possible. However, the wide 
occurrence of GEI causes difficulty in the 
identification of superior varieties. In order to 
overcome this difficulty an attempt is usually 
made by the plant breeder to reduce the GEI, i.e. 
dependence of the genotypic ranking on 
environmental conditions through special 

breeding techniques like resistance breeding. For 
the final choice of varieties for general/specific 
adaptation, apart from the mean performance the 
stability characteristics of the trial genotypes 
have to be given due consideration. 

Initially there were four different approaches 
to the statistical analysis of GEI (Prabhakaran 
and Jain, 1994). These are, the ‘Variance 
component approach’, ‘regression approach’, 
‘biometrical genetics approach’ and the ‘genetic 
correlation approach’. The choice among these 
methods depend on the particular situation in 
hand and the type of data that are collected. 
Subsequently various concepts of stability were 
advanced. Several procedures for analyzing GEI 
and yield stability were proposed. Most of these 
procedures (Prabhakaran and Mehra, 2002), 
however, were parametric methods performance 
of which were not quite satisfactory from the 
standpoint of breeders. The scientists therefore 
started looking for non-parametric measures 
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which allow the selection of genotypes 
simultaneously for yield and stability. 

There is hardly any study on the performance 
of non-parametric as well parametric measures 
when the basic data is not normally distributed. 
The objective of this study is therefore to 
investigate the performance of non-parametric as 
well as parametric measures when the basic data 
is not normally distributed. 

2. NON-PARAMETRIC STABILITY 
MEASURES 

There is ample justification for the use of 
non-parametric measures in the assessment of 
yield stability of crop varieties. Their chief 
advantages are (i) No assumptions about the 
distribution of phenotypic observations are 
needed, (ii) Sensitivity to measurement errors or 
to outliers are much less compared to parametric 
measures, (iii) Additions or deletions of one or a 
few genotypes do not cause distortions to non-
parametric measures, (iv) Most of the time, the 
breeder, is concerned with crossover interaction, 
an estimate of stability based on rank-
information, therefore, seems more relevant and 
(v) These measures are particularly useful in 
situations where parametric measures fail due to 
large non-linear GEI. In literature, non-
parametric measures have been widely employed 
in the selection of crop varieties especially when 
the interest mainly lies in crossover interaction 
(Huhn 1996, Nassar et al., 1994, Thennarasu, 
1995, Raiger and Prabhakaran, 2000, 2001). 

The ranks based on uncorrected observations 
have been corrected to propose the mean rank 
difference and variance of ranks as stability 
statistics. Nassar et al. (1994) proposed six 
different stability measures, three based on ranks 
and the remaining based on phenotypic values 
and compared their distributional properties 
namely the power of the tests and their statistical 
significance simultaneously. Thennarasu (1995) 
proposed four non-parametric measures and 
showed that two of them performed better than 
the earlier measures. Raiger and Prabhakaran 
(2000, 2001) also conducted a detailed 
investigation on the utility of the non-parametric 

procedure for detecting genotype-environment 
interaction and assessing the stability of 
individual genotype. They computed type I error 
and power of the test which are useful in 
evaluating the merits of various stability 
measures. Performance of non-parametric 
measures vis-à-vis parametric measures was 
assessed on these criteria. 

Consider t genotypes tested in s 
environments. In non-parametric analysis of GE 
interaction we deal with ranks of genotypes 
separately for each of these s environments. The 
rank of a genotype in a particular environment 
cannot be based purely on the mean phenotypic 
values Yij, because the stability has to be 
measured independently of the genotypic effect. 
Therefore, rij the rank of the ith genotype in the jth 
environment is determined on basis of the 
corrected phenotypic values, namely  
( .iij YY  ),

 .iY being the mean performance of the 
ith genotype. Further, let .ir  and diM be mean and 
median of ranks based on uncorrected values ( ijr

) and *
.ir  and *

diM be mean and median of ranks 
based on uncorrected values ( ijr ). Some of the 
non-parametric measures from these 
considerations are given in Table 1.  

