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SUMMARY

In this article, we study the Stochastic volatility (SV) model in which volatility is an unobservable variable following
some stochastic process. Procedure for estimation of parameters of this model using Particle Filter (PF), which is a powerful
Sequential Monte Carlo technique, is discussed. To this end, relevant computer program is developed in MATLAB, Ver. 7.4
software package. As an illustration, All-India data of month-wise total export of Basmati rice during the period April, 2003 to
June, 2013 is considered. Comparative study of the fitted SV model vis-a-vis Exponential Generalized autoregressive conditional
heteroscedastic (EGARCH) model is carried out by computing various measures of goodness of fit. Subsequently, forecasting
performances of SV and EGARCH models are also compared using several statistical measures. Finally, it is shown that SV
model fitted through Particle filter performed better than EGARCH model for the data under consideration.

Keywords: Exponential generalized autoregressive conditional heteroscedastic model, Heteroscedasticity, Particle filter,

Stochastic volatility model.

1. INTRODUCTION

The main interest in time-series analysis has been
to obtain a model which could explain effectively the
mean behaviour of data (Box et al. 2008). However,
recently concerns about volatility or variance in the data
have been raised because changes or patterns in
volatility are quite often observed in real datasets. As
emphasized by Jaffee (2005), volatility seems to be the
norm rather than an exception in International markets
due to structure of trade, climatic conditions, and
rapidity with which producers can respond to price
changes. The export of many agricultural commodities
shows a great degree of fluctuations, caused by delays
between production decisions and delivery to the
market. Forecasting of volatile data is generally carried
out by using the Generalized autoregressive conditional
heteroscedastic (GARCH) model. However, there are
some limitations of this methodology, such as its
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inability to capture empirical properties, like asymmetry
in the conditional variance. To this end, an extension
of GARCH model, viz. Exponential GARCH
(EGARCH) model may be employed. However, the
assumption that volatility is deterministic and is driven
only by past observable variables is not appropriate.
Alternatively, volatility may also be modelled as an
unobservable component following some latent
stochastic process, such as an autoregressive model.
Models of this kind are called Stochastic volatility (SV)
models (Taylor 1994). Bali (2000) demonstrated the
superiority of a two-factor SV model over GARCH
model by carrying out a study of volatile interest rate
changes of U.S.A. treasury bills. Carnero et al. (2001)
showed that SV models capture, in a more appropriate
way, the main empirical properties often observed in
volatile time-series data vis-a-vis GARCH models. A
thorough review of volatility forecasting by different
models is given in Poon and Granger (2003).
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The SV model can be expressed in terms of a state
space model with non-Gaussian errors. Therefore,
Kalman filter is not appropriate for efficient estimation
of parameters of this model because the filtered states
are not the best predictor. As it is difficult to obtain
theoretically the conditional density function of state
due to intractability of marginal distribution of
measurements, next best option is to apply an iterative
procedure. Monte Carlo (MC) methods have become
one of the standard tools and haye allowed the Bayesian
paradigm to be applied to sophisticated models. As
pointed out by Andrieu et al. (2010), although
asymptotic convergence of Markov chain MC (MCMC)
algorithms is ensured under weak assumptions, their
performance is unreliable when the proposal
distributions that are used to explore the space are
poorly chosen and/or if highly correlated variables are
updated independently. The authors have also built
efficient high-dimensional proposal distributions using
Sequential MC (SMC) methods.

Accordingly, in this article, our aim is to
investigate the promising technique of Particle filter
(PF), which is capable of assigning stochastic
conditional probabilities of unobserved states through
importance sampling methodology (Ristic et al. 2004).
Further, PF method is employed for estimation of
parameters of SV model. To this end, relevant computer
program is developed in MATLAB, 2007a software
package. As an illustration, SV model is applied to
describe volatile All-India data of monthly export of
Basmati rice during the period April, 2003 to June,
2013. Finally, performances of SV and EGARCH
models are compared in respect of their capabilities for
modelling as well as forecasting for hold-out data using
various measures of goodness of fit.

2. SOME PRELIMINARIES

In this section, Stochastic volatility (SV) model
along with its estimation procedure using Particle
Filtering (PF) technique is briefly discussed.

