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SUMMARY

High-throughput data from new imaging technologies is coming to experimental neuroscience, as big data came to genomics
a decade earlier. This represents a significant opportunity for new methodology in statistics. However many of the challenges
facing statisticians will be quite different from those in genomics. This talk will introduce some issues in analysis of high-
throughput functional neuroscience data, and illustrate them with recently published work, mostly drawn from animal studies.
First many new technologies are burdened by significant noise so signal extraction techniques need development. Classical
statistical dimension reduction strategies seem capture very limited fractions of variance in neuroscience data, and yet
multivariate predictions and decoding have yielded some biological insight. Some alternative multivariate strategies have been
proposed, but none are entirely satisfactory. How to characterize plasticity from neural activity data remains unclear. Finally
we may anticipate a convergence of theoretical neuroscience with detailed experimental observations, as the heretofore
unobservable dynamics of neural networks becomes visible. This emerging field presents an exciting opportunity to statisticians
who are willing to learn neuroscience and engage with the field’s questions.
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1. INTRODUCTION to point at some of the statistical challenges that will
be faced in the next few decades of functional

Modern functional neuroscience increasingly neuroscience.

draws on time series of neural activity to shed light on
behavior and learning, and to give insight into clinical
conditions such as psychiatric disorders or brain injury.
New high-throughput technologies in neuroscience are
now delivering new types of dynamic ‘big data’: long
time series of measures on hundreds or thousands of
individual neurons (brain cells) or many brain regions
at high resolution. The BRAIN (Brain Research through
Advancing Innovative Neurotechnologies) initiative in
the United States and analogous initiatives in Korea,
Japan and Europe, all point to a near future in which
big data, and their associated analytic challenges,
become the norm in neuroscience. The aim of this

Statistics has long played a role in interpreting
neural activity data, both time series of events from
individual neurons, and more recently, whole-brain
activity data gathered on human subjects by functional
magnetic resonance imaging (fMRI). In the former case
a few neurons are sampled at high time resolution; in
the latter case most of the brain is sampled, but at low
resolution in time and averaging over millions of
neurons. The promise of the new technologies is to
gather information at a high resolution in both space
and time over a large region of an animal’s brain.

Neuroscience has many facets but a major agenda

article is to introduce the reader to some of the new
technologies and the characteristics of their data, and
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is to understand how brain activity works to guide
behavior. This agenda calls for ‘big data’, for it is the
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interactions among large numbers of connected brain
cells that guide behavior. Until very recently
neuroscientists have lacked the tools necessary to
observe network activity at high resolution, and so have
restricted their inquiries to questions that can be
addressed by comparing the activity of individual
neurons, or of one brain region at a time, between
different situations.

In traditional electrophysiology researchers insert
conducting electrodes into a brain region of interest in
a live animal. The electrodes pick up fluctuations in
voltage, which are recorded and separated into
background and the sharp waves, called ‘spikes’
characteristic of action potentials. Statistics has
contributed a great deal to the interpretation of long
time-series of spikes, and shown how subtle changes
in the timing of spikes may reflect perception or
behavior. (Brown et al. 2004) review classical issues
in spike train analysis in the context of measuring a
small number of concurrent neurons.

Although fMRI has been used for almost twenty
years to capture global images of brain activity, and
generates large data sets, fMRI technology can only
resolve events separated by several seconds, more than
a hundred times slower than the time scale of neural
activity; this has limited fMRI primarily to studies of
localization of brain function; it cannot resolve the
dynamics of brain activity; its average activity measures
can tell us only that a particular piece of brain tissue is
working hard, but do not tell us how that tissue is doing
its work. Nevertheless fMRI has some characteristics
of the new ‘big data’ technologies in that each
experiment yields thousands of activity time series.

