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SUMMARY

Simultaneous inference was introduced as a statistical problem as early as the mid-twentieth century, and it has been
recently revived due to advancements in technology that result in the increasing availability of data sets containing a high
number of variables. This paper provides a review of some of the significant contributions made to the field of multiple hypothesis
testing, and includes a discussion of some of the more recent issues being studied.
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1. INTRODUCTION

Data sets containing a high number of variables,
notably those generated by high-throughput
experiments in fields such as genomics and image
analysis, have been becoming increasingly available as
technology and research advances. For this reason
multiple hypothesis testing remains an area of great
interest. This review covers some of the major
contributions to multiple hypothesis testing and
provides a brief discussion on other issues surrounding
the standard assumptions of simultaneous inference.
This is not meant to be a comprehensive report but
rather a history and overview of the topic.

1.1 Single Hypothesis

In the case of a single hypothesis, we typically test
the null hypothesis /), versus an alternative hypothesis
H, based on some statistic. We reject H,, in favor of H,
whenever the test statistic lies in the rejection region
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specified by some rejection rule. Here it is possible to
make one of two types of errors: Type I and Type II. A
Type 1 error, or false positive, occurs when we decide
to reject the null hypothesis when it is in fact true. A
Type II error, or false negative, occurs when we do not
reject the null hypothesis when the alternative
hypothesis is true. Table 1 summarizes the error
possibilities.

Table 1. Possible outcomes for a single hypothesis test

Declared True Declared False

True Null Correct (1 — &) Type 1 Error ()

False Null Type I1 Error (f) Correct (1 —f)

Typically, a rejection region is chosen so as to limit
the probability of a Type I error to some level o. Ideally,
we also choose a test that offers the lowest probability
of committing a Type Il error, 3, while still controlling
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a at or below a certain level. In other words, we
maximize power (1 — ) while maintaining the Type |
error probability at a desired level.

1.2 Multiple Hypotheses

When conducting multiple hypothesis tests, if we
follow the same rejection rule independently for each
test, the resulting probability of making at least one
Type I error is substantially higher than the nominal
level used for each test, particularly when the number
of total tests m is large. This can be easily seen when
considering the probability of making zero Type I
errors. For m independent tests, if o is the rejection
level for each p-value, then this probability becomes
(1 — )™ Because 0 < o < 1, it follows that

(I-o<(-a

and so the probability of making no Type I errors in
m > 1 tests is much smaller than in the case of one test.
Consequently, the probability of making at least one
such error in m tests is higher than in the case of one
test. For example, we use a rejection rule of p < .05
for each of 100 total independent tests, the probability
of making at least one Type I error is about 0.99.

To address this issue, multiple testing procedures
seek to make the individual tests more conservative so
as to minimize the number of Type I errors while
maintaining an overall error rate, which we denote ¢.
The cost of these procedures is often a reduction in the
power of the individual tests. Tests are typically
assumed to be independent, although there do exist
methods in cases of dependency, which is discussed
briefly in Section 4.1.

We assume that we are testing m independent null
hypotheses, H,,, H,, ..., H,, with corresponding
p-values p,, p,, ..., p,, and we call the i’ hypothesis
“significant” if we reject the null hypothesis H,. In
Table 2 we summarize the possible configurations when
testing m hypotheses simultaneously. We see that V' is
the number of false rejections (or false discoveries), U
is the number of true non-rejections (or true
acceptances), S is the number of true rejections, and 7’
is the number of false non-rejections. Here m,, the total
number of true null hypotheses, is fixed but unknown.
Though random variables V., §, U, and T are not
observable, the random variables R=S+ Vand W= U
+ T, the number of significant and insignificant tests,
respectively, are observable. The proportion of false

Table 2. Possible outcomes for m hypothesis tests

Significant | Not Significant | Total
True Null 14 U m,
False Null S T m,
Total R w m

rejections is /R when R > 0 and the proportion of false
acceptances is 7/W when W > 0.

