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SUMMARY

In many surveys (for example, agriculture, business enterprises, income and expenditure surveys), data are typically skewed
which contain few extreme values and linear model assumptions are questionable. Commonly used survey estimation methods
for population total are based on normality assumption, that is, survey data are linear. As a consequence, these methods are
both model biased and inefficient for skewed data. We describe estimation of finite population total for skewed data that are
linear following a suitable transformation, in particular logarithmic transformation. We demonstrate the comparative performance
of different estimators of population total for skewed data using both model based simulations as well as design based simulations.
Empirical results clearly reveal that linear model based estimators are inefficient for skewed data.
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1. INTRODUCTION

In analysis of survey data, standard estimation
methods for population parameters assume that data are
normal and linear model describes the data well.
However, in agricultural, business enterprises and
income and expenditure surveys data are typically
skewed and linear models are questionable for such
data. In particular, for such survey data, relationship
between study variable and auxiliary variable may not
be linear in their original scale, but can be linear in a
transformed scale, e.g., the logarithmic (log) scale. For
example, the total annual farm costs (TCC) in
Australian Agricultural and Grazing Industries Survey
data is skewed (see Fig. 1) and linear model is not an
appropriate model. Under such circumstances, survey
estimation based on a linear model may be both model
biased and inefficient, and appropriate technique of
estimation of finite population parameter is based on a
linear model for transformed version of the variable.
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See for example, Chen and Chen (1996) and Karlberg
(2000) and references therein.

Deville and Sarndal (1992) introduced calibration
approach for estimation of population parameters. This
approach is based on the implicit assumption that study
and auxiliary variable is linearly related. When survey
data is skewed linearity assumption does not hold good.
Wu and Sitter (2001) proposed model calibration
approach for estimation of population parameters. This
is a general approach of calibration covering both linear
and non-linear models. The key idea of model
calibration approach is as follows. The relationship
between survey variable Y and auxiliary variable X can
be either linear or nonlinear but survey variable ¥ and
fitted value of Y (estimated from expected value of Y)
is approximately linear. However, in Wu and Sitter
(2001) the fitted values used in model calibration
approach are biased due to back transformation to the
original scale. Under model based framework, Basak
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et al. (2014) applied the back transformation bias
correction in fitted values and considered the model
based model calibration approach for estimation of
population total. Their empirical results revealed that
bias correction leads reduction in bias. Karlberg (2000)
described prediction of finite population total under a
log normal model. She fitted the log linear model for
skewed data and predicted the non-sample part of the
population. She also considered the back transformation
bias correction in the prediction of nonsample values
of survey variable. Several methods have been proposed
for dealing with skewed data and they are based on
either implicit or explicit underlying model
assumptions. Further, sometimes survey variable is
highly skewed in nature but there is no auxiliary
information to build a good working model. Indeed, we
can fit a mean model on log scale for such skewed
variable. This article explores these data situation and
describes the estimation of population total for skewed
data. Throughout in this article we adopt model-based
approach of survey estimation. So, all moments are
evaluated with respect to a model for the population
data.

In the next Section we consider a linear model and
briefly introduce the calibration approach to estimation
of population quantities from a model-based
perspective. In Section 3 we summarize the model
based model calibration approach for the estimation of
population total and its mean square error estimation.
Section 4 illustrates empirical results to compare
different estimators of population total. Finally, Section
5 presents concluding remarks.

2. CALIBRATION ESTIMATION UNDER A
LINEAR MODEL

To start, we fix our notation. Let U denote a finite
population of size N and s denote a sample of size n
drawn from this population. Let y,, denote the N-vector
of population values of a characteristic ¥ of interest and
X denote the p-vector of auxiliary variables that are
related, in some sense, to Y. Thus, x,, = (x,, X,, ..., xN)T
denote the corresponding N x p matrix of population
values of auxiliary variables. We further assume that
unit level auxiliary information is available for the
entire population. Suppose that our primary aim is
estimation of population total f, = ZU ¥;i- The simple
estimator of population total T which does not make
use of auxiliary data is given by

. 1 s L
fy N(;ziesyij:]vys’wuhysZZZiesyi' (l)

Deville and Sarndal (1992) define an X-calibrated

linear estimator offy, as fy = ziesw,‘y,‘, where the
calibrated weights {w: i € s} satisfy > jes Wi%i =y
Here 7, is the vector of population totals of X. This
approach is based on an implicit assumption that the
population values of Y and X are linearly related, in
which case the calibration constraint is equivalent to
ensuring that the estimator fy is an unbiased predictor
of Ity under a linear model for the regression of ¥ on
X in the population. A model-based perspective of
calibration approach is described as follows. Let us
consider that the relationship between Y and X in the
population can be described by a linear regression
model of the form

