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SUMMARY 

The assumption of normality in data has been considered in the field of statistical analysis for a long time. However, in many 
practical situations, this assumption is clearly unrealistic. It has recently been suggested to study the performance of various 
statistical techniques like classification by using the data from distributions indexed by skewness/ shape parameters. In this study, 
four different classification techniques, namely linear discriminant analysis, quadratic discriminant analysis, k-th nearest neighbor 
and oblique axes method are considered for classification of observations. To assess the performance of the above techniques under 
non-normality caused by skewness, which is introduced in the ricebean data by using multivariate skew-normal distribution through 
simulation. Apparent error rate is used to study the classification performance of these techniques. The result of this study can be 
used for choosing the best method of classification for skewed-normal situation. The results indicate that k-th nearest neighbour 
followed by oblique axes methodand linear discriminant analysisperform better in skew-normal situations than normal condition 
and quadratic discriminant analysis performed better in normal data. For maximum consistency and accuracy of classification of 
skew-normal data, k-th nearest neighbor is best among the four classification techniques.  

Keywords: Classification, Linear discriminant analysis, Quadratic discriminant analysis, k-th nearest neighbor, Oblique axes 
method, Apparent error rate, Multivariate skew normal distribution. 

1. INTRODUCTION 
Classification is of broad interest in science 

because it permeates many scientific studies and 
also arises in the contexts of many applications. 
For example in agriculture, crop varieties are 
classified into different groups which are suitable 
for different agroclimatic zones of a region and in 
the biological and medical sciences, applications 
of classification procedures include identifying 
patients with chronic heart failure, detecting lung 
cancer etc. The primary goal of classification is 
to correctly sort out objects into two or more 
mutually exclusive groups. Classification is often 

categorized into two subtypes: supervised and 
unsupervised (Rausch and Kelley 2009). 
Supervised classification, also known as 
discriminant analysis is used to correctly assign 
future objects to groups that are already known to 
exist (Johnson and Wichern 2002). Unsupervised 
classification is used to assign objects to groups 
that are not known a priori. Several researchers 
have utilised assumptions of normality in the data 
for the classification of observations in to two or 
multiple groups (McLachlan 1992). However, 
these studies have prolonged this practice for 
many years without using the flexible and 
modern distributions that have been introduced 
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recently. Each classification technique has its 
own strengths and limitations based on its mild 
assumptions. For example, the typical 
discriminant function method used is the linear 
discriminant function (LDF) when the data 
followed normal distribution and dispersion 
matrices are equal (Bobrowski 1986), and the 
quadratic discriminant function (QDF) (Hubert 
and Van der Veeken 2010), when normality of 
the data is satisfied. The real world data in 
general and crop morphological data in particular 
do not satisfy the assumptions like normality, 
equality of dispersion matrices (Wahi and Bhatia 
2005). The selection of appropriate classification 
techniques for the grouping of crop genotypes, 
when the non-normality in the data is due to the 
shape parameters of the distribution is of 
paramount importance. 

Simulation studies are extensively used by 
the researchers to study the performance of the 
classification techniques when some assumptions 
about the data characteristics are violated (Kiang 
2003). For example, Whal and Kronmal (1977) 
used the simulation techniques to compare the 
performance of three discriminant functions i.e. 
the quadratic, best linear and Fisher’s linear 
function in classifying individuals into two 
multivariate normally distributed populations 
when the dispersion matrices are unequal and the 
results indicated that for large samples from 
multivariate normal distributions, the quadratic is 
much better than Fisher’s function and for small 
samples, the former performs worse than later. 
Wahi et al. (1986) used the best LDF for 
comparing the different grades of sheep in cross 
breeding programme and the instances state that 
80% of comparisons among the different grades 
of sheep the probability of misclassification by 
the best LDF were found to be either lower or 
equal to the probability of misclassification 
obtained by Fishers linear discriminant 
function.An alternate classification technique 
was given by Das (1998) which is based on the 
classification of observations using distances in 
oblique co-ordinate system. Another case study 
conducted by Erimafa et al. (2009) suggested that 
LDF has hit ratio 88.2% and a valid tool for 