The Type I error rates most discussed in the
literature are:

1. Family-wise error rate (FWER): Probability of at
least one Type I error,

FWER = Prob(V' = 1)

2. False discovery rate (FDR): Expected proportion
of false rejections,

V/R R>0

FDR = E(Q), where O = {0 R=0

2. CONTROLLING FAMILY-WISE ERROR
RATE

The earliest multiple hypothesis adjustment
methods focused on controlling the family-wise error
rate (FWER), and these are still commonly used today.
The FWER is defined as the probability of making at
least one false rejection when all null hypotheses are
true. Instead of controlling the probability of a Type I
error at a set level for each test, these methods control
the overall FWER at level ¢. The trade-off, however,
is that they are often overly conservative, resulting in
low-power tests.

Many of the methods in this class are based on the
idea of ordered p-values. That is, prior to performing
any adjustments, we first order the m p-values as Py
Py s Pimy such that p HSPoyS o S Py with
corresponding null hypotheses Hy .y Hyap o Hy-
Most procedures are then developed using either the
first-order Bonferroni inequality or the Simes inequality
(Shaffer 1995). The inequalities are very similar and
can even be viewed as different formulations of the

same concept.

2.1 Bonferroni Inequality

The first-order Bonferroni inequality states that,
given any set of events E|, E,, ..., E_, the probability
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of at least one of the events occurring is less than or
equal to the sum of their marginal probabilities (Shaffer
1995). In the context of multiple hypothesis testing, the
event of interest is the rejection of a null hypothesis.
The applicable form of the inequality then, for 0 < a <

1, is
Prob(U( p; < ﬂ)] <a
i=l m

The primary method based on this concept was
proposed by Bonferroni, and it also happens to be the
most popular among all procedures for controlling
FWER. In its simplest form, to maintain the FWER at
level g, set the nominal significance level for each test
at oo = g/m (Shaffer 1995). That is, for test 7, if the
corresponding p-value is p;, < q/m, we reject null
hypothesis H,,,.

Others have also developed procedures around this
idea. One such method includes a sequential, step-down
algorithm proposed by Holm (1979), shown to be
uniformly more powerful than Bonferroni’s simple
procedure. To maintain an error rate at level g, reject
all null hypotheses in the set

S q
Hy;y:i<min| k: >

Another suggestion for improvement is to replace
the quantity o/m with [1 — (1 — &)'™], which is always
a larger value (Shaffer 1995). This is a common idea
used when developing procedures to control the false
discovery rate.

2.2 Simes Inequality

Simes (1986) extended Bonferroni’s inequality; in
the context of multiple hypothesis testing, the Simes
inequality can be stated the following way: for ordered
p-values, Pay Pay o Py corresponding to
independent, continuous tests (so that the p-values are
Uniform(0, 1)), then assuming all hypotheses are true:

m

where 0 < 2 < 1. Using this inequality, Simes created a
simple multiple testing rule: to maintain an error rate
at level ¢, reject all null hypotheses in the set

ior
{Hom 320 —;}

Two common methods that also utilize the Simes
inequality were developed by Hochberg (1988) and
Hommel (1988).

Hochberg’s procedure is very similar to Holm’s
proposed method from Section 2.1, except it was
formulated as a step-up procedure. It has also been
shown to be more powerful than Holm’s procedure.
Again using the ordered p-values and maintaining the
error rate level at ¢, reject all null hypotheses in the
set

. q
Hygy:i<max| k: <—
{ 00 ( Pa m+1—k)}

More powerful, and only marginally more difficult
to execute, Hommel’s (1988) procedure is an
alternative, yet less popular, option. Under the same
conditions as discussed in this section, to control at
level g reject all null hypotheses:

: ja
1. Compute k=max {ie {1, ..., m} Pmivp” T
i

forj=1, -, i}.