2.1 Stochastic Volatility (SV) Model

SV model is more realistic and flexible than
GARCH model, since it essentially involves two
random processes, one for the observations and the
other for volatility. For a discrete univariate time-series
data {y, t=1, ..., T}, it is given by

y=€0,t=1,..1T, (D)

tr
where y, are observations, ¢, is a white noise process
with variance ¢? and o7 is corresponding volatility.
Further, i’ =logo? follows an AR(1) process with
Gaussian white noise and is unobserved. In terms of 4/,
Eq.(1) can be written as

yt = 8texp (ht* /2)’ hr*+1 = 0(+Q7h: +77[’
9|<1, (2)

where |¢| < 1 implies stationarity of 4. The parameter
¢ measures persistence of shocks to volatility. When ¢
is close to unity and o7 is close to 0, evolution of
volatility over time is very smooth. The variance of log-
volatility process 07 measures uncertainty about future
volatility. From Eq.(2), we get

(W —a) =@ —a) +n,, 3)
where o = a/(1 — ¢). So, from Eq.(3):

n, ~ 1ID(0, 63),

v, =exp(h —a*) [ 2}exp(a* 1 2)¢g,, 4)
which can be written as
y,=o.exp(h,/2)e, h,= I —a, o.=exp (a'/2). (5)

Estimate of 0, may be used to estimate a*, which along
with estimate of ¢ yields estimate of «. Thus, Eq.(1)
can be written as

y,= 0, exp(h,/2)e, h,, = @h + 1, (6)

2.2 Particle Filtering

A general state-space model is defined by the
following state and measurement equations:

%y =J (@ w) ™)
X =h(a,v). ®)

where f; is a function describing evolution of the state
and h, is a function mapping state vector to the
observations. The quantities {w, 3} and {v,} are zero
mean noise with

Elv,v']=R,and E[w,w'] = Q,

a, are the unobservable state variables with initial
density p(«,) and X, are the observations. The above
model can be characterised in terms of its probabilistic
description via the state transition density p(c/e, ,) and
the observation density p(x|e,). The main statistical
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problem related to this type of state space model is to
estimate state of the dynamic system ¢, in some optimal
manner from all the noisy observations. Complete
solution to this problem can be given by the conditional
density p(a|X;), T =1, 2, ..., N. For linear Gaussian
state-space models, Kalman filter (KF) is one such
method of getting the predicted, filtered and smoothed
value of «,. But, in the case of nonlinear or non-
Gaussian state space models, KF does not work well.
One plausible way is to use the Extended KF (EKF),
which linearizes original nonlinear filter dynamics
around current estimated state and then proceeds as in
the linear case. However, EKF has two drawbacks, viz.
Linearization can produce highly unstable filters, and
derivation of Jacobian matrices often leads to
significant implementation difficulties. Further, as the
SV model can be transformed to a linear state space
form with non-Gaussian errors, therefore EKF is also
not appropriate for estimating the parameters of this
model. Therefore, the promising new methodology
called Particle filtering (For details, see e.g. Polson et
al. 2008 and Ristic et al. 2004), which approximates
the posterior probability of states using a large number
of particles with associated weights, is employed.

The PF is a SMC algorithm grounded in particle
representation, and it can be considered as a
generalization of KF for general state-space models.
The posterior distribution is derived from Bayes
theorem, and the underlying volatility can be estimated.
Instead of giving a single estimate for the filter or the
smoother as in KF, PF method provides particles with
associated weights to approximate the conditional
density. Particles and weights are updated sequentially
along with the state evolution, when new observations
become available. Some salient aspects of PF method
are included in Annexure-1 and relevant codes,
developed in MATLAB, Ver. 7.4 software package, are
appended as Annexure-2.

3. AN ILLUSTRATION

Month-wise total export of Basmati rice from
India during the period April, 2003 to June, 2013,
obtained from the website (www.indiastat.com), is
considered. Out of total 123 data points, first 106 data
points corresponding to the period April, 2003 to
January, 2012 are used for model building and the
remaining 17 data points, i.e. from February, 2012 to
June, 2013 are used for validation purpose. A perusal

of data indicates presence of volatility at several time-
epochs. EViews, Ver. 4 software package is employed
for fitting ARIMA and GARCH family of models. In
the first instance, best ARIMA model is selected on the
basis of minimum Akaike information criterion (AIC)
and Bayesian information criterion (BIC) values given

by
AIC = Tlog(o®) + 2(p + g + 1) 9)
BIC = Tlog(c®) + (p + g + DlogT, (10)

and the results are reported in Table 1.