It is a known fact that the non-parametric 
methods are less powerful than their parametric 
counterparts. The study conducted, against this 
background, by Raiger and Prabhakaran (2000) 
has shown that when the number of genotypes in 
the trial is fairly large, the power efficiency of 
the non-parametric measures will be quite close 
to those of the parametric measures. So in 
situations which are commonly encountered, i.e. 
those involving a good number of genotypes 
being performance-tested in a set of 
environments whose number is, neither too small 
nor too large, the risk of selecting inferior 
genotypes from the use of non-parametric 
measures is minimal. It may, however, be noted 
that in all such studies the genotype by 
environment data were generated from normal 
populations. The behaviour of the various non-
parametric and other measures under non-
normality has never been considered in literature. 
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Table 1. Some of the Reported Non-parametric Stability Statistics** According to their Utility 
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** The S statistics (Si1, Si3, Si4 and Si6) were proposed by Huhn (1979) and the NP statistics (NP1, NP2, NP3 and NP4) 
by Thennarasu (1995) 

Theoretical relationships of non-parametric 
measures, among themselves, and to the 
common parametric measures have not so far 
been elaborated. These, therefore, have to be 
judged on the basis of empirical (rank) 
correlations.  

3. SIMULTANEOUS SELECTION FOR 
YIELD AND STABILITY 

Integration of stability with performance 
through suitable measures will go a long way in 
selecting high yielding, stable cultivars. Several 
methods, for simultaneous selection for high 
yield and stability, and relationships among 
stability measures were discussed by Kang and 
Pham (1991). Kang (1993) discussed the reasons 
for emphasizing stability in the selection process. 
Generally, Type II errors constitute the most 
serious risk for growers (Johnson et al. 1992, 
Kang 1993) and an emphasis on stability during 
selection helps reduce such errors and is 
beneficial for growers. The development and use 
of Yield-Stability statistic (YSi) has enabled 
incorporation of stability in the selection process 
(Kang 1993). A computer program (STABLE) 
for calculating this statistic is available free of 
charge (Kang and Magari 1995). Kang’s Yield-
Stability statistic (Kang 1993) has been 
evaluated and found to be useful for 
recommending varieties (Pazdernik et al. 1997, 
Hussein et al. 2000). However, Bajpai and 

Prabhakaran (1998, 2000) observed that Kang’s 
rank-sum method has an inherent weakness that 
it is weighing heavily towards yield 
performance, apart from the arbitrariness in the 
scoring procedure. Accordingly they proposed 
three new indices (I1, I2, I3), which were found to 
be superior to Kang (1993) indices. Dashiell et 
al. (1994) evaluated the usefulness of several 
stability statistics for simultaneously selecting 
for high yield and stability of performance in 
soybean. Fernandez (1991) also evaluated 
stability statistics for similar purposes. Other 
useful works in the area include, Kang (1990), 
and Gravois et al. (1990). 

Several non-parametric measures were also 
proposed [Huhn 1996, Thennarasu 1995, Raiger 
and Prabhakaran 2000, 2001]. Nassar et al. 
(1994) compared the performance of 3 
parametric and 3 non-parametric measures based 
on 2 criteria, convergence of observed  (type-I 
error) to the postulated  and the power of the 
test, (1-). But all these studies were based on 
normally distributed dataset. Based on this 
investigation they recommended the parametric 
measure, sOx

j
ij /   and the non-parametric 

measure sOr
j

ij /  [where xij is the phenotypic 

value of the ith genotype in environment j, rij is 
the rank based on corrected xij and O is some 
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measure of optimum performance] for varietal 
selection. Based on the same criteria, Thennarasu 
(1995) and Raiger and Prabhakaran (2000) found 
that, in situations involving a good number of 
genotypes, which are to be tested in a set of 
environments, whose number is neither too small 
nor too large, the measure NP(2) (Table 1) is a 
useful combined-measure. 

In the present investigation, an attempt has 
been made to compare the performance of 
stability measure for normal and no-normal data. 
The performance of non-parametric measure vis-
à-vis parametric measures has also been 
considered for both normal as well as non-
normal conditions.  