New technologies for measurement through
imaging portend a dramatic increase in big data.
Calcium imaging will soon give simultaneous activity
on tens of thousands of individual neurons at 10ms
resolution over many hours. Current whole-brain single-
cell resolution data sets by ‘light-sheet’ calcium-
indicator technology (Ahrens ef al. 2013b) are already
1TB in size, and expected to grow to S0TB by the end
of this year (Misha Ahrens, personal communication).
Wide-field imaging using voltage-sensitive dyes
(VSDs) can record activity over large swaths of cortex
at 50 micron and 10ms resolution. One early VSD data
set the author worked with contained 45 billion
numbers, covering just over an hour of total recording
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Fig. 1. Typical set of spike trains from electrode recordings circa
2005. Time in seconds. Unpublished data, courtesy of David
Euston.

time (Mohajerani ef al. 2013). Even electrophysiology
is steadily expanding its capacities: currently it is
possible to record from hundreds of neurons over many
days. These technologies are generating long series of
records (called ‘spike trains’) of the firing of many
individual neurons; Fig. 1 shows a tiny slice of such a
data set.

Such ‘big data’ poses many problems, not least of
which is sufficient computational infrastructure. New
data analysis frame works built on industrial data
mining infrastructure, are being developed, for example
the Thunder package (http://freeman-lab.github.io/
thunder). Moreover such big data also affords
unprecedented opportunities to ask the kinds of
questions about how neural networks work, questions
that formerly neuroscientists could only dream of, and
statisticians have an important role to play in ensuring
that these questions are answered well.

Big data in functional neuroscience differs from
many other kinds of big data sets in engineering,
network technologies, marketing, or social science. First
functional neuroscientists deal with multivariate time-
series, typically comprising hundreds or thousands of
measures at thousands or millions of time points (fMRI
data sets typically have tens of thousands of measures
at hundreds of time points). Second, brain systems are
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interconnected and neural activity is expected to be
coherent and related to behavior, unlike many data
mining situations, in which individual measures are
mostly independent. Therefore integrative analysis
approaches are important for neuroscience.

Big data in neuroscience also differs from the other
recent expansion of statistics into physiology — into big
genomic data — in several important ways. First, genes
have distinct identities and functions and many have a
rich annotation of function, whereas neurons in a
recording of vertebrate brains are largely
indistinguishable, and have no previously annotated
known functions. This makes comparisons between
individuals more difficult: for the most part
corresponding genes function the same way in different
individuals, but specific neurons in a specific region of
one individual’s brain will not correspond in function
to specific cells in the corresponding region of another.
fMRI is somewhat more like genomic data because
functions for many brain regions have been broadly
characterized, and many brain regions can be roughly
aligned between individual brains; nevertheless there
are consistent inter-individual differences in usage of
some corresponding brain regions. Second, it is rare to
gather data from the new technologies on many
individuals, because experiments in living subjects are
costly and require painstaking preparation, unlike
genomics where the assay technology may be expensive
but the sample preparations are fairly routine. Again
fMRI data occupies an intermediate position, the
technology is expensive, but the protocols are less
demanding than the new imaging and recording
technologies.

2. NEW TECHNOLOGIES AND
PRE-PROCESSING ISSUES

Most of the revolutionary new technologies in
functional neuroscience depend on imaging in some
way. A number of new molecular tools enable
researchers to generate visible light from invisible
changes in membrane voltages, or from changes in
concentrations of key signalling molecules, such as
calcium orglutamate. The raw data are usually light
intensity at many points in a series of images; the
biologically interesting events, such as neurons firing,
or membrane voltage, have to be inferred from the raw
data.

The new high-throughput methods for functional
neuroscience depend on pushing technology to its
limits. Therefore issues about processing raw data play
a much bigger role than in fields using established and
well-characterized instruments. Many new technologies
have strong, but poorly understood, artifacts, and to
address these problems requires both sophisticated
statistical technique and a deep understanding of the
technology.