E(yUIXU) = XUB and Var (yU|xU) =V, 2)

where B is a p x 1 vector of unknown parameters and
V, is a positive definite covariance matrix and is known
up to a multiplicative constant. Given a sample s of size
n from this population, we write y, as y/, = (yZ, yI),
where yI' corresponds to n sample units and
yI corresponds to N — n non-sample units. Here » = U
— s denotes the population units that are not in sample.

XA
Similarly, we can partition x,, = [Xj and V , =

VS‘S "S"
|:Vrs Vrr
components. In practice, the variance component
parameters in model (2) are unknown and estimated
from sample data. Using the estimated value of variance
components, vector of weights that defines the
Empirical Best Linear Unbiased Predictor (EBLUP) of
th is (Royall 1976, Valliant et al. 2000, Section 2.4)

}into their sample and non-sample

WEBLUP = (WEBLUP i c g)

=1, + AT (t,, —t,,)+ I, - HI X V;V,,1, 3)

where H, = (xI V;!x,)"'xI'V;1,1, (1,) denotes a vector
of 1I’s of size n(N — n), t_ is the vector of sample totals
of X and L is the identity matrix of order n. The EBLUP
of population total of Y is then defined as

$tEBLUP — EBLUP
EELUP =3 WPy, )
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Note that the EBLUP weights (3) are calibrated to
X and the EBLUP (4) is same as the calibration
estimator fy = Zies w;y; of Deville and Sarndal (1992).

3. MODEL BASED MODEL CALIBRATION
WEIGHTING FOR POPULATION
ESTIMATION

If the underlying population model is non-linear,
the calibration estimator can be model-biased, and
hence inefficient. Model calibration was introduced by
Wu and Sitter (2001) as a model-assisted method of
calibrated weighting when the underlying regression
relationship is non-linear. A model-based perspective of
Wu and Sitter’s model calibration approach can be
stated as follows. Suppose the relationship between Y
and X in the population can be described as

E(y,[x;) = h(x;;n) and
Var(y, x,) =2 = diag(c%;i=1,..,N)  (5)

where 7 = (1, ..., np)T and o7 are unknown model
parameters. Here /(x;;77) denotes the N-vector of mean
function, A(x;;7), which is a known function of x, and
7. Further, it is also assumed that population units are
mutually uncorrelated. Let 7 denote a ‘model-efficient’
estimator of 7 with associated fitted values A(x; 7).
Usually, there is a linear relationship between the actual
values y, of ¥ and their corresponding fitted values 3
= h(x;;7). Thus, we replace (2) by a linear model of
the form

E(y; | 9)=0p+a); and Cov(yi’yjlj}ivj}j):a}zj' (6)

The model (6) is referred to the “fitted value’ linear
model defined by (2). Let J, denote the population
‘design matrix’ defined by (6), i.e., J,,= (I Yy).
Following sample and non-sample partitioning of J,
and Q= [a’g] as above, and using the estimated
variance components of Q,, EBLUP weights for
population total of Y under the general linear ‘fitted
value’ model (6) are given by

WMC-EBLUP — (WZMC-EBLUP)
=1, + AL J1 1, - J71,) + (I, - HL IO 1, (7)

where Hye = JTORT,)1JTQ;! and 1, denotes
vector of 1’s of size N and I, and I, denote identity

matrices of order N and N — n respectively. These
weights are model-calibrated under (6) since

JIwMC-EBLUP — JT 1., The model-based model
calibration estimator of population total of Y is given
by

~MC-EBLUP -
T = Y BT ()

3.1 A Log Transformation Model

We now consider a special case of log transformed
model. Let us assume that the relationship between
survey variable Y and auxiliary variable X is not linear
in the raw scale but it is linear in the log scale. That is,
log(Y) and log(X) (or sometimes X) is linear. Then the
log scale model is

[,=log(y) = zI B+¢;i=1,..,N, 9

where zI' = (1, log(x;), ..., log(xl.p)), B =By B -
,BP)T and. & ~ N(0, 6°). Under model (9), the predicted
values of Y are

5 = E(y;|x;)) =exp(z B+62/2) = h(x;;H). (10)

We can specify the fitted value model like (6) and
then obtain the EBLUP weights (7) and the model
calibration estimator (8). Here, we see that

E(3;1x) = E{exp(zI B+62/2)} # E(y;|x))
= exp(z/'B+02/2).