4. METHODOLOGY 
Variates from different distributions such as 

normal, gamma and beta, are generated. The 
variates so generated are used for computing 
different parametric as well as non-parametric 
stability measures. They are compared with the 
stability measures coming from normal 
observations. The type 1 error (α) and power of 
the test (1-β) are considered for empirical 
comparison. For simulation of data from non-
normal population we used he following 
algorithms: 

4.1. Standard Gama Distribution 
1. Generate G(1) variates 

2. Set X = 
k

kX where each kX is G(1) 

3. Return X 

Setting XY   will generate variates from  
G ( ,p ), with p.d.f. 
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4.2 Beta Distribution 
Initialization 

1. Set =a + b if (a, b)  1 set = 1/min 
(a, b) 

Otherwise set =  

Set  

2. Generate  and  and set V=  log  
{ / (1- )} 

W=a.exp(V) 

3. If  log{( + (b + W) } + V-log(4) < 
log( ), go to (i) 

4. Return X= W/ (b + W) 

4.3 Stability Measures Considered 
Consider t genotypes having performance 

tested in s environments. In non-parametric 
analysis of GE interaction we deal with ranks of 
genotypes separately for each of these s 
environments. The rank of a genotypes in a 
particular environment cannot be based purely 
on the phenotypic values (Yij) because the 
stability has to be measured independently of the 
genotypic effect. Therefore, rij the rank of the ith 
genotype in the jth environment is determined on 
basis of the corrected phenotypic values Yij, 
defined as  

Yij=Yij-Yi 

Yi being the mean performance of the ith 

genotype. The ranks obtained from these 
corrected Yij’ s depend only on the GE 
interaction and error components and these are 
tabulated in the following table. 
Genotype Environment Mean 
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For ranking purpose, the smallest Yij in a 
particular environment is given rank one, the 
next higher value, rank two, and so on. Using the 
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rank values and rank means, Thennrasu (1995) 
proposed the following stability measures 

 

  

 

 

are studied when the basic data are non-
normal.  

As regards parametric measures we used 
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4.3 Determination of Type I Error and Power 
of the Test 

To apply the test of significance of any 
measure through 2 test or by normal Z test, it is 
necessary that the stability measure should 
follow normal distribution. For ensuring non-
erroneous selection of genotypes, the power of 
the test should be high. In order to find out a 
better stability parameter for a particular 
situation, comparison is carried out, making use 
these distributional properties. To examine 
whether the normality holds or not, a simulation 
programme is run and the observed and expected 
probability of type I error ( ) for various 
stability measures, parametric as well as non-
parametric, are compared. The soundness of the 
normal approximation for each of these measures 
is thereby assessed. A comparison is also made 
in terms of their power of the test. The essential 
details of the simulation procedure are given in 
the following paragraphs. 

4.4 Simulation of Variates Values 
According to Nassar et al. (1994) the 

ultimate distributional properties and the power 
of F test do not change much when the variates 
values are generated on computer and this is the 
motivation for the adoption of the procedure for 
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the present investigation. The simulation of 
normal variate with general mean   and error 
standard deviation  e is carried out in two 
stages. In the first stage, the standard uniform 
variates are generated which is further used to 
generate standard normal variates. The 
generation of standard uniform variates starts 
with the use of a random seed value, which 
allows the first function to generate a random 
number. The seed value used in the generation of 
first random number will change itself and 
produce an entirely different random number, 
and this process continues. The generated 
random number in this function, every time, gets 
converted in to a standard uniform variates, 
which will be used in second stage. 

The second stage is the generation of normal 
variates with specified   and  e values and this 
is achieved as follows. A second subroutine 
receives generated standard uniform variates 
from the first stage and converts them in to a 
standard normal variates. These standard normal 
variates are used in the main programme to 
generate normal variables with a given mean and 
standard deviation. For generating a normal 
variates under the null hypothesis that all 
genotypes are equal in their effects, with mean   

and error variance 2
e , the model needs to 

include only the environmental and error effects. 
Therefore, in the generation of a single normal 
value (Yij), the programme invokes both the 
subroutine twice. But the generation of the 
variates values under the alternative hypothesis 
that the genotypes are not stable over the 
environment involves the inclusion of the effects 
of genotype, environment and GE interaction in 
the model. Thus the programme requires the 
invoking of the subroutine four times one each 
for genotypic, environmental, interaction and 
error effects. The programme, therefore, takes 
more running time under alternative hypothesis 
than under null hypothesis. Adopting this 
procedure the probability of type I error and 
power of the test are studied in the following 
sections. 