classifying fresh students of unknown origin into 
predefined groups (poor class degree and better 
class of degree). The effect of non-normality on 
LDA was conducted by Rausch and Kelly (2009) 
using Monte-Carlo simulation and the results 
showed that LDA is less robust than the logistic 
regression. Soni et al. (2010) applied different 
classification techniques like classification and 
regression tree, linear and quadratic discriminant 
analysis to the Indian stock market data with an 
aim for maximising profit of market analyst and 
investors to make decision for selling or 
purchasing stock a particular company. The 
relative efficiency of linear classification rule in 
multi group discriminant analysis through 
Monte-Carlo study was conducted by Glele et al. 
(2010). The effect of different combinations of 
dimensions and sample size was undertaken and 
they showed that for normal and homoscedastic 
populations, the efficiency of the rule is better for 
large number of groups. In this study, we tried to 
understand the strength and limitation of four 
different classification techniques when non-
normality in the data is introduced by the 
skewness/shape parameters in a controlled 
setting. The intention here was to investigate how 
the classification techniques perform when 
certain assumptions are violated. Further, we 
studied the effect of skewness levels, sample size 
and dimension as well as their combinations on 
the performance of these techniques. The finding 
from this study would helpful in choosing the 
proper classification techniques for normal and 
skewed-normal situations. 

2. MATERIALS AND METHODS 
The secondary data on 131 genotypes of 

ricebean (Vigna umbellate L.) grown at 
Bhubaneswar, Odisha are used. The data is 
available in the Annual Report for the year 2007-
08 of All India Coordinated Research Network on 
Underutilized Crops, NBPGR, New Delhi. The 
data consists of 9 morphological quantitative 
characters such asdays to 50% flowering, days to 
maturity, plant height (cm), pods per plant, pod 
length (cm.), seeds per pod, 1000 seed wt. (gm), 
seed yield/plant (gm), plot yield (gm). In the 
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present investigation, we considered the ricebean 
data with nine morphological characters comprises 
of three groups. First group consists of 52 
genotypes, second group consists of 38 genotypes 
and third group consists of 41 genotypes. The 
normality of the data set is tested by using the 
Mardia’s test (1980). It is found that both the 
skewness and kurtosis components are coming 
highly significant.  

2.1 Linear Discriminant Analysis 
Linear Discriminant Analysis (LDA) is one of 

the most popular methods of supervised 
classification. This procedure can be 
conceptualized as a nonparametric method (i.e., 
distributional assumptions are not explicitly made) 
because it maximizes between group variability 
relative to within-group variability. However, it 
can also be conceptualized as a parametric 
procedure for classification. In particular, LDA is 
optimal (i.e., it maximizes classification accuracy) 
under the assumptions that the within-group 
predictors follow multivariate normal distributions 
and that the population covariance matrices are 
equal across groups. 

2.2 Quadratic Discriminant Analysis 
Quadratic Discriminant Analysis (QDA) is 

closely related to LDA and commonly used 
techniques for multi-group classification. Unlike 
LDA however, in QDA there is no assumption 
that the covariance matrices of each the groups 
are identical. When the assumption is true, the 
best possible test for the hypothesis that a given 
measurement is from a given group is the 
likelihood ratio test. 

2.3 k-th Nearest Neighbor 
The non-parametric (or distribution free) 

method, KNN (kiang, 2003; Wu, et al., 2010) is 
used for classifying observations into multiple 
groups based on a set of quantitative variables. It 
relaxes the normality assumption and does not 
require a functional form as required in LDA and 
QDA. The distance, d(x,y), between any two 
observations is usually defined by Mahalanobis 
distance between x and y. Using the nearest 

neighbor rule, an observation is classified to one 
of the groups to which a majority of its k-th 
nearest neighbors belong. The sample 
distribution approximation is accomplished by 
dividing the variable space in to arbitrary number 
of decision regions. 

2.4 Oblique Axes Method 
The Oblique Axes Method (OAM) is 

considered to be a non-parametric (or distribution 
free) method as it does not assume the 
distributional form of the population. The method 
classifies the observations into one of the several 
groups based on the square of distances between 
points corresponding to observation vectors using 
the oblique co-ordinate system. Some weight 
factors are associated with the distances are 
known as compounding values (Rao, 1946). 
These weights can be calculated by maximizing 
the ratio between average squared distances of all 
possible pairs of the group mean vectors to the 
pooled average squared distances within groups. 