2. If no maximum exists, then reject all null
hypotheses. Else, reject {H, : p, < ao/k}.

3. CONTROLLING FALSE DISCOVERY RATE

More modern approaches in multiple hypothesis
testing focus on controlling the false discovery rate
(FDR). The FDR is defined as the expected percentage
or proportion of rejected hypotheses that have been
wrongly rejected (Benjamini and Hochberg 1995).

Instead of controlling the probability of a Type I
error at a set level for each test, these methods control
the overall FDR at level g. When all null hypotheses
are actually true, the FDR is equivalent to the FWER.
If, however, the number of true null hypotheses is less
than the number of total hypotheses-that is, when m, <
m - the FDR is smaller than or equal to the FWER
(Benjamini and Hochberg 1995). Thus, methods that
control FWER will also control the FDR. We see, then,
that controlling the FDR is a less stringent condition
than controlling the FWER, and consequently FDR
procedures are more powerful.

Controlling the FDR was made popular by
Benjamini and Hochberg (1995), who developed a
simple step-up procedure performed on the ordered p-
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values of the tests (Benjamini and Hochberg 1995).
Since then there have been several other proposed FDR
procedures. These are summarized in this section.

3.1 Continuous Tests

The density of the p-values can be expressed as

Ap) = 7 fop) + (1 = 7)) /()

where f(p) and f,(p) are the densities of the p-values
under the null and alternative hypotheses, respectively
(Dialsingh 2012). For continuous tests, p-values are
uniformly distributed on (0, 1) when the null is true.
However, the distribution under the alternative
hypothesis is unknown. Methods for estimating 7, when
the test statistics are continuous have been developed
by coupling the mixture model with the assumption that
either f(p), the density of marginal p-values, or f,(p),
the density of p-values under the alternative, is
non-increasing.

The following is a summary of commonly-used
methods for controlling FDR when the p-values are
continuous. For all procedures, we assume that we are
testing m independent null hypotheses, H,, Hy,, ...,
H,,. of which m, are truly null, with corresponding
p-values, p,, p,., ..., p,,. Additionally, all methods here
are based on ordered p-values. That is, instead of using
the original, unordered p-values, we consider instead
the ordered Va}ues, Pay Pay - Py such that PaySPa
< .. < p(m), with corresponding null hypotheses Hyy
Hogay > Hogmy
3.1.1 Benjamini and Hochberg Procedure

Benjamini and Hochberg (1995) presented the first
procedure for controlling FDR in their 1995 paper, and
it still remains the most common procedure to date (the
BH algorithm). To control FDR at level ¢, reject all null
hypotheses where

{H()(i) S max(k . p(k) Sﬂ)}
m

It has been shown that when the test statistics are
continuous and independent, this procedure controls the
FDR at level T, (Benjamini and Hochberg 1995),
where 7, is the proportion of true null hypotheses.
Ferreira and Zwinderman (2006) later developed some
exact and asymptotic properties of the rejection
behavior of the BH algorithm.

3.1.2 Benjamini and Liu Procedure

While the BH algorithm is a step-up procedure,
Benjamini and Liu (1999) suggested an alternative step-
down procedure for controlling FDR (the BL
algorithm). To control FDR at level ¢, the procedure is
conducted as follows:

1. Calculate the 51. =

1/(m—i+1)
1—{1—min( g ﬂ .
m—i+1 fori=1, .., m.

2. Let & be the value such that k = min{i : p(i)> 6.} .

critical values,

3. Reject the null hypotheses H0(1)> HO(2)’ s Ho(k_l).

They demonstrated that this procedure neither
dominates nor is dominated by the step-up procedure
of Benjamini and Hochberg.