New imaging technologies are not the only
methods which need statistical attention. Even methods
for pre-processing raw data from long-standing
technologies leave much to be desired. Recordings from
extra-cellular electrode have been the standard way to
identify and count ‘spikes’ (the firings of neurons) for
fifty years: each electrode picks up voltage fluctuations
from many nearby neurons. Usually some form of
multivariate analysis is used to identify distinctive
voltage fluctuation patterns resulting from repeated
firing of the same neurons (this process is called ‘spike
sorting’). However current methods can reliably
distinguish only one or two neurons by their distinctive
wave-forms out of the many neurons surrounding the
electrode. This problem introduces a strong bias toward
highly active neurons to the downstream analysis
because most low-firing rate neurons don’t have enough
exemplars to be reliably identified and separated from
each other or from the more active neurons.
Furthermore changing conditions may induce changes
in the wave-form from a single neuron, and sometimes
spikes from a single neuron get assigned as two separate
neurons (Hill ef al. 2011, Neymotin et al. 2011). Thus
spike sorting remains more art than science and there
is considerable scope for advances in pre-processing
methods.

However the new imaging technologies are most
obviously in need of better pre-processing. One such
method is calcium imaging. Calcium is released into the
cell cytoplasm when a neuron fires. In calcium imaging
a fluorescent dye binds the released calcium and emits
light that is detected by a camera (Grienberger and
Konnerth 2012). In newer methods the natural calcium
binding proteins are linked to a fluorophore by genetic
engineering (Grienberger ef al. 2012). However spikes
occur at a time-scale of milliseconds, while the calcium
response occurs over tens of milliseconds and the dye
response over hundreds of milliseconds, thus blurring
together individual spikes. Thus it becomes a problem
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Fig. 2. Middle panel shows typical calcium traces from several individual cells shown at left, identitied with colors, with inferred spikes
after method of (Vogelstein et al. 2010) shown at right. [Copyright J Neurosci; permission applied for]

to identify individual spikes of a single cell, on a time
scale of neural activity (see Fig. 2). It is a natural to
think of the mapping from spikes to calcium signal as
a convolution, and several deconvolution methods have
been developed (Vogelstein et al. 2010). However the
natural variability in neuron calcium signalling has
frustrated the application of these methods. Furthermore
in very dense neural tissue it is often hard to identify
individual cells, which may appear in an image at
several separated locations, which not be counted as
separate cells. This kind of problem invites approaches
using multivariate techniques such as Independent
Components Analysis (ICA) (Mukamel ez al. 2009).

Another emerging technology uses voltage-
sensitive dyes (VSDs) or more recently genetically
encoded voltage indicators, to translate voltage changes
into changes in visible light emitted (Shoham et al.
1999). These indicators potentially can give very high
resolution data over a very wide field, limited only by
the resolution of the camera. Voltage-sensitive
indicators have very rapid rise times, comparable to
spike times, but somewhat slower decay times (tens of
milliseconds) (Petersen et al. 2003); the dynamic
response seems to vary somewhat over the surface of
cortex. How best to pre-process VSD data remains an
unsolved problem, and several artifacts are known.
Other kinds of high-throughput measures have their
own characteristic artifacts and biases, but little
modeling of these has been done so far.

3. EXPLORATORY DATA ANALYSIS

In popular press interviews with neuroscientists,
one refrain often heard is that “we don’t yet know the

neural code”; this means that no-one really knows how
the firing of a particular neuron, or a group of neurons,
might relate to behavior. Therefore for the foreseeable
future exploratory data analysis will be an important
aspect of what neural data analysts do.

When dealing with so many variables, a
statistician’s first instinct is to do some sort of
dimension reduction. However one of the frustrations
of most neuroscience analysis is that the first biological
principal component (PC) typically explains less (often
much less) than 20% of the variance; conversely if a
first PC explains much of the variance, it is usually an
artifact. Often even five biological principal
components do not explain as much as 50% of the
variance in a data set (Fig. 3). This may reasonably be
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Fig. 3. Typical scree plot from PCA of 72 neurons in bins of
100ms. Note the long tail of PC variances. Unpublished data,
courtesy of David Euston (same data set as Fig. 1).
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Fig. 4. Rotational structure in the dynamics of neural activity during reaching uncovered through jPCA method of (Churchland et al.
2012). Axes represent projection of first six PC axes onto a two-dimensional skew-symmetric subspace. Each trace represents on those
axes the mean of many trajectories during reaching attempts under the same conditions; several conditions were tried. Green trajectories