Next, to classify an observation vector 
1 2 3( ,  z , z . . ., z )pz in to one of the several groups, 

the distance square of a point of the given 
observation vector from that of each of the points 
of the mean vectors of different groups is 
obtained. The observation vector belongs to that 
population whose mean vector has least distance 
from the observation vector point.  

2.5 Criterion Used for Assessing the 
Performance  

The performance of the classification procedures 
are assessed by using the Apparent classification 
Error Rate (APER) (Pohar et al., 2004), which is 
discussed as follows 

Table 1. Schematic Representation of g×g Confusion Matrix 

 Π1 Π2  . . . Πg-1 Πg Total 
Π1 N11 N12  . . .  N1g-1 N1g  N1 
Π2 N21 N22  . . .  N2g-1 N2g  N2 
Πg Ng1 Ng2  . . . Ng,g-1 Ng,g Ng  

Where, Πi (i, j=1, 2, . . .,g) are the groups 

Nii = number of Πi items correctly classified 
as Πi items 
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Nij= number of Πi items misclassified as Πj 
items The apparent error rate is given by: 

11 22 . . . +
APER=1  ggN N N

N
 

   

or, in other words, the proportion of items in the 
training sample that are misclassified, where 

1 2 . . . + .gN N N N    The method which has 
least APER is considered to be best method for 
that situation. 

2.5  Simulation of Experiment 
The skew-normal data was generated by 

using the multivariate skew normal distribution, a 
member of a new family of asymmetric normal 
distributions (Azzalini 1985, 1996 and 2005). 
These classes of distributions also include 
multivariate normal distribution, when the 
skewness component is null. The simulation is 
programmed in R (v 2.13.0) and a program was 
written to generate skew-normal random number 
for different combination of sample size, 
skewness levels and dimensions. The following 
algorithm is used to generate skew-normal data.  

[I] The Algorithm 

1. Generate z*= (Z0 Z1 Z2 . . . ZP)~ Np+1(0, 
Ω*). 

2. If Z0 > 0, let z = (Z1, . . .,Zp)', otherwise let 
z = - (Z1, . . .,Zp)'. Then, 

z is an observation from a p-dimensional 
skew-normal distribution with 

1/2( ) (2/π)      and        cov( )= (2/π)  E  z δ z Ω δδ
Let 1/2(2/π)    x z μ δ  

As noted in Chapter 3, we then have that x is 
a multivariate skew-normal vector with 

( )     and    cov( ) (2/π)  E   x μ x Ω δδ  
3. Set sample size n, dimension p, μ, β and 

Ω. 
4. Using [1-3] independently generate 

multivariate skew-normal observations 
{xi, i = 1, 

2,…,n}. 
Here we took three levels of the sample size 

(thirty, sixty and hundred), two levels of 

dimensions (three and five) and five levels of 
skewness (-8, -4, 0, 4, 8) as well as their 
combinations. For each parameter setting the 
simulation is conducted 100 times independently 
for each group. 

3. RESULTS 
The different distances between the groups 

(D2) are calculated from the real ricebean data 
and given in Table 2, which showed that out of 
three cases, D2

b is greater than the D2
M. 

The four different methods of classification 
described in the methods section was applied on 
the simulated data sets generated by using 
multivariate skewed normal distribution. For the 
application of oblique axes method of 
classification, a SAS/IML code was been 
developed based on Das’s method (Das 1988). 
Further, for the application of LDA, QDA and 
KNN method, we used the SAS (9.2) and SPSS 
(16.0) program. The Apparent Error Rates (APER) 
was calculated for each dataset and the results are 
averaged over 100simulations and represented in 
Table 3.1 to 3.6 for various combinations sample 
size, dimensions and skewness levels. 