3.1.3 Storey s Procedure

Storey (2002) suggests a different approach to
adjusting for multiple hypotheses. While the previous
methods involved fixing an FDR level ¢ and
determining from there which tests to reject, Storey uses
the opposite approach: he fixes which tests are rejected
(in a sequential way) and then estimates the
corresponding false discovery rate. The basic idea of
Storey’s procedure is as follows:

1. Define a set of rejection regions, {[0, y]}. One
easy way to do this is to let y, = Py Or t[fne series
of ordered p-values. Then, for y, the rejection

region is Py Py

2. For each rejection region, estimate the FDR. This
will lead to a series of FDR estimates, {FDR;}.

3. Choose the rejection region that provides an
acceptable estimate of FDR.

Storey’s approach can also be used by estimating
a variation on the FDR: the positive FDR (pFDR), the
false discovery rate conditional on nonzero rejections:
E(V/IRIR > 0) (Storey 2003). This is often a more
interpretable and easily estimable value. In his paper,
Storey proposed that an estimate of pFDR for a given
i is (¥;79)/ R(y;), where riyy is an estimate of the true
number of null hypotheses, and R(%.) =#(p< %') is the
number of tests that would be rejected for the given
rejection region. Further discussion on using m, instead
of m is given in Section 3.3.
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Fig. 1. Histograms of p-values coming from m = 10,000 tests, all of which correspond to true null hypotheses.

3.2 Discrete Tests

Most research to date has been dedicated to the
case of continuous data. In these situations, the resulting
test statistics are continuous with known distributions
when the null hypothesis is true. As well, the p-values
are continuous and known to follow a Uniform (0, 1)
distribution under the null hypothesis. For discrete data,
however, this is no longer the case. Non parametric
tests, such as Fisher’s exact tests, lead to p-values that
are discrete and non-uniform. To illustrate this point,
we create histograms of p-values that come from
m = 10,000 tests, all of which correspond to a true null
hypothesis, as shown in Fig. 1. Note that in the
continuous case, the observed p-values form a
near-uniform distribution. However, in the case of
discrete data, we are far from uniform and in fact see a
peak at p = 1.

Furthermore, the distribution of achievable
p-values of a given discrete test is dependent on the
ancillary statistic. As a result, in the case of multiple
hypotheses, the distribution of p-values will vary by
test. Consequently, the use of a subscript becomes
necessary in the mixture model from Section 3.1 to
highlight this difference. The model can be rewritten
as

Jw) = m folp) + (1 = m)f p)
where f(p,) is the density of the i observed p-value and

JoAp,) and f, (p,) are the null and alternative densities
of the i p-value, respectively. One can immediately see

the potential problems with having unique distributions
for each test. Recently more focus has been given to
the situation of discrete testing, though the topic has
yet to be as extensively explored.

Using midP-values instead of p-values in the BH
algorithm was the first suggestion for addressing
multiple testing for discrete data. Lancaster (1961)
defined the midP-values as the average of the observed
and the next smallest possible p-value. The distribution
of the midP-value is more uniform under the null
hypothesis than is the p-value, and using the midP-value
should lead to results that are at least as powerful as
when using the p-value, but also may exceed the
nominal FDR level. This idea is discussed further by
Routledge (1994), Berry and Armitage (1995), and
Fellows (2010).

3.3 Adaptive Procedures

Estimating m, = mym, the number of true null
hypotheses, can improve FDR procedures by making
them more powerful. When replacing m by m, in the
BH or the BL algorithm we can control the FDR at
exactly the level of g. When using m, instead of m in
an FDR procedure, we call these “adaptive” methods.
The value of 7, and thus of m,,, can be estimated using
a variety of methods. The idea behind many of the
proposed methods were first introduced by Mantel
(1980), and Black (2004) provides a nice discussion of

the benefits of using an adaptive method.
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3.3.1 Estimating my for Continuous Tests

The following is a summary of commonly-used
methods used for estimating m,, (or 7,) when the
p-values are continuous. In addition to those given
below, continuous estimators have also been proposed
in the form of adaptive algorithms developed by
Benjamini and Hochberg (2000), Storey et. al. (2004),
Benjamini et. al. (2006), Gavrilov et. al. (2009),
Blanchard and Roquain (2009), or Liu and Sarkar
(2011).