That is, the predicted values §; = exp(z/+ 62 /2)

= h(x;;n7) are biased. This bias arises due to back

transformation. As a consequence, the model calibration
estimator (8) is also model biased. A Taylor series
approximation has been used to correct this bias. See
Basak et al. (2014) for details. Then the bias corrected
fitted values are defined as

$BC :]%.—1)7,- =hBC(x;;7), )

A 1 a A 1 s2a;  s*
where k, =1+—| Z’V(B)z; +—=V(6?) |=1+—L+—,

i z(l(ﬁ)l4()J 5 Yo
with a; =2zF' (ZTZ,)'z;. Here superscript of “BC”
denotes “bias corrected” version. Using bias corrected
version of “fitted values” (11) we define the fitted
value model (6) and the EBLUP weights (7), referred
as bias corrected version of model calibration
EBLUP weight (BCMC-EBLUP), denote them by

WBCMC-EBLUP — (y,PMEEBLUPy “We then obtain the bias

corrected version model-based model calibration
estimator of population total as
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ffCMC—EBLUP — 2 WBCMC—EBLUP y,. (12)

ies !

Under the log normal model (9), using prediction
approach Karlberg (2000) also described the predictor
of population total given by

K=Y i+ Zl.er{lfl exp(z] B +7)}- (13)

4
S_)zkl

H [ =ex (%+
ere = e T

3.2 Mean Square Error Estimation

The mean square error estimation of prediction
based estimator of population total 7X8 can be followed
from Karlberg (2000). It is noteworthy that unlike the
model calibration estimators, the prediction approach
based Karlberg estimator (13) is non-linear in nature
thereby causes difficulty in mean square error
estimation. The model calibration estimator has the
advantage of mean square error estimation since it has
a weighted linear form, see Basak ef al. (2014). For
example, suppose that the estimator of population mean
m, = N'Y ¥ of variable Y is sty =y, Wy
expressed as a weighted linear estimator such that
w =0(n!) and 25 w; =1. An estimator of the mean

square error (MSE) of population total of Y is then

mse(i,) = N[y )+ (b )P
=Y D20 (@ (N =)y -

Y wih-Y, Y.

where a, = Nw—1=w;—1 and wi€s are weights

(14)

for prediction of population total of Y. Here

h = h(x;;/) is an estimate of E(y|x,). In particular,
h(x;;7) = Ekes%)’k, where ¢, =
Y. % =1. See Basak ef al. (2014) for detail theoretical

development of MSE estimate (14) for various
calibration weighting based estimators of population
total of Y.

O(m™") and

3.3 Estimation of Population Total with No
Auxiliary Information

In many situations, although survey variable is
skewed but there is no availability of auxiliary
information. In such cases, E(y |x,) = ul, and
Var(y |x,) = V.. That is, underlying becomes a
mean model. Then the EBLUP weights are

1 N
wEBLUP =1 +;13(N —n) =71s and the EBLUP of

population total of ¥ is, 7FBLUP = Ny, same as the

estimator (1). Further, the fitted value model (6) leads
to

. 62
E(y; | 3) =exp(u +7) =4 and

Cov(y;,y; 13, 9;) = w; =exp2u+0o?){exp(c?) -1} =6,
where A and § are constant independent of sample
units. In this case also the EBLUP weights are

N
wMC-EBLUP = —1  As a results, the model-based

n
model calibration estimator of population total is
{MC-EBLUP = Ny . We further see that bias corrected

~ ~ 6-2 %
version of fitted values are ¥; =k lexp(u +7) =A

~ 2 4 .
with k; = 1+S_+S_, for all 7. So the bias corrected
n 4n
version of model based model calibrated estimator also

reduces to PCMC-EBLUP = Ny . In the absence of

auxiliary information calibration estimators (both linear
and model calibration versions of estimators) reduce to
simple sample mean based estimator of population total.
Indeed, calibration based approaches are applicable if
auxiliary information are available in the survey.