Table 2. Two distance measures obtained  
from real ricebean data 

Groups D2
M D2

b 
(1, 2) 35.376 33.237 
(1, 3) 32.766 47.384 
( 2, 3) 62.017 70.849 

D2
M, Mahalanobis distance; D2

b distance obtained from OAM 

Table 3.1. APER of classification methods based on n=30, p=3 
for different skewness levels 

Methods Beta=-8 Beta=-4 Beta=0 Beta=4 Beta=8 
LDA 0.0883  0.0987  0.2107  0.0976  0.0881  
QDA 0.5533  0.4578  0.2667  0.401  0.4333  
KNN 0.0653  0.0768  0.0895  0.0766  0.0733  
OAM 0.0786  0.0843  0.2685  0.0924  0.0833  
n = 30, small sample size, p = 5, number of characters five, beta, 
different skewness levels 

Table 3.2. APER of classification methods based on n=60, p=3 
for different skewness levels 

Methods Beta=-8 Beta=-4 Beta=0 Beta=4 Beta=8 
LDA 0.0713 0.0617 0.1456 0.1117 0.0787 
QDA 0.2564 0.2447 0.2083 0.2138 0.2316 
KNN 0.0615 0.0501 0.0671 0.0501 0.0519 
OAM 0.0665 0.0589 0.1946 0.0856 0.0678 
n = 60, moderate sample size, p = 3, number of characters three, 
beta, different skewness levels 
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Table 3.3. APER of classification methods based on n=150, p=3 

for different skewness levels 

Methods Beta=-8 Beta=-4 Beta=0 Beta=4 Beta=8 
LDA 0.0167  0.0323  0.0667  0.0215  0.0273  
QDA 0.0333  0.0434  0.0344  0.0396  0.0367  
KNN 0.0051  0.0067  0.0133  0.0192  0.0261  
OAM 0.2213  0.1712  0.3613  0.1568  0.1347  
n = 150, large sample size, p = 3, number of characters three, 
beta, different skewness levels 

Table 3.4. APER of classification methods based on n=30, p=5 
for different skewness levels 

Methods Beta=-8 Beta=-4 Beta=0 Beta=4 Beta=8 
LDA 0.0878 0.0831 0.1604 0.0937 0.0871 
QDA 0.2473 0.2363 0.2123 0.2245 0.2335 
KNN 0.0333 0.0636 0.0667 0.0556 0.0333 
OAM 0.0567 0.0756 0.2333 0.0890 0.0654 
n = 30, small sample size, p = 5, number of characters five, beta, 
different skewness levels 

Table 3.5. APER of classification methods based on n=60, p=5 
for different skewness levels 

Methods Beta=-8 Beta=-4 Beta=0 Beta=4 Beta=8 
LDA 0.0483 0.0516 0.1346 0.0927 0.03123 
QDA 0.1976 0.1897 0.1827 0.2167 0.2447 
KNN 0.0334 0.0317 0.0167 0.0325 0.0159 
OAM 0.0434 0.0447 0.2007 0.0734 0.0217 
n = 30, moderate sample size, p = 5, number of characters five, 
beta, different skewness levels 

Table 3.5. APER of classification methods based on n=150, p=5 
for different skewness levels 

Methods Beta=-8 Beta=-4 Beta=0 Beta=4 Beta=8 
LDA 0.0143 0.0123 0.0278 0.0139 0.0112 
QDA 0.0203 0.0203 0.0111 0.0203 0.0203 
KNN 0.002 0.0108 0.0108 0.0108 0.0025 
OAM 0.1568 0.0924 0.313 0.1342 0.1256 

n = 150, large sample size, p = 5, number of characters five, beta, 
different skewness levels 

To study the effect of sample size, 
dimensions and various skewness levels on 
APER of classification methods, we used 
analysis of variance (ANOVA) technique. The 
ANOVA was performed by considering the mean 
APER (defined as the mean value of 
classification error rate over 100 simulations) as 
dependent variable and sample size, levels of 
skewness and dimension as independent variable 
for each classification method. To meet the 
assumptions of ANOVA, the mean APER is 
transformed to normal scores by first ranking the 
mean APER values and then applying Bloom’s 
transformation (implemented in SPSS). The 
obtained results are represented in tabular form 
and given in Table 4.1. 4.4. 

Further, to study the behaviour of the 
classification methods in real crop data scenarios, 
we applied them in the ricebean data and the 
APER are calculated for each classification 
method by using confusion matrix (Table 1) 
described in methods section. 