Table 1. Parameter estimates along with their standard
errors for fitted ARIMA(2,1,0) model

Parameter Estimate Standard error
Intercept 14.00 8.75
AR1 -0.36 0.10
AR2 —-0.16 0.09

However, the ACF of squared residuals of fitted
ARIMA (2, 1, 0) model, reported in Table 2, are found
to be quite high. Further, ARCH-LM test statistic value
of 3.69 at lag 13 is found to be significant at 5% level,
thereby indicating presence of volatility in the data. But
it is not reasonable to apply ARCH model of such a high
order. So, in the second instance, GARCH family of
models, viz. GARCH, EGARCH, and Integrated
GARCH (IGARCH) are fitted. On the basis of
minimum AIC and BIC values, selected AR(1)-
EGARCH(1,1) model is obtained as

Y = 31671 +091Y,  + ¢, & =h'n,
(52.87) (0.05)

where the figures within brackets ( ) indicate
corresponding standard errors and 4, satisfies the
variance equation

In(h,)

= —0.17+ 0.48 In(h, ) + 0.08l¢,_/[h_, |+ 0.98 &/ [h..
(0.05) (0.13) (0.03) (0.18)

To study the appropriateness of fitted EGARCH
model, ACF of standardized residuals and squared
standardized residuals are computed. It is found that,
in both the situations, ACF is significant at 5% level,
thereby reflecting that the mean and variance equations
are not correctly specified. Moreover, fitted model is
not able to capture properly the volatility present at
various time-epochs.
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Table 2. Autocorrelation functions (ACF) and Partial
autocorrelation functions (PACF) of the squared residuals
for fitted ARIMA model

Lag ACF PACF Q-Stat | Probability
1 —0.005 —0.005 0.003
2 | -0.035 —0.035 0.131
3 | —0.076 —-0.077 0.757 0.384
4 | -0.155 —-0.158 3.376 0.185
5 | —0.028 —-0.039 3.463 0.326
6 | —0.164 —-0.190 6.476 0.166
7 | —0.200 —-0.255 11.000 0.051
8 0.078 0.001 11.698 0.069
9 0.044 —-0.033 11.919 0.103
10 0.006 —0.111 11.924 0.155
11 0.096 0.007 13.004 0.162
12 0.137 0.119 15.248 0.123
13 0.458 0.437 30.237 0.001
14 | -0.076 —-0.081 18.933 0.090
15 | -0.069 0.022 19.527 0.108
16 | —0.015 0.065 19.555 0.145
17 | -0.052 -0.012 19.896 0.176
18 0.024 0.087 19.970 0.222
19 | —0.066 0.041 20.533 0.248
20 | -0.176 —-0.185 24.551 0.138

So, finally SV model is fitted to the data through
PF method by using 1000 particles. Further, 4, is
estimated and one-step ahead prediction error along
with its mean squared error, as well as prediction error
decomposition form of the likelihood are obtained. The
hyperparameters are denoted by 6. Subsequently,
parameters are estimated to construct optimal solution
for @ that maximizes the likelihood. The fitted model,
using the code given in Annexure-2, is obtained as

log(y2)=2.87+h + &, h =0.85+1,,Var{n,} = 0.66.

To study the appropriateness of fitted SV model,
ACEF of standardized residuals and squared standardized
residuals are again computed. It is found that now, in
both the situations, these are non-significant at 5%

level, thereby implying that the mean and variance
equations are correctly specified. The AIC and BIC
values for fitted SV model are respectively computed
as 683.78 and 691.68, which are lower than the
corresponding values, viz. 707.34 and 713.65 for fitted
AR(1)-EGARCH(1,1) model. Further, relative
performance of fitted SV model vis-a-vis GARCH
model is evaluated using the Mean square error (MSE)
criterion, defined as

MSE=Y" (Y, -V }/N.
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Fig. 1(a). Fitted EGARCH model along with data points
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Fig. 1(b). Fitted Stochastic volatility model along with data
points

MSE values for the fitted SV and EGARCH
models are respectively computed as 960126.65 and
968926.87. All these imply that SV model has
performed better than AR(1)-EGARCH(1,1) model for
describing the volatile data under consideration. The
graphs of fitted SV and EGARCH models along with
data points are exhibited in Figs. 1(a) and 1(b), which
indicate that fitted SV model is able to capture the
volatilities present in the data in a better way than
EGARCH model.