Storey’s Method: Storey’s (2002) method is one of the
most popular methods used today, and has been shown
to estimate 7, reasonably well for continuous
p-values. The estimator is given by

PO )
m(l-A)

where A € [0, 1] is a tuning parameter and #(S) is the
number of elements in S. Storey also offers an adaptive
method for selecting an optimal A (Storey 2002). This
procedure typically provides a conservative estimate of
T,

Pounds and Cheng Method: Pounds and Cheng
(2006) proposed an estimator of 7, when the test
statistics are continuous. The estimator is given by

L {min(l, 2p) for two-sided tests

min(l, 27) for one-sided tests

_ Iam .
where p =;2 i1 Pi is the average p-value for all m

— 1 onm .
hypothesis tests, 7 =Zzi21[2- min(p;, 1 - p;)], and

min(a, b) is the minimum of a and . In general, the
Pounds and Cheng estimator is biased upward, but the
bias is small when pf,(p) is small or when 7 is close
to 1.

Location Based Estimator: Dalmasso et. al. (2005)
proposed an estimator for 7, for continuous and
independent tests, which they coined the Location
Based Estimator (LBE). The LBE is simple estimator
that is obtained from the expectation of transformed
p-values, using the transformation w(p) = [- log(1 —
)", where log() is the natural logarithm function and
n 2 0 is an integer tuning parameter. Taking the ratio

of the expected value of y under the alternative and null
hypotheses gives us the following estimator:

L, /m)Y [log(1- p)I!
7[0 =

n!
where n! is the factorial of z. In their paper, Dalmasso
et. al. does provide one example of how to select the
tuning parameter » but notes that other criteria could
be considered. The LBE provides a bias-variance
balance and, because of its relatively low variance, it
often performs better in terms of mean-squared error
than 7, estimators that had been developed by that time,
including the Storey and Pounds and Cheng methods.

Nettleton’s Method: Nettleton et. al. (2006) presents
an algorithm for estimating m, by estimating the
proportion of observed p-values that follow the uniform
distribution. The algorithm used in Nettleton’s method
is as follows:

1. Partition the interval [0, 1] in B bins of equal
width.

2. Assume all null hypotheses are true, and set

©0) _ (0)
my = =75

m=m.

3. Calculate the expected number of p-values for
each bin given the current estimate of the number
of true null hypotheses.

4. Beginning with the leftmost bin, sum the number
of p-values in excess of the expected until a bin
with no excess is reached.

5. Use the excess sum as an updated estimate of m,,
and then use that to update the estimate of m, =
m—m,.

6. Return to Step 3 and repeat the procedure until
convergence is reached.

The number of bins is a tuning parameter, and
using B = 20 has been recommended (Nettleton et al.
2006).

3.3.2 Estimating my for Discrete Tests

There do not exist FDR procedures designed
specifically for discrete data, other than the use of the
midP-values. However, the non-uniformity of the
p-values may be addressed in the first step of estimating
m,, and then utilizing an adaptive FDR method. We
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maintain the assumptions and notations used thus far.
However, now we further assume that 7, does not
depend on the set of null distributions, of which there
are d unique discrete distributions (d <m), f;, fo,> -+
Jog Which are known. These distributions correspond
to the d unique ancillary statistics 4,, 4,, ..., 4, (each
of which can be viewed as fixed or random). For a null
distribution f0 there is a finite set of achievable p-values
S Soy ey Sir; with Sy <8y < Sjr; = 1 and with

e
corresponding probabllltles Note that

810 Sjp> e Sy -

set S, = {8, S s Sjr;}> is the support of f» with

=5 andsk S =S, f0r2<k<T The
hypotheses are partltloned 1nto sets so that if the null
distribution of the i p-value is known to be f()j’ then
the corresponding support is §.. However, the
distribution of p, is not known when the corresponding
null hypothesis is false.

The following is a summary of commonly-used
methods used for estimating the number or proportion
of true null hypotheses when the p-values are discrete.
The performances of continuous and discrete m,,
estimators in the presence of discrete data are explored
in Dialsingh (2012) and Austin (2014).