We see that Karlberg’s prediction based estimator
for population total (13) reduces to

. ~ .52
103 i 3 e 5|

_ A .82
:nys+2i€r{li—l exp(,u+7)}, (15)

~ 2 4 . . .
where [ =ex s__l_s_ . This estimator is not the
' P 2n 4n

same as the simple sample mean based estimator (1).
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It is evident that in case no auxiliary information is
available calibration based estimators reduce to
fy =Ny, and this estimator is based on implicit
assumption of normality. However, the estimator (15)
seems suitable for skewed survey variable.

4. EMPIRICAL EVALUATIONS

In this Section we report the results from model-
based and design-based simulation studies that illustrate
the performance of the different estimators of the
population total defined in the preceding Sections. In
particular, we consider following five estimators of the
population total:

(i) Simple sample mean based estimator fy given
by (1) (denoted as SRS),

(i1) Under linear model (2), calibration estimator
(or EBLUP) 7FBLUP (denoted as LC),

(iii) Under transform model (9), model calibration
estimator (or MC-EBLUP) 7MC-EBLUP given
in (8) (denoted as MC),

(iv) Under transform model (9), model calibration
estimator with bias correction (or BCMC-

EBLUP) {BCMC-EBLUP gjven in (12) (denoted
as BCMC), and

(v) Under transform model (9), prediction
approach based Karlberg estimator 7X? given
in (13) (denoted by KB).

The performance of the various estimators was
measured by the simulated relative bias (RB, in
percentage) and relative root mean square error
(RRMSE, in percentage), defined by

Ly It 00
M~

RB(T)

1

N 2
. M| LT
RRMSE(T) = M lzizl(—T JXIOO
1

where T’ denotes the actual value of population total at

simulation run 7, with predicted value fl and M denotes

the number of simulation run. In the case of design
based simulations 7’ = T since population is fixed.

4.1 Model-based Simulation Study

In the model-based simulations, a finite population
of size N = 2000 units was generated from a model
log(y) = 1 + x + € where x ~ Gamma(1, 1) and € ~
N(0, 0%). From this population, a sample of size n =
50, 100, 150, 200 was taken by simple random sampling
without replacement. Then various estimators were
computed using the sample data and all the fitted
values. The Monte Carlo simulation was run M = 5000

Table 1. Percentage relative bias (RB, %) and percentage
relative root mean square error (RRMSE, %) of different
estimators in model based simulation Set A.

Rho | n SRS LC MC | BCMC | KB
RB, %
200 1.754 -5.690 3.776 0.850 2231
150 —2.143 —9.639 4.579 0.421 2.357
080 100 2.842 | -10.046 6.451 0.135 2.741
50 8.350 | -16.093 11.071 | —2.243 2.530
200 1.898 —5.417 10.857 2.645 6.073
150 —-1.741 -8.920 13.407 1.889 6.439
0.60 100 3.027 -9.470 18.586 1.394 6.857
50 8.378 | -15.071 36.159 | —1.330 5.491
200 1.999 —4.950 27.670 7.372 | 14.026
150 -1.202 —7.891 35.301 6.694 | 14.579
040 100 3.322 -8.302 50.986 7.421 14.539
50 8.105 | —13.544 | 131.295 [ 10.952 9.556
RRMSE, %
200 99.737 87.905 26.122 | 23.355 | 24.438
150 110.569 | 100.327 28.768 | 24.880 [ 26.294
080 100 148.056 [ 123.307 34729 | 28915 | 30.624
50 ] 256.892 | 158.905 55.744 | 37.789 | 41.352
200 101.874 89.865 59.244 |1 44.021 | 49.564
150 112.909 | 102.102 65.802 | 45.100 | 50.848
0.60 100 150.929 [ 127.846 83.570 | 53.026 | 58.808
50 | 257.399 | 160.144 | 185.747 | 74.816 | 78.052
200 105.153 93.320 | 160.098 | 86.871 | 107.647
150 116.491 | 104.784 | 194.324 | 89.197 | 102.028
040 100 156.600 [ 136.651 | 283.627 | 115.966 | 118.905
50 | 257.245 | 162.319 [1040.879 | 216.700 | 140.983
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times. Simulations based on this model are referred to
as Set A simulations. Here, we considered three
different values of o2 such that the correlation
coefficient between log(y) and x are 0.80, 0.60 and 0.40
respectively. This leads three different finite
populations. Simulation studies were carried out in R
software. The values of percentage relative bias and the
values of percentage relative root mean square error of
different estimators for three different values of
correlation coefficients are reported in Table 1.