3.1 Forecasting Performance

In this sub-section, forecasting abilities of the
fitted EGARCH and SV models are evaluated. For 17
hold-out data points corresponding to All-India monthly
export of Basmati rice from February, 2012 to June,
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2013, one-step ahead forecasts are computed and the

same are reported in Table 3.

Table 3. One-step ahead forecasts of export data

(in Rs. Crore)

Months | Actual

EGARCH model

SV model

Feb.,”12 | 1291.68

Mar.,’12 | 1661.60
Apr.,’12 | 1240.95
May,’ 12 | 1566.36
Jun.,’12 | 1818.17
Jul.,’12 | 1644.50
Aug.,’12] 1711.10
Sep.,”12 | 1326.78
Oct.,”12 1 1060.29
Nov.,’12| 1160.88
Dec.,’1211718.17
Jan.,’13 | 1875.72
Feb.,’13 12075.62
Mar.,’13 [ 2530.55
Apr.,’13 12590.12
May,’ 13 | 2417.03

Jun.,’13 |2749.79

1630.94 (353.71)"

1384.57 (476.33)
1468.77 (548.71)
1394.81 (434.67)
1396.14 (397.32)
1667.67 (328.54)
1678.31 (376.09)
1642.18 (554.91)
1461.84 (432.87)
1157.88 (345.88)
1101.59 (323.87)
1445.04 (396.86)
1761.90 (259.18)
1935.58 (487.10)
2264.89 (391.73)
2486.19 (379.16)
2417.25 (381.69)

1604.70 (350.22)
1319.89 (375.66)
1697.25 (498.44)
1268.14 (360.01)
1600.09 (305.22)
1856.97 (250.22)
1679.80 (298.72)
1747.74 (430.55)
1355.69 (390.96)
1083.84 (276.31)
1486.45 (289.12)
1754.96 (250.52)
1915.68 (227.87)
2119.60 (443.28)
2583.68 (272.31)
2644.45 (302.77)
2467.88 (329.80)

*Figures within brackets ( ) indicate corresponding

standard errors.

It may be noted from Table 3 that, for fitted SV
model, an attractive feature is that all the actual values
lie within the prediction intervals corresponding to
Estimates + Standard errors, whereas for fitted AR(1)-
EGARCH(1, 1) model, as many as 5 actual values
corresponding to the time-epochs, viz. June, 12,
December, *12, January, *13, February, *13, and March,
’13 lie outside the prediction intervals. Another point
worth noting is that widths of all the prediction
intervals for fitted SV model are less than those
for fitted AR(1)-EGARCH(1, 1) model. Further,
performance of fitted models is also compared on the
basis of one-step ahead Mean square prediction error
(MSPE), Mean absolute prediction error (MAPE) and
Relative mean absolute prediction error (RMAPE),
given respectively as

N-1
MSPE = 2 Yrvivt = Yriin YIN
i=0

N-1
MAPE = 2 {l Yriini = Yriin}/ N
i=0

N-1
RMAPE = 2 U ¥rsit = Yrsin [/ ¥4 } 100/ N.
i=0

The MSPE, MAPE and RMAPE values for fitted
SV model are respectively computed as 74702.96,
241.39 and 15.14, which are found to be much lower
than the corresponding ones for fitted AR(1)-
EGARCH(1, 1) model, viz. 114871.50, 288.03 and
16.81 respectively. Thus, SV model has performed
much better than EGARCH model for forecasting
purpose also.

To sum up, SV model is appropriate for modelling
as well as forecasting the volatile data under
consideration.