4.5 Determination of Type I Error 
The fact that the stability measures 

developed based on ranks can be approximated 
to normal distribution at least in the tail ends of 
the distribution has helped in the development of 
the significance test for equality of stability 
values. The simulation procedure for the 
determination of (Yij) values under null 
hypothesis is considered in what follows: 

Under the null hypothesis the performance of 
ith genotype in jth environment can be expressed 
as  

Yij = +ej+ij 

Where,   is the overall population mean, 

ej is the fixed effect of environment j with 
variance 2. 

ij is the random error associated with ith 
genotype (l=1,2,…,t) in jth environment and 
normally distributed with mean zero and 
variance 2

e . 

Since the environmental effect is same for all 
the genotypes, ej has no influence on the null 
hypothesis, in so far as the non-parametric 
measures are concerned and so in the generation 
of Yij values ej can be conveniently assumed to be 
zero. For the simulation of the requisite data, the 
parametric values of   and σ  were taken from 
the extensive data from All India Coordinated 
Project on Pearl millet. Assuming the grain 
yields to be normally distributed, the required 
normal variates (Yij) were generated as per the 
procedure discussed earlier, taking   =1984 and 
σ  =152.22 and σ  =1121. It is to be noted that 
the value of   and σ  will not have any specific 
effect on type I error thus any mean and error 
variance can in fact be used. 

The simulation programme is run for 
generating sets of t  s observations, coming 
from t genotypes (8,12,16,20,24) and s 
environments (5,10,15,20). For each (t,s) 
combination the data are generated using three 
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different random seeds thereby obtaining 3 sets 
of ts observations to serve as 3 replications. For 
each replication of specified ts observations, the 
values of non-parametric stability measures, 
developed non-parametric stability measures and 
also of the parametric measures considered are 
arrived at. This yields different sets of 3  t 
values, one for each stability parameter, and each 
sets is subjected to a one way ANOVA for 
testing the genotypic differences if any. For each 
(t,s) combination the entire procedures is 
repeated 1000 times and the number of times the 
observed F ratios exceed the table F value is 
determined. This number expressed as a 
proportion is our observed type I error. The 
observed   is computed for different expected 
levels of significance (= 0.01, 0.025, 0.05, 
0.10). For these expected   levels the table 
values of F with degrees of freedom (t-1) and 2t 
are taken as critical values. The same procedures 
are followed for gamma and beta distribution. 
For the comparison of observed   with a 
specified expected   has been presented in the 
result and discussion section. These are exhibited 
for different stability measures mentioned above 
for different combination of t and s. 

4.6 Power of the Test 
The superiority of particular stability 

measure in a given situation is judged on the 
basis of the power of the test. A stability measure 
giving a higher amount of power is considered 
superior of another with lesser power. This study 
of power also helps in determining the number of 
genotypes and environments required for a given 
power. The following is the simulation 
procedure adopted for the computation of the 
power in various parameter combinations. For 
the comparison of the stability measures with the 
parametric and non-parametric measures 
mentioned in the previous section in terms of 
their power efficiency under the full model 
assuming same experimental design.  

Yij =+gi+ej+(ge)ij+ ij 

Where the symbols have their usual 
meanings. The generation of variates values is 

carried out as explained earlier. For the 
simulation purpose, the parametric values as 
determined from the real data on pearl millet 
have been used. Data are generated for different 
combination of t (8, 12, 16, 20 and 24) and s (5, 
10, 15 and 20). With the help of the t  s 
simulated normal values, t genotypic stability 
values are calculated for all the stability 
measures. In fact, we consider two additional set 
of t  s observations obtained from different 
seeds. These sets along with the first set serve as 
3 replications of t genotypic stability values 
which are analyzed by one way ANOVA for 
equal genotypic effects. The observed F value 
computed from the simulation is compared with 
the table F value with [(t-1), 2t] degrees of 
freedom. This procedure is repeated 1000 times 
(5000 in some cases) and the number of times 
the observed F statistic from ANOVA exceed the 
tabular F values at each level of significance,   
(0.01, 0.025, 0.05 and 0.10) is worked out. The 
power of the test is determined therefrom. The 
values for different combinations of , t and s 
are presented in following section. 