These results in Table 1 show that the value of
percentage relative bias is highest for linear calibration
based estimator (LR) when the correlation coefficient
between transformed variables is relatively high, i.e.,
Rho = 0.80 while at the moderate values of correlation
coefficient, i.e. Rho = 0.60 and 0.40 the value of
percentage relative bias is high for the model calibration
based estimator without bias correction (MC).
However, the value of percentage relative bias is
smaller for the BCMC predictor for all values of
correlation coefficient and sample size. Further, the
relative bias of the BCMC predictor increases as the
correlation coefficient between transformed variables
decreases for all sample sizes. One significant result is
that the relative bias of the BCMC predictor decreases
as sample size decreases, in contrast to the other
estimators, for all the given values of correlation
coefficient indicating that the BCMC predictor gives
good result even for small sample where problem of
bias is more. For all the given values of correlation
coefficient, relative bias becomes negative for sample
size n =50 due to over bias correction. This is obvious
since bias correction is based on large sample
approximation.

In the case of percentage relative root mean square
error, it is highest for simple sample mean (SRS)
followed by linear calibration based estimator (LR) and
least for the BCMC estimator for all values of
correlation coefficient and sample size. It was also
observed that as the correlation coefficient between
transformed variables decreases, the relative root mean
square error of the BCMC predictor increases for all
sample sizes. Similarly, relative root mean square error
also increases as sample size decreases for all the given
values of correlation coefficient. However, in all the
cases the gain in relative bias and relative root mean
square error of model calibration with bias correction
as compared to usual model calibration is substantial.

In Section 3.2 we noticed that the calibration
approach based estimators (i.e., LC, MC and BCMC)
reduces to the SRS when there is no auxiliary
information. However, in this case the KB estimator is
still different from the SRS. Consequently, if variable
of interest Y for survey estimation is skewed and no
auxiliary information available to describe the
relationship with Y, it is interesting to examine the
performance of Karlberg estimator KB. We now
describe a model based simulations to examine the
performance of two estimators, SRS and KB when there
is no auxiliary information available. These simulations
are referred as Set B of model based simulations. We
referred here, a finite population consisting of N = 2000
units was generated from a model log(y) = u + &, where
€ ~ N(0, 6?) and u = 1. Three different finite
populations were used by choosing different values of.
0. From each population, a sample of size n = 50, 100,
150, 200 was taken by simple random sampling without
replacement. The Monte Carlo simulation was run
M= 5000 times. The values of percentage relative bias
and percentage relative root mean square error of two
estimators for three different populations are reported
in Table 2. The results in Table 2 clearly show that
relative biases and relative root mean square errors of
the KB estimator are smaller than the SRS. In case of
skewed data, even if there is no auxiliary information
available then also KB estimator can be used and it
gives better performance as compared to simple sample
mean (SRS).

Table 2. Percentage relative bias (RB, %) and percentage
relative root mean square error (RRMSE, %) of two
estimators in model based simulations Set B.

6 =0.50 6 = 0.65 6 =0.80
" SRs| KB | SRS | KB | SRS | KB
RB, %
200{ 0.014[ 0.005 | 0.067 | 0.049 | 0.153| 0.124

150( —0.135|{-0.115 |-0.218 |-0.170 | —0.350 | —-0.243
100{ —0.105|-0.068 |—0.187 |-0.107 | —0.320 | -0.163
50| —0.0731-0.054 |-0.121 |-0.078 | —0.203 [—0.114

RRMSE, %
200] 3.692| 3.674 | 5.036 | 4.975| 6.807 | 6.623
150 4.126| 4.119 | 5.598 | 5.560 | 7.523 | 7.380
100[ 5.240| 5228 | 7.108 | 7.053 | 9.549| 9.351
501 7.506| 7.503 |10.153 [10.132 | 13.587 [ 13.430
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4.2 Design-based Simulation Study

The design-based simulations are based on real
survey data set. The survey data set we used the same
data that was reported in Chandra and Chambers
(2011). That is, a sample of 1652 farms that participated
in the Australian Agricultural and Grazing Industries
Survey (AAGIS) conducted by the Australian Bureau
of Agricultural and Resource Economics. We
considered this original sample data as a target
population of 1652 farms. From this fixed population,
we draw samples of different sizes n = 50, 100, 150,
200 by simple random sampling without replacement

sampling scheme. In particular, for each sample sizes
we draw M = 5000 samples. Here, the aim was to
estimate total annual farm costs (TCC, measured in A$)
using farm size (hectares) as the auxiliary variable.