represent reaching to right and red reaching to left. [Copyright Nature; permission applied for]

expected, since there is much spontaneous activity in
brain, unrelated to the task being measured.
Nevertheless classical dimension reduction techniques
often do capture some meaningful patterns in
neuroscience data, and have been energetically applied
to fMRI data. Variations of the classical techniques have
been developed to try to adapt to characteristics of
spiking data. Other multivariate exploratory techniques,
such as Hidden Markov Models (HMMs) and cluster
analysis, have been applied to capture important
transitions in activity patterns.

Principal components analysis (PCA) has been
applied several times over the past two decades to
identify coordinated firing patterns in ensembles of cells
over time, and to understand their possible relation to
function (Churchland et al. 2007, Peyrache et al. 2010).
Unlike most applications of PCA, in applications to
spike train data the loadings are of little interest, since
the neurons are not otherwise identifiable; rather the
interest is in the dynamic changes over time in the PC
scores — the projections onto the eigenvectors of the
correlation matrix associated with the largest
eigenvalues — and in how they co-vary with interesting
aspects of animal behavior.

In order to make continuous data out of multiple
spike trains, the spikes are usually aggregated into bins

of 20ms — 100ms, depending on the typical firing rates.
Neurons with very few recorded spikes are often
discarded at this stage. Then PCA is applied to the spike
counts, which may be further variance-stabilized by a
square root transform. This processing step typically
gives time-series of several tens of thousands of steps
for each neuron. Under standard asymptotic theory, then
PCA should accurately identify several principal
components, provided enough spikes occur in each bin
to make a Gaussian approximation to the counts (or
square root-counts) realistic. Because neural firing rates
are highly skewed (Fig. 1), usually scaled PCA is done.

Several variations on this procedure have been
proposed. Since it is generally easier to interpret
positive loadings than negative loadings, factor analysis
techniques applied to the count data, especially sparse
factor analysis approaches, seem promising (Reimers,
in preparation). Yu and colleagues introduced a
mathematically more sophisticated approach called
Gaussian Process Factor Analysis (GPFA) (Yu et al.
2009). They consider each neuron being recorded as a
noisy reflection of an underlying smooth process, then
use Gaussian Process theory to extract many smooth
trajectories from the noisy, high-dimensional recorded
firings. It is not clear how reliable these extracted latent
factors are, if one compares data from different
sampling epochs.
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Some of the same researchers focused on
identifying subspaces with specific characteristics
within the leading PCA subspaces (Churchland et al.
2012). Their method, which they call jJPCA, aims to
identify a two-dimensional rotational component within
the first six PCs of binned data from spike trains. The
jPCA approach seems to bring out some striking
rotational structure in recordings from primary motor
cortex (see Fig. 4), but again the validity of these kinds
of latent factors has not been studied statistically.

Four kinds of problems with all such procedures
remain to be addressed. One is that the spike counts are
typically low, since only a few principal neurons from
most recorded regions (e.g. cortex or hippocampus) will
fire more than five times in a typical bin. Therefore the
Gaussian model that underlies all these multivariate
techniques seems unlikely to be even approximately
valid in most cases. The appealing application of jPCA
to motor cortex, where some neurons fire more often
than typical cortical neurons, may not generalize across
most other regions. Second there is considerable
evidence that timing relations among neurons are
important on a scale of a few milliseconds, and
neuroscientists are therefore very interested in
understanding these timing relations. However in order
to capture enough spikes for even a minority of neurons
researchers use coarse bins of roughly 50 or 100 ms,
which largely obscure this crucial timing information.
Thirdly there is evidence for the importance of changes
in the ways neurons fire together over time, especially
as an animal learns a task. The classical multivariate
measures and their new variants may pick up shifts over
time from activity in some ensembles to activity in other
ensembles, but do not help us characterize changes in
coordination among ensembles. Finally none of these
methods can represent a majority of the variance in the
recorded datain just a few time-varying factors, and it
remains unclear what exactly is the significance of the
latent factors being identified. Therefore there is
considerable scope for inventive statisticians to improve
even this most basic phase of exploratory analysis.