Table 4.1. Analysis of Variance for LDA 

Sources 
of 

Variation 

Degrees 
of 

Freedom 

Sum of 
Square 

Mean 
Square 

F-
Value 

Pr 
(>F) 

Significant 

Dimension 1 0.0054 0.0054 6.83 < 
0.01 

* * 

Sample 
Size 

2 0.0387 0.019 51.98 < 
0.01 

* * 

Skewness 4 0.0206 0.005 13.78 < 
0.01 

* * 

Error 22 0.0083 0.00038    
Total 29      

Table 4.2. Analysis of Variance for QDA 

Sources 
of 

Variation 

Degrees 
of 

Freedom 

Sum of 
Square 

Mean 
Square 

F-
Value 

Pr 
(>F) 

Significant 

Dimension 1 0.049 0.049 13.36 < 
0.01 

* * 

Sample 
Size 

2 0.4624 0.2312 63.03 < 
0.01 

* * 

Skewness 4 0.0138 0.0034 6.94 < 
0.01 

* * 

Error 22 0.08071     
Total 29 0.6060     

Table 4.3. Analysis of Variance for KNN 

Sources of 
Variation 

Degrees 
of 

Freedom 

Sum of 
Square 

Mean 
Square 

F-
Value 

Pr 
(>F) 

Significant 

Dimension 1 0.0032 0.0032 27.93 < 
0.01 

* * 

Sample 
Size 

2 0.014 0.0069 59.77 < 
0.01 

* * 

Skewness 4 0.0005 0.0001 1.09  NS 
Error 22 0.026     
Total 29      

Table 4.4. Analysis of Variance for OAM 

Source of 
Variation 

Degrees 
of 

Freedom 

Sum of 
Square 

Mean 
Square 

F-
Value 

Pr 
(>F) 

Significant 

Dimension 1 0.0053 0.0053 10.67 < 
0.01 

* * 

Sample 
Size 

2 0.054 0.027 54.75 < 
0.01 

* * 

Skewness 4 0.1325 0.03312 66.32 < 
0.01 

* * 

Error 22      
Total 29      
** represents values significant at 1% level of significance and 
NS represents not significant. 
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4. DISCUSSION 

The Table 3.1 summarised the APER of four 
classification techniques when the sample size is 
thirty and dimension is five. The result showed that 
for small sample size the performance of LDA is 
affected due to introduction of skewness in the 
data. Under normality condition, the APER for 
LDA is0.1604 and as skewness increased the 
APER of LDA decreaseed, which is supported by 
the results given by Server et al. (2005). The result 
of QDA is that reverse of LDA. For QDA, the 
APER under normal condition is less than that of 
Skew normal condition i.e. when beta is zero 
(normal), the APER is 0.2123 and for beta is eight 
(highly skewed), the APER is 0.2335. Hence error 
rate increased with increase in beta value and this is 
true for negative beta also. For KNN method the 
APER is 0.0667, when beta is zero and 0.0333 in 
case beta is eight. When beta changes from zero to 
eight, the APER decreases, and this rate of change 
is gradual. The OAM has error 0.2333 in case beta 
is zero and when beta is eight the error rate is 
0.0654. Hence the APER decreased from 0.2333 to 
0.0654, when beta increased from zero to eight and 
similar result could be seen when beta decreased 
from zero to minus eight. Similar interpretation 
could be made for the effect of skewness levels on 
classification methods for different combination 
sample size and dimensions. To study the 
behaviour of classification techniques under 
varying condition of sample size can be well 
interpreted from the the Figs. 1.1, 1.3 and 1.5. 
Fig. 1.1 depicted that, when the sample size is 
thirty, the APER of LDA is given by 0.1604 (for 
beta is zero) and for sample size is hundred fifty, 
the APER is 0.0178. For LDA, the robustness 
increases with increase in sample size from 30 to 
150. Similar type of trend is experienced for QDA, 
OAM and KNN methods for other levels of 
skewness (beta= -8, -4, 4 and 8). Fig. 2.2 showed 
the behaviour of QDA for different sample size, the 
APER is maximum (0.2123) when the n=30 and 
minimum (0.0111) when n=150. Similar type of 
pattern can be seen for all other levels of beta. For 
QDA, the APER decreased with increase in sample 
size. For large sample size (n=150), under normal 
condition (for beta is zero) the APER of QDA 