We also did an exploratory data analysis with
original sample (or our target population) of 1652 farms
to examine the behavior of variable of interest (TCC)
and auxiliary variable (farm size or FS). The histogram
in Fig. 1 shows that the survey variable TCC is skewed.
However, the histogram is reasonably normal when the
variable TCC was plotted on log scale. This is also true
for the auxiliary variable (farm size or FS) plotted in

2,000 200~

1,500 150 M
- = B
o L] -
= = 1
ar a B
= . & 100+
T 1,000 T 100
= =
[T [T

00 50
o T T T T o T T T = T
0 10000000 20000000 30000000 40000000 .00 10.00 12.00 14.00 15.00 18.00
TCC IgTCC
Fig. 1. Histogram of total annual farm costs (TCC) (left) and log (TCC) (right)

2,000 200

1,500 [] 150 1
k- =
o L] —
= =
a o
= . & 100 I
T 1,000 = 100
£ = =
[T [T

00 50
u] T T T T T T [ W | T T T T T
0 500000 10000001 500000 2000000 2500000 3000000 2.00 4.00 &.00 500 1000 1200 1400
FS IgF S

Fig. 2. Histogram of Farm size (left) and log (Farm size) (right)
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Fig. 3. Scatterplot of TCC and Farm size on raw scale (left) and log scale (right)

Fig. 2. We further examined the linear relationship
between TCC and FS. Fig. 3 shows that the linear
relationship between TCC and FS is very weak on raw
scale. However, this relationship improved on log
scale. This analysis clearly reveals that the data is
skewed and hence the model calibration approach can
be explored. It is noteworthy that the linear relationship
on log transform scale is reasonable but not very strong
and hence we expect an indicative result of the model
calibration estimator with back transformation bias
correction.

The results were generated for five different
estimator using M = 5000 samples each of sizes n =
50, 100, 150, 200 are reported in Table 3. Design-based

Table 3. Percentage relative bias (RB, %) and percentage
relative root mean square error (RRMSE, %) of different
estimators in AAGIS population.

n SRS LC | Mc |BcMc | KB
RB, %
200 | —0.177 | —0.330 | 2.040 | 1.922 | -6.876
150 | —0.121 | —0.184 | 2207 | 2.041 | -7.079
100 | —0.232 | —0.086 | 2.860 | 2.597 | -7.106
50 | 0.118 | 3.739 | 4.604 | 3.958 | —6.606
RRMSE, %
200 | 24.444 | 23.790 |16.597 | 16.555 | 11.966
150 | 28213 | 27.369 |19.401 | 19.334 | 13.027
100 | 34.998 | 34.805 |25.778 | 25.589 | 15.327
50 | 52.827 | 61.765 [44.525 | 43214 | 21.408

simulations serve to complement model-based
simulations, providing evidence of comparative
performance and robustness in realistic data scenarios.
Table 3 shows the results for the design-based
simulations using the AAGIS data.

These results in Table 3 showed that relative bias
of all the estimators are within a reasonable range of 5
per cent except for KB. Relative bias is highest for KB
estimator for all the sample sizes whereas it is least for
SRS for almost all sample sizes. However, relative root
mean square error is least for KB estimator in all the
cases. Simple sample mean based SRS and linear
calibration estimator (LC) shows higher relative root
mean square error as compared to other estimators of
population total. It was also observed that relative root
mean square error decreases as the sample size
increases for all the estimators. Overall, the bias
corrected model calibration estimator shows a
satisfactory performance as compared to other
estimators of population total.

5. CONCLUSIONS

This paper discusses different estimators of
population total for skewed data. The bias corrected
model calibration estimator uses the bias corrected
fitted value for calibration which is particularly
effective when the population is skewed. In the absence
of auxiliary information, linear calibration estimator,
model calibration estimator and bias corrected model
calibration estimator reduces to simple sample mean
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and in this case Karlberg estimator is an alternative
which shows improved performance as compared to
simple sample mean. So, it is better to use Karlberg
estimator for skewed data when auxiliary information
is not available. But if auxiliary information is available
it is better to use bias corrected model calibration
estimator for estimation of population total of skewed
data. However, before using this estimator it is
recommended that users should check the working
model for their data. Further, this paper considered a
special case of log transformation for skewed data and
estimators are applicable for skewed variable taking
strictly positive values only. However, skewed data
often take zero values of observation, referred as the
semicontinuous variable so model calibration based
approach needs to be extended for this case. Authors
are currently working in estimation of population total
for semicontinuous data.
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