A natural complement to exploratory multivariate
analysis of neural activity measures, and then seeking
correlations with behavior, is multivariate classification
of behavior from neural activity measures. Can we use
measures of many neurons, or patterns of brain activity
over many regions, to infer what the animal or person
is doing, or even what they are thinking, at the time of

measurement? The neuroscience jargon term for this is
‘decoding’. Such ‘decoding’ has been a staple of
science fiction for a century, and of neuroscientific
studies of navigation and decision-making for over a
decade. In the hippocampus, an area important for
navigation, and also a subject of intense research, most
cells fire at peak rates when an animal is within a
specific location, and rarely at other places; often firing
rate is strongly dependent on the direction of motion.
Such sparseness makes Bayesian approaches to
inferring location and trajectory from patterns of cell
activity fairly successful (Brown et al. 1998). Similar
approaches have been applied to infer future paths the
animal may take at decision points (Johnson and Redish
2007, Pfeiffer and Foster 2013). Similar methods have
been extended to humans using fMRI (Hassabis et al.
2009). In primary sensory regions of cortex, in which
neurons are clustered to form functional maps of the
body or of space, these approaches also successful;
from fMRI measures in visual cortex (Nishimoto et al.
2011) were able to reconstruct some striking images of
what the subject in the scanner was seeing at the time
of acquisition. Others have been able to reconstruct
which image from a finite set a person is imagining at
any one time (Norman et al. 2006). These ‘decoding’
techniques are fairly straightforward conceptually
though technically demanding, often requiring advanced
machine learning techniques. Moreover most such
studies have worked with whole brain imaging, or with
regions of the brain, such as visual cortex, in which
sparse representation is the norm. This is not the case
for most regions of the brain, and more innovative
statistical methods may be needed to infer behavior or
imagined objects from activity patterns in those areas.
Moreover these methods crucially depend on choosing
among a well-characterized and practiced finite set of
real-world activities or imagined objects as counterparts
to neural activity. There is a strong need for methods
to characterize how neurons may respond to novel
situations in relation to their activity during previous
experience.

Neuroscientists want to characterize changes in
neural activity in relation to changes in behavior for
insight on how the mind shifts attention, or even how
new insights form. It is difficult in principle to
distinguish changes in patterns of activity across neural
ensembles from neural plasticity (of which more
below); for now let us consider the former to be
changes in firing rates correlated with changes in
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circumstance or behavior, and the latter to be changes
in firing rates in the same circumstance and behavior.
Changes in firing rates of individual neurons in relation
to stimuli have been studied for decades, but recordings
from multiple neurons allow for a more powerful
characterization of systematic changes in firing patterns
over a brain region. Durstowitz and colleagues have
explored several statistical methods to capture abrupt
transitions and have used multivariate characterizations
of neural activity to show abrupt changes when the
animal switches from one choice to another (Durstewitz
et al. 2010). This observation has motivated them
further to use Hidden Markov Models (HMMs) in an
attempt to identify change points (Caracheo et al.
2013), and others have observed similar changes
(Karlsson et al. 2012).

However it remains unclear whether the abruptness
of transitions is primarily attributable to the sharply
distinct behavioral alternatives available in these
experiments, or is a general feature of neural dynamics.
There is a need to use statistical techniques to
characterize the dynamics and rates of changes in neural
activity in freely roaming animals, where most
behavioral transitions are more gradual.

A question related to that of detecting changes in
patterns of neural activity is whether the same patterns
of neural activity are ever repeated in a stereotyped way.
The idea that there might be repeating patterns suggests
that relative timing of individual neuron firings might
be crucial for their function; this idea is attractive if one
thinks that such repeating motifs might be the basis of
a kind of memory. There have been several reports of
statistically significant recurrence of precise patterns
(Ikegaya et al. 2004). However the statistical
significance of these apparent recurrence is still very
much debated (Mokeichev et al. 2007, Roxin et al.
2008), because the problem of specifying a null
distribution is more sophisticated than simple Poisson
statistics would lead one to expect.