Pounds and Cheng Method: In the same paper as their
2006 continuous estimator, Pounds and Cheng (2006)
also proposed an estimator of 7, for the discrete case.
Similar to the continuous estimator, the discrete
estimator is given by

B {min(l, 2p) For two-sided tests

min(l, 87) For one-sided tests

_ Iam .
where p ZZZ i1 Pi is the average p-value for all m

1l am .
hypothesis tests, t=zzi=1[2mlﬂ(Pi,1—Pi)], and

min(a, b) is the minimum of a and 4. Simulations show
that this estimator is conservative but robust for discrete
tests.

Regression Method: Proposed by Dialsingh (2012),
the regression method can be used when the mixture
distribution, Prob(p, = §, |4, = a), can be estimated from
the data. For each of the d unique null distributions,
there exists a finite set of achievable p-values. So, for
null distribution foj, there is a known support S] With
a slight abuse of notation, we say that H, € ij if the

h null hypothesis is assumed to have distribution f()j‘
Then we have (p, = SJ JHy; € ﬁ)j, H,, true) = Pojr which
is known. However, the distribution of p, is not known
when the null hypothesis is false; we denote this
unknown probability as Prob (p, = SJ JH,, € f()j’ H,, false)
= d)lﬂ. We assume that d)oﬁ < ¢1jz for small SJ ,and ¢0jz >
Oy for large SJ - Then we have

Prob (p, = S,|Hy, € £,) = 9, = 1@y, + (1 — 7P,
When the set D, = {H,:Hy, € j%j.} is significantly
large, ¢, can be estimated from the data as
~ K:
— L
¢]t M]'
where M. is the cardinality of set Dj and Kjt is the
number of hypotheses in D, that have p-value S We

know that E(éj,) =@ = ﬂod)oﬂ +(1 - 7r0)<;)l , and that
¢0 . 1s known. The regression method estimates 7, by
regressing (z)ﬂ on ¢, by assuming (1 — ”0)¢1,z is the
constant intercept. Thus the slope of the resulting
regression equation is an estimator of 7,. To obtain

reasonable estimates of ¢3j, it is preferred that each M,
is sufficiently large.

Bancroft Method: The method developed by Bancroft
et. al. (2013) is an adaptation of Nettleton’s method for
continuous tests to discrete cases. Similar to Nettleton’s
method, the idea is to create bins in the interval [0, 1]
and to use the excess of expected versus observed p-
values in those bins to iteratively update the estimate
of m,. However, because the possible attainable p-
values depend on the null distribution, we no longer
look at entire set of m p-values but rather at each of
the d sets of p-values corresponding to the d unique null
distributions, f;, f5, - fo, Nettleton’s algorithm can
be applied to each set of p-values separately to come
up with an estimate of m;, the number of tests
corresponding to true null hypotheses in set D;. Note
that the initial estimate of m, would be ]\Jj, the total
number of tests in Dj.

Furthermore, because the p-values of discrete tests
are not uniformly distributed over [0, 1], bins need not
and should not be of equal width. Instead, since the
support S] is known for each unique null distribution
foj, bins can be created such that each bin houses a
single value from S; . Then, the same algorithm from
Nettleton’s method is applied to these bins.

The algorithm is run d instances to find estimates
of my,, my,, ..., . Then, the estimate of 7, becomes
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T-Methods: The T-methods, proposed by Dialsingh
(2012), are based on Tarone’s (1990) idea of removing
hypotheses for which there is no power prior to
performing any analyses. For certain values of the
ancillary statistic, the number of achievable p-values is
small, yielding a component of the null distribution that
is far from uniform. Often the corresponding hypothesis
tests have zero power because the minimum achievable
p-value is larger than the boundary of the rejection
region, say o = .05. Because filtering out these tests
improves the uniformity of the p-values, Tarone
suggested removing these tests to improve the power
of multiple comparison adjustments. The remaining
tests are then used to estimate 7, developed for
continuous p-values.