4. CONCLUDING REMARKS

In this article, utility of Particle filter for fitting
Stochastic volatility model is highlighted. As an
illustration, the proposed procedure is applied for
modelling and forecasting of volatile All-India monthly
Basmati rice export data. These types of studies would
go a long way in assisting planners to take appropriate
policy decisions as they are based on sound statistical
footing. Attempts are being made towards development
of efficient procedures of more advanced Stochastic
volatility models through Particle filter method and will
be reported separately in due course of time.
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ANNEXURE-1
Some Salient Aspects of PF Methodology

To approximate the conditional density of «, viz.
pla)a, |, X;) given previous states . |, T=1,2, .., N
along with past and present data X, 7= 1, 2, ..., N.
particle filtering (PF) introduces a sequential
importance density g(a|a;. ,, X;), where it is easier to
sample from ¢(e|a, ., X;) rather than from
pla)a;. |, X;). The joint conditional density of ¢, given
X, is

p(x | ap, Xr_)plar | Xr-y)

= Al
plajXy) p(x | Xro) ()
_ rGylep)pla|ay)
B p(x | Xrop) e X
_ p(x |ar)p(e; | o1 q(a |ar1, X,)

q(a |ar X,)
x plog i | Xpy).

Suppose that particle approximation of
plee (|X;. ) is given as Zj w8(ar —a4?)) and
a? is a sample from q(a; |, X)), forj=1,2, ..,
M. Then the particle approximation of p(a,|X7) is

u p(x | pa? | ald)
q(a” |, Xp)

plogr | Xp)= z

X5(at_at(1))wt(11)5(aT1 aT("J)l (A2)

:Zj L (1)5(0.’ (j))’

where

and

Lo = PG la e | )
= 1
q(a(”l (])X ) Wi
a}j) ={a[_1,a,’)}.

Using Sequential importance sampling (SIS)
particle filter, particles and associated weights

{7, ])} “, can be obtained sequentially. However,

complication with SIS is degeneracy, where after a few
iterations, only few particles have consequential
weights. Thus, considerable computational effort would
be spent updating particles whose contribution to the
approximation of p(a,|X;) is negligible. Resampling is
designed to solve this problem by removing particles
with small weights, focussing instead on particles with
large weights. This resampling step involves generating
a new particle set {a’/ )}Ml by sampllng with
replacement M times from the original set {a /) }¥ P
so that p (&) =a Py =w A noteworthy issue is the
choice of importance density. An appropriate choice is
to use the prior p(e, |@’,). A general particle filter
(DM
i

draws {o;”’}7, using SIS filter, and resample

{0{/ )}M , when degeneracy occurs.
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ANNEXURE-2

Code for Estimation of Parameters of SV Model using PF Method in MATLAB, Ver. 7.4 Software
Package
function [Pparms,RLIK ]=mainchis(obs,INTPARM,Maxit,Nopart)
Pparms=zeros(Maxit,3);
RLIK=zeros(Maxit,1);
NOITER=0;
for i=1:Maxit
obs_full=obs;
f=PartFilt(INTPARM, obs_full, Nopart);
Param=Estim(s, obs_full, Nopart)
Pparms(i,:)=Param;
function f=PartFilt(INTPARM, obs, Nopart)
phi=INTPARM(1);
Q=INTPARM(2),
meann=INTPARM(3);
mu=0;
SIGMA=Q/(1-phi*2);
f(:,1)=randn(Nopart, 1)*sqrt(SIGMA)+mu;
wt=randn(Nopart, n)*sqrt(Q);
for t=1:n
p=phi*f(:,)+wt(.,t);
w=exp((obs(t)-a(t)*p-meann)/2).*exp(-1*exp(obs(t)-a(t)*p-meann)/2);
f(:,t+1)=RESAM(p,w,Nopart);
end
function RESAMDATA=RESAM(data,weight,NofSample)
n=max(size(data));
re_ind=rand(1,NofSample);
cmwt=cumsum(weight)/sum(weight);
for k=1:NofSample
st=(re_ind(k)>cmwt(1:n-1));
RESAMDATA (k)=data(sum(st)+1);
end
RESAMDATA=RESAMDATA’;
function loglike=comp _loglike(x,0bs,parmvec,n)
phi=parmvec(1);
Q=parmvec(2);
meann=parmvec(3);
mu=0;
SIGMA=Q/(1-phi™2);
loglike=-1*(log(SIGMA)+(x(1)-mu)*2/SIGMA+n*log(Q)+sum((x(2:n+1)-phi*x(1:n))."2)/Q+sum(exp(obs-
x(2:n+1)-meann)-(obs-x(2:n+1)-meann)))/2;
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