4. COMPUTATIONAL MODELING AND DATA
ANALYSIS

Many researchers have been fascinated by the
prospect of building computer models of brain function.
So-called ‘neural network models’ have even given rise
to effective machine-learning approaches, although few
neuroscientists think these machine learning tools are
models for how the brain functions. Nevertheless there

is an active community building more sophisticated
computational models intending to represent and study
some aspects of cognitive function. It would seem
natural that they would want to connect their models
with data on actual brain function. Nevertheless
although many groups have tried to match certain
qualitative features between their models and observed
behavior, most have been diffident about quantitatively
comparing models with activity measures from real
brains during performance of tasks they are modeling.

This is changing. Recently (Hunt et al. 2012)
simulated three popular models for decision-making,
while storing summaries of aggregate simulated activity,
and used these to predict the measured neural signal
itself. That is they compared their model’s total synaptic
input to the high time resolution physiological MEG
signal from specific brain regions recorded from
individuals doing an analogous task. The recorded
dynamics clearly favored one model of decision-making
over the others.

Not many examples yet exist of such detailed
comparisons, and in these cases reduced summary
statistics are computed and compared with putative
analogs derived from real data. However the increasing
sophistication of both modeling and data acquisition
suggest that such comparisons will be a major
enterprise, and statistical issues of adequate
correspondence between trajectories will come to the
fore.

5. CHARACTERIZING PLASTICITY

Neural plasticity refers to the changing of
connection strengths as a result of experience, which
in turn changes dynamics of neural activity. Plasticity
is one of the distinctive functions of the brain, central
to much research, and yet it remains difficult to
characterize its effects on activity patterns
quantitatively. There are several distinct molecular
mechanisms for plasticity, affecting firing patterns at
several time scales, and so there may not be a single
measure of plasticity that suits all purposes.
Nevertheless this is an area that needs attention from
statisticians as bigger data enables more information to
be gathered.

McNaughton and colleagues introduced the
currently most common measure of plasticity induced
by a learning (or training) experience, based on
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comparing correlation matrices of spike counts of many
neurons, before and after a training episode
(McNaughton 1998). Researchers first aggregate the
spikes in short time bins as for PCA, then they compute
correlations among spike counts both before and after
the training episode. The difference between these two
correlation matrices is then regressed element-wise on
the correlation matrix of the same neurons’ spike counts
during the training episode. The measure of learning is
the R? of this regression, and hence the measure is
known as Explained Variance (EV). Typical EV values
in learning trials are 10% - 20%; but this number does
not identify which connections may have been modified
nor characterize the change in neural dynamics. More
sophisticated measures are sorely needed.

6. OUTLOOK FOR THE COMING DECADE

We already see publications based on imaging tens
of thousands of individual neurons in behaving animals
at a (relatively) slow time-scale of one second (Ahrens
et al. 2012, Ahrens et al. 2013a, Ahrens ef al. 2013b)
using calcium imaging. They extracted relatively coarse
activation statistics, but these technologies are
advancing rapidly, and we may expect within a few
years data sets at time resolutions of under 100 ms,
which should expose the temporal structure of rapid
network dynamics (Misha Ahrens, personal
communication). Statisticians will be able to contribute
to the analysis of this rich data resource.

We may also expect closer integration of
computational neuroscience, already a very active
research endeavor, with analysis of big data sets. At first
this will likely be through derived summary statistics.
It seems unlikely that any time soon scientists will be
able to model details of specific real neural circuits, and
expect to predict the time series of individual neural
activity. Nevertheless the Human Brain Project in EU
(www.humanbrainproject.eu) seems poised to attempt
such predictions.

Who might want to participate in the big data
revolution in neuroscience? Although neuroscience is
a very specific application domain, requiring much
domain-specific knowledge, it is also technically very
demanding. It will appeal to those with broad
interdisciplinary interests, who will enjoy learning the
necessary neuroscience and relish the mathematical and
computing challenges.
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