(0.0111) is less than that of LDA (0.0278). The 
results are motivated by the valid statement of 
Wahl and Kronomal (1977).Similar interpretation 
can be made for KNN method of classification 
from the Fig. 2.3. The result obtained from OAM 
(Fig. 2.4) is quite different from all other methods 
i.e. for OAM, the APER is 0.2333, when the 
sample size is thirty, 0.2007 (when n=60) and 
0.3131 (n=150). The above result showed that 
when sample size changes from 30 to 60, the APER 
decreased from 0.2333 to 0.2007 and APER 
increased from 0.2007 to 0.3132 when sample size 
increased from 60 to 150. Similar interpretation can 
be made for the dimension equal to three with 
different skewness levels and sample sizes. Using 
ANOVA, the effect of sample size, dimension and 
skewness levels on the performance of 
classification methods was studied. The result 
showed that sample size has significant effect on 
the performance of each classification techniques. 
The result is as expected regarding the fact that 
with increase in sample size there is decrease in 
APER of classification methods. Classification 
performance for all the methods is also affected by 
dimension and the increase in dimension resulting 
in lower APER. The skewness had significant 
effect on APER but it has no effect on the 
performance of KNN method of classification. 
Further application of classification methods, 
namely LDA, QDA, KNN and OAM to the real 
ricebean data case yielded APER 0.1604, 0.3217, 
0.0687 and 0.1221 respectively. The low APER of 
KNN technique made it efficient followed by OAM 
and LDA. 

 

Fig. 1.1. Error Plot for n=30 and p=5 
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Fig. 1.2. Error Plot for n=30 and p=3 

 

Fig. 1.3. Error Plot for n=60 and p=5 

 

Fig. 1.4. Error Plot for n=60, p=5 

Here, “Yellow line” stands for LDA, “Red dotted line” represented OAM, 
“Green dotted line” for KNN, “Blue dotted line” for QDA. 

 

Fig. 1.5. Error Plot for n=150 and p=5 

 

Fig. 1.6. Error Plot for n=150, p=3 

Fig. 1.1-1.6. Performance of four Different Classification Techniques for 
Different Combinations of Sample Size and Dimensions 

 

Fig. 2.1. Error Plot for LDA 

 

Fig. 2.2. Error Plot for QDA 

 

Fig. 2.3. Error Plot for KNN 
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Fig. 2.4. Error Plot for QAM 

Fig. 2.1-2.4. Performance of Classification Methods over Different 
Sample Sizes 

Here, “red line” represented APER of classification 
techniques for n=30; “blue line’ for n=60 and “green line” for 
n=150. 

5. CONCLUSION 
The purpose of the experiment described in this 

paper was to examine and compare the behaviour 
of four classification techniques (LDA, QDA, 
KNN, OAM) to sample size, dimension and 
skewness introduced to data by multivariate skew-
normal distribution. From the obtained results, it 
can be concluded that the LDA is more robust to 
skew-normal data than normality condition and its 
error rate decreases with increase in sample size. 
QDA has more efficient in normal condition as 
compared to skew-normal situations and its error 
decreases with increase in sample size. For KNN 
method of classification, the APER decreases with 
increase in sample size and dimension. For OAM, 
the result is quite similar to LDA, as the APER in 
case of optimal situation is more than that of  
non-optimal (skewed) condition and its APER first 
decreases, when sample size changes from small to 
moderate and error rate is large when the size is 
large. The result is expected to be, due to the effect 
of central limit theorem. Among LDA and QDA, 
the APER of QDA is more than that of LDA in all 
skewness levels and sample sizes, hence LDA is 
considered to be more efficient than QDA. By 
comparing among LDA, QDA and OAM, the OAM 
has least APER. So, OAM is considered to best 
method for classification than LDA and QDA 
(except large sample). Further, KNN method 
provides the best result for classification with least 

APER among all the three methods of classification 
in case of simulated skew-normal data introduced 
by multivariate skew-normal distribution and as 
well as for the original data. 
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