3.3.3 Gilbert's Procedure

Analogous to T-methods for estimating 7, Gilbert
(2005) developed a procedure using the idea that
multiplicity adjustments do not need to account for
hypothesis tests that have no power. Gilbert’s procedure
uses the BH algorithm on only a subset of the tests by
removing the tests whose minimum achievable p-value
is less than ¢. To control FDR at level ¢, Gilbert’s
procedure is conducted as follows:

1. Let m(I) be the number of tests with power, with
corresponding or-dered p-values

P(l)’ Py = Py and null hypotheses H0(1)» HO(Z)’
> Homny
2. Apply the BH algorithm on only these m (/) tests.

One can perform an adaptive version of Gilbert’s
procedure as well, as suggested in Dialsingh (2012).
More recently, Heyse (2011) contributed an alternative
multiple-testing procedure for categorical data that uses
the exact conditional distribution of potential outcomes.

3.4 Variations on the FDR

There exists a number of variations on the false
discovery rate as defined by Benjamini and Hochberg.
In Section 3.1.3 we discussed the positive FDR (pFDR)
as used by Storey. In the same year Tsai et. al. (2003)
discussed the properties and relationships of several
variations on the FDR. Including the pFDR, these
alternatives included:

1. Conditional FDR (¢cFDR): ¢cFDR = E(V /RIR =r)
2. Marginal FDR (mFDR): mFDR = E(V)/E(R)
3. Empirical FDR (eFDR): eFDR = E(V)/r

Pounds and Cheng (2004) developed a method,
coined the spacings LOESS histogram (SPLOSH), for
estimating the cFDR, the expected pro-portion of false
rejections given that there are r total rejections. The
method was applied to independent, continuous tests;
however, there is no model assumed on the observed
p-values and thus this method may be applicable to
other situations.

The local FDR (/[FDR), coined by Efron (2005),
estimates the probability of the null model conditional
on the observed test statistic. He applied it only to
continuous tests. It is based on empirical Bayes analysis
of the mixture model of the null and alternative
hypothesis distributions. It has been studied by Efron
et. al. (2001), Efron and Tibshirani (2002), Efron
(2004), and Strimmer (2008).

4. OTHER CONSIDERATIONS

4.1 Dependent Tests

In all methods discussed thus far there is an
assumption of independence among the tests. However,
in many cases, such as when comparing several
treatments with a single control, this assumption is not
valid. In fact, in practice, dependent tests statistics are
encountered more often than independent test statistics.
Therefore, multiple testing adjustment when the
hypotheses are dependent remains an open area of
research. Schwartzman and Lin (2011) discussed the
effect of dependency and derived approximation for the
mean, variance, and distribution of the false discovery
rate when the data are correlated. They showed that
correlation may increase the bias and variance of the
false discovery estimator.

The common BH and BL algorithms can still be
used for dependent tests under certain situations.
Benjamini and Yekutieli (2001) proved that the BH
algorithm controls FDR when the test statistics are
positive dependent (Two random variables X, and X,
are positive dependent if P(X, N X,) > P(X))P(X,))
under the null hypotheses. They furthermore showed
that under other kinds of dependency, a small
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conservative modification can be be made to maintain
the nominal error rate. The following year Sarkar
(2002) showed that the FDR is also controlled in the
BL procedure if the test statistics are positive dependent
(Sarkar 2002). In 2008 Sarkar further investigated the
performance of common FDR procedures under
positive dependence (Sarkar 2008).

Most of the FWER-controlling procedures can be
used in certain dependency situations. Sarkar and
Chang (1997) showed that the Simes method still
controls the FWER under positive dependency of the
test statistics. Later, Guo et al. (2009) developed
FWER-controlling methods based on adaptive Holm
and Hochberg procedures and proved that they control
the FWER under positive dependence. That same year
Sun and Cai (2009) developed a multiple-testing
procedure that exploits the dependence structure among
hypotheses assuming that the data were generated from
a two-stage hidden Markov model.