5. RESULTS AND DISCUSSIONS 
As mentioned earlier the non-parametric 

measures are distribution free and hence these 
measures can be computed even when the 
genotype-environment data do not follow normal 
distribution. These have also been resorted to 
when the nonlinear component of GE interaction 
is so large that the parametric measures fail to 
provide any meaningful interpretation of the 
stability factor. It is against this background that 
a comparison between non-parametric and 
parametric measures have been made through the 
simulation procedure outlined in sections. The 
observed values of type-1 error () for the non-
parametric measures, at expected =0.05, and 
for different genotype (t) and environment (s) are 
presented in Fig. 1. Similar values for the 
parametric case are given in Fig. 5. From these 
Fig. it is evident that the agreement between 
observed and expected  is more striking in the 
case of non-parametric measures. As regards the 
convergence of observed to expected  it is 
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faster in the case of NP(2) than the remaining 
measures; for a small number of environments 
(s) it needs lesser number of genotypes to 
converge; though the values of s and t depend on 
the level of true . In this respect the measure 
NP(1) is closely behind NP(2). The power of the 
tests for the non-parametric cases as well as for 
the parametric cases is also reported.  

5.1 Type 1 Error  
The type 1 error for  = 0.01, 0.025, 0.05, 

0.10 are obtained for normal distribution and 
only type 1 error for  = 0.05 is exhibited in Fig. 
1 to save space. From the Fig. it is seen 
convergence of level of significance increasing 
with increase number of genotypes. Among the 
four nonparametric stability measures, all 
measure shows, all most same performance, NP
2  is the best. 

5.2 Power of the Test 
Gamma Distribution: The power of test in 

one way ANOVA for different combinations of 
genotype an environment for different level of 
significance  = 0.01, 0.025, 0.05, 0.10 are 
computed and only for  = 0.05 is tabulated in 
Fig. 3 to save space. It is noticed that with increase 
number of genotypes, the power increases. With 
increased level of significance, the power 
increases. NP1 has better power then NP3, NP4 and 
NP2. 

Beta Distribution: In case of beta 
distribution the results are exhibited in Fig. 3. 
NP3 shows better performance than NP2, NP1 
and NP4. 

Normal Distribution: Results of normal 
distribution are shown in Fig. 4. NP2 and NP3 
show better performance then NP4 and NP1. 

5.3 Parametric Measures 
Normal Distribution: In case of normal 

distribution the type1 errors are reported in Fig. 
5 and powers are exhibited in Fig. 6. P1 , P 6 show 
better power in other and P4 shows poor 
performance. 

Gamma Distribution: The results in case of 
gamma distribution are tabulated in Fig. 7 and 8. 
Here it is noticed that P 4  shows poor 
performance where as P 1  is the best. 

Beta Distribution: In case of beta 
distribution, the results are shown in Fig. 9 to 10. 
In case of power the only measure P 1  shows 
good performance whereas the rest measures 
show very poor result. 

Thennarasu (1995) had already reported that 
the power of the test increases as the magnitude 
of eg   decreases. So this aspect was kept 
outside the purview of the present investigation. 
As expected the power of the test was, in 
general, higher in the parametric situations than 
in the non-parametric situations. It is also seen 
that the power increases rapidly with the increase 
in the number of genotypes. On the other hand 
the change of power for any increase in the 
number of environments is rather small. A 
notable feature emerging from the investigation 
is that when the number of genotypes in the trial 
is fairly large, the power of the non-parametric 
measures will be quite close to those of the 
parametric measure. So in these situations the 
risk of selecting inferior genotypes from the use 
of non-parametric measures is minimal. Among 
the non-parametric measures, power of NP(1) is 
comparable to those of NP(3) and NP(4) and is 
definitely superior to both NP(2). We have 
already seen that the normal approximation is 
adequate in terms of  convergence in the cases 
of both NP(3) and NP(2). Now we have noted 
that in respect of power efficiency, NP(3) is 
superior to NP(2). Accordingly, in situations 
involving a large number of genotypes, to be 
performance tested in a set of environments, 
whose number is neither too small not too large 
the measure NP(3) can be used for selecting 
stable genotypes. In comparison parametric and 
nonparametric measures it is noticed that in 
small sample parametric measures have better 
power than nonparametric measures. But in case 
of large sample they equally perform, even 
nonparametric measures have better power than 
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it counterpart. In some non normal distribution 
parametric measure failed where as the 
nonparametric shows better performance.  

 

Fig. 1. Comparison between Observed and Expected Type I Error (α) for 
Different Number of Genotype (t) Tested in Different Environments for 

Various Non-parametric Measures (Expected α =0.05) 

 

Fig. 2. Comparison of Power of the Test in a One Way ANOVA for the 
Different Combinations of Number of Genotypes (t) and Number of 

Environments (E) at α = 0.05 for Different Non-Parametric Measures in 
Case of Gamma Distribution  

 

Fig. 3. Comparison of Power of the Test in a One Way ANOVA for the 
Different Combinations of Number of Genotypes (t) and Number of 

Environments (E) at α = 0.05 for Different Non-Parametric Measures in 
Case of Beta Distribution 

 

Fig. 4: Comparison of Power of the Test in a One Way ANOVA for the 
Different Combinations of Number of Genotypes (t) and Number of 

Environments (E) at α = 0.05 for Different Non-parametric Measures in 
Case of Normal Distribution 

 

Fig. 5: Comparison between Observed and Expected  
Type I Error (α) for Different Number of Genotype (t) Tested  
in Different Environments for Various Parametric Measures  

in Case of Normal Distribution 

 
Fig. 6. Comparison of Power of the Test in a One Way ANOVA for the 

Different Combinations of Number of Genotypes (t) and Number of 
Environments (E) at α = 0.05 for Different Parametric Measures in Case 

of Normal Distribution 
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Fig. 7. Comparison between Observed and Expected  
Type I Error (α) for Different Number of Genotype (t) Tested  

in Different Environments for Various Parametric Measures in Case of 
Gamma Distribution 

 

Fig. 8. Comparison of Power of the Test in a One Way ANOVA for the 
Different Combinations of Number of Genotypes (t) and Number of 

Environments (E) at α = 0.05 for Different Parametric Measures  
in Case of Gamma Distribution 

 

Fig. 9. Comparison between Observed and Expected Type I Error (α) for 
Different Number of Genotype (t) Tested in Different Environments for 

Various Parametric Measures in Case of Beta Distribution 

 

Fig. 10. Comparison of Power of the Test in a One Way ANOVA for the 
Different Combinations of Number of Genotypes (t) and Number of 

Environments (E) at α = 0.05 for Different Parametric Measures  
in Case of Beta Distribution 

6. CONCLUSION 
The paper is concerned with the comparison 

of non-parametric measures with parametric 
measures in their power efficiencies and stability 
assessments in case of normal as well as non-
normal situation. Thennarasu (1995) proposed 
four non-parametric measures, and showed that 
two to them performed better than the measures 
proposed by earlier workers. However, there has 
been hardly any attempt to tackle the difficulties 
that arise when data are non-normal. The 
performance of non-parametric measures vis-à-
vis parametric measures has also not been 
considered earlier in case of non normal data. 
The results of the investigation will be quite 
useful to the plant breeder and geneticists who 
would be able to select promising genotypes 
simultaneously for crop yield and crop yield 
stability. This in turn will promote sustainability 
of crop production, which the planners and 
policy makers are looking for, and will 
ultimately ensure greater food availability and 
security for our ever-increasing population. 
Type1 error and power of different 
nonparametric as well as parametric measures 
are obtained when data are normal as well as 
non-normal like gamma and beta distribution. 
With small sample sizes, the power of parametric 
measures was higher than nonparametric 
measures. When sample sizes were fairly large, 
the power was close to or higher for 
nonparametric measures. 
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