Friguet et. al. (2009) utilized factor analysis to
model the dependence structure of the responses given
the predictors. They used this to develop modified
t-tests that take advantage of the common factor
structure to reduce the error rate variance. They showed
that this procedure is more powerful and results in more
precise FDR estimates than the traditional BH algorithm
when used on dependent tests.

4.1.1 Pairwise Comparisons

A more specific dependence issue in multiple
testing arises when each hypothesis is composite and
one tests for differences across all or many parameter
pairs. There has been extensive study on these types of
pairwise procedures for a single response variable, and
Jaccard et al. (1984) provides a nice overview of
procedures developed until that time. They found that
Tukey (1953) is one of the best methods when the
assumptions of equal sample sizes, homogeneous
variances, and normality hold. When one or more
assumptions fail, they recommend procedures by
Kramer (1956) and Games et al. (1981). All of these
are considered one-step procedures that control for
multiple testing when there is a single response
variable. Jiang and Doerge (2006) proposed a two-step
procedure when there are many composite hypotheses,
with many pairwise comparisons of parameters within
each, that controlled the FDR and was more powerful
than traditional one-step procedures.

4.1.2 Multivariate Test Statistics

When handling multiple hypotheses, the first
major step is to rank the tests in order of perceived
significance. This is typically done in a univariate
matter, through ordering the p-values of the individual
tests. However, as shown by Storey (2007), overall
performance can be improved by borrowing
information across all tests to perform the ranking.
Storey referred to this as the “optimal discovery
procedure,” which maximizes the expected number of
true rejections, which in turn results in a reduced FDR.
A generalized Bayesian discovery procedure was later
developed by Guindani et al. (2009).

Chi (2008) also considered the idea of multivariate
p-values. He created a procedure that uses an arbitrary
family of nested regions of the p-values’ domain and
showed that this controlled the FDR and pFDR and was
relatively powerful.

4.2 Weighted P-Values

The idea of weighted p-values was first presented
by Genovese et al. (2006) as a way to incorporate prior
information about the hypotheses. If the assignment of
weights to p-values is positively associated with the
non-null hypotheses, power is increased, except in cases
where the power is already near one. Wasserman and
Roeder (2009) derived methods for choosing optimal
weights and showed that power is robust to
misspecification of the p-value weights. Roquain and
van de Wiel (2009) further discussed the weighting of
p-values in the Benjamini and Hochberg procedure.

4.3 Power

As discussed in Section 1.2, error can be defined
in a number of ways, though most modern procedures
focus on controlling the false discovery rate. Power, too,
can be defined in more than one way. Most researchers
defined power as the average probability of rejecting a
non-null hypothesis, otherwise known as the per pair
power (Einot and Gabriel 1975). However, other power
definitions include the probability of rejecting at least
one non-null hypothesis, or any-pair power, and the
probability of rejecting all false hypotheses, or all-pairs
power (Ramsey 1978).
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5. CONCLUSION

This review serves as a brief introduction to the
topic and its many issues. Though the problem of
simultaneous inference has been recognized for many
years, multiple hypothesis testing has recently became
a more intense area of research due to the greater access
and availability of data. The methods focus on
controlling some Type I error rate while maintaining
power of the individual tests. There remain many
potential areas of research in this field, including the
problems surrounding discrete data or dependent tests.

5.1 Topics Not Covered

The topic of multiple hypothesis testing is too far-
reaching to be covered in its entirety in this review, and
there are many researchers whose contributions have
not been acknowledged here. The following is a list of
some of the multiple testing topics not covered in this
review: simultaneous confidence intervals; binary data;
one-sided tests; generalized linear and mixture models;
survival analysis; linear contrasts; bootstrapping and
resampling; Bayesian methods; decision theory
methods; methods based on Central Limit Theorem;
projection methods; and significant analysis of
microarrays (SAM) and other nonparametric methods.
Many of these topics are covered in the texts listed in
the